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Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, Yiling Lou

Abstract—The recent advance in Large Language Models (LLMs) has shaped a new paradigm of AI agents, i.e., LLM-based agents.
Compared to standalone LLMs, LLM-based agents substantially extend the versatility and expertise of LLMs by enhancing LLMs with
the capabilities of perceiving and utilizing external resources and tools. To date, LLM-based agents have been applied and shown
remarkable effectiveness in Software Engineering (SE). The synergy between multiple agents and human interaction brings further
promise in tackling complex real-world SE problems. In this work, we present a comprehensive and systematic survey on LLM-based
agents for SE. We collect 106 papers and categorize them from two perspectives, i.e., the SE and agent perspectives. In addition, we
discuss open challenges and future directions in this critical domain. The repository of this survey is at
https://github.com/FudanSELab/Agent4SE-Paper-List.

Index Terms—Large Language Model, AI Agent, Software Engineering

✦

1 INTRODUCTION

Large Language Models (LLMs) [1] have achieved remark-
able progress and demonstrated potential of human-like
intelligence. In recent years, LLMs have been widely ap-
plied in Software Engineering (SE). As shown by recent
surveys [2], [3], LLMs have been adopted and shown
promising performance in various software development
and maintenance tasks, such as program generation [4]–
[8], software testing [9]–[11] and debugging [12]–[17], and
program improvement [18]–[20].

AI Agents are artificial entities that can autonomously
perceive and act on surrounding environments so as to
achieve specific goals [21]. The concept of AI agents has been
evolving for a long time (e.g., early agents are constructed
on symbolic logic or reinforcement learning [22]–[25]). Re-
cently, the remarkable progress in LLMs has further shaped
a new paradigm of AI agents, i.e., LLM-based agents, which
leverage LLMs as the central agent controller. Different from
standalone LLMs, LLM-based agents extend the versatility
and expertise of LLMs by equipping LLMs with the capa-
bilities of perceiving and utilizing external resources and
tools, which can tackle more complex real-world goals via
collaboration between multiple agents or involvement of
human interaction.

In this work, we present a comprehensive and systematic
survey on LLM-based agents for SE. We collect 106 papers
and categorize them from two perspectives, i.e., both the SE
and agent perspectives. Additionally, we discuss the open
challenges and future directions in this domain.
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From the SE perspective, we analyze how LLM-based
agents are applied across different software development
and improvement activities, including individual tasks
(e.g., requirements engineering, code generation, static code
checking, testing, and debugging) as well as the end-
to-end procedure of software development and improve-
ment. From this perspective, we provide a comprehensive
overview of how SE tasks are tackled by LLM-based agents.

From the agent perspective, we focus on the design
of components in LLM-based agents for SE. Specifically,
we analyze key components, including planning, memory,
perception, and action, in these agents. Beyond basic agent
construction, we also analyze multi-agent systems, includ-
ing their agent roles, collaboration mechanisms, and human-
agent collaboration. From this perspective, we summarize
the characteristics of different components of LLM-based
agents when applied to the SE domain.

In summary, this survey makes the following contribu-
tions:
• It provides the first comprehensive survey of 106 papers

that apply LLM-based agents to SE.
• It analyzes how existing LLM-based agents are designed

and applied for software development and maintenance
from both the SE and agent perspectives.

• It discusses research opportunities and future directions
in this critical domain.

Survey Structure. Figure 1 summarizes the structure of
this survey. Section 2 introduces background knowledge,
while Section 3 presents the methodology. Section 4 and
Section 5 present the relevant work from the SE perspective
and the agent perspective, respectively. Finally, Section 6
discusses the potential research opportunities.

2 BACKGROUND AND PRELIMINARY

In this section, we first introduce the background about the
basic and advanced LLM-based agents, and then we discuss
the related surveys.
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Fig. 1: Structure of This Survey

2.1 Basic Framework of LLM-based Agents

LLM-based agents are typically composed of four key com-
ponents: planning, memory, perception, and action [21]. The
planning and memory serve as the key components of the
LLM-controlled brain, which interacts with the environment
through the perception and action components to achieve
specific goals. Figure 2 illustrates the basic framework of
LLM-based agents.

Planning. The planning component decomposes com-
plex tasks into multiple sub-tasks and schedules the sub-
tasks to achieve final goals. In particular, agents can (i)
generate a plan without adjustment by different reasoning
strategies, or (ii) adjust a generated plan with the external
feedback (e.g., environmental feedback or human feedback).

Memory. The memory component records the historical
thoughts, actions, and environmental observations gener-
ated during the agent execution [21], [26], [27]. Based on
the accumulated memory, agents can revisit and utilize
the previous records and experience, so as to tackle the
complex tasks more effectively. The memory management
(i.e., how to represent the memory) and utilization (i.e., how
to read/write or retrieve the memory) are essential, which
directly impact the efficiency and effectiveness of the agent
system.

Perception. The perception component receives the in-
formation from the environment, which can facilitate better
planning. In particular, agents can perceive multi-modal in-
puts, e.g., textual inputs, visual inputs, and auditory inputs.

Action. Based on the planning and decisions made by

the brain, the action component conducts concrete actions
to interact with and impact the environment. One essential
mechanism in action is to control and utilize external tools,
which can extend the inherent capabilities of LLMs by
accessing more external resources and extending the action
space beyond textual-alone interaction.

Fig. 2: Basic Framework of LLM-based Agents

2.2 Advanced LLM-based Agent Systems

Multi-agent Systems. While a single-agent system can
be specialized to solve one certain task, enabling the collabo-
ration between multiple agents (i.e., multi-agent systems) can
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further solve more complex tasks associated with diverse
knowledge domains. In particular, in a multi-agent system,
each agent is assigned a distinct role and relevant exper-
tise, making it specifically responsible for different tasks;
in addition, the agents can communicate with each other
and share the progress/information as the task proceeds.
Typically, agents can work collaboratively (i.e., by working
on different sub-tasks to achieve a final goal) or compet-
itively (i.e., by working on the same task while debating
adversarially).

Human-Agent Coordination. Agent systems can further
incorporate the instructions from humans and then proceed
with tasks under human guidance. This human-agent coor-
dination paradigm facilitates better alignment with human
preference and uses human expertise. In particular, during
human-agent interaction, humans can not only provide
agents with task requirements and feedback on the current
task status, but also cooperate with agents to achieve goals
together.

2.3 Related Surveys
LLM-based agents in general domains have been widely

discussed and surveyed [21], [26], [28]–[32]. Different from
these surveys, this survey focuses on the design and ap-
plication of LLM-based agents specifically for the software
engineering domain. In software engineering domain, there
have been several surveys or literature reviews on the
general application of LLMs in software engineering [2],
[3], [10], [32], [33]. Different from these surveys, this survey
specifically focuses on the agent perspective and is more
comprehensive on the application of LLM-based agents for
software engineering. In addition, He et al. [34] present a
vision paper on the potential applications and emerging
challenges of multi-agent systems for software engineering.
Different from the vision paper, this work focuses on con-
ducting a comprehensive survey of existing agent systems
(including both single agent and multi-agent systems). In
summary, to the best of our knowledge, this is the first
survey specifically focusing on the literature on LLM-based
agents for software engineering.

3 SURVEY METHODOLOGY

This section defines the scope of the survey and describes
our approach to collecting and analyzing papers within the
scope.

3.1 Survey Scope
We focus on the papers that apply LLM-based agents to tackle
SE tasks. In the following, we specify the terms.
• SE tasks. Following previous surveys on the application

of LLMs in SE [2], [3], we focus on all SE tasks along
the software life cycle, including requirements engineer-
ing, software design, code generation, software quality
assurance (i.e., static checking and testing), and software
improvement.

• LLM-based agents. A standalone LLM can work as a naive
“agent” since it can take textual inputs and produce
textual outputs, leaving it no clear boundary between
LLMs and LLM-based agents. However, this could result

in an overly broad scope and significant overlap with
existing surveys on LLM applications in SE [2], [3]. Based
on the widely-adopted consensus about AI agents, the key
characteristic of agents is their ability to autonomously
and iteratively perceive feedback from, and act upon, a
dynamic environment [21]. To ensure a more focused dis-
cussion from the perspective of agents, this survey focuses
on LLM-based agents that not only incorporate LLMs as
the core of their “brains”, but also have the capacity to
iteratively interact with the environment, taking feedback
and acting in real time.

More specifically, we apply the following inclusion and
exclusion criteria for paper collection.
• Inclusion criteria. A paper will be included in our survey

if it meets any of the following criteria: (i) The paper
proposes a technique, framework, or tool for addressing
specific SE tasks using LLM-based agents; (ii) The paper
presents a general technique, framework, or tool applica-
ble across various domains, provided that its evaluation
includes at least one SE task; (iii) The paper presents an
empirical study evaluating LLM-based agents on specific
SE tasks.

• Exclusion criteria. A paper will be excluded from our
survey if it meets any of the following criteria: (i) The
paper does not involve any SE tasks; (ii) The paper only
discusses LLM-based agents in the context of discussion
or future work, without integrating them into the main
approach; (iii) The paper only uses a standalone LLM for
processing textual inputs and generating textual outputs,
without any iterative interaction with the environment.

3.2 Paper Collection

Our paper collection process includes two steps: keyword
searching and snowballing.

3.2.1 Keyword Searching

We follow established practices in SE surveys [35]–[39] by
using the DBLP database [40] for paper collection. Recent
research [39] has demonstrated that papers gathered from
other prominent publication databases are typically a subset
of those available on DBLP, which encompasses over 7
million publications from more than 6,500 academic confer-
ences and 1,850 journals in computer science [41]. DBLP also
covers arXiv [42], a widely adopted open-access repository.

We employ an iterative trial-and-error approach, which
is widely adopted in SE surveys [35], [43], to determine
search keywords. Initially, all authors, with relevant research
experience/publication in LLM and SE, convene to suggest
papers relevant to our scope, yielding an initial set of rele-
vant papers. Subsequently, the first two authors review the
titles, abstracts, and introductions of these papers to iden-
tify additional keywords. We then conduct brainstorming
sessions to expand and refine our search strings, incorporat-
ing related terms, synonyms, and variations. This process
enables iterative enhancement of our search keyword list.
The final keywords include (“agent” OR “llm” OR “language
model”) AND (“api” OR “bug” OR “code” OR “coding” OR
“debug” OR “defect” OR “deploy” OR “evolution” OR “fault”
OR “fix” OR “maintenance” OR “program” OR “refactor”
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TABLE 1: Statistics of Paper Collection

Keyword Hits
agent | llm | language model + api 83
agent | llm | language model + bug 98
agent | llm | language model + code 915
agent | llm | language model + coding 70
agent | llm | language model + debug 95
agent | llm | language model + defect 22
agent | llm | language model + deploy 295
agent | llm | language model + evolution 1,349
agent | llm | language model + fault 685
agent | llm | language model + fix 318
agent | llm | language model + maintenance 64
agent | llm | language model + program 1,969
agent | llm | language model + refactor 15
agent | llm | language model + repair 137
agent | llm | language model + requirement 451
agent | llm | language model + software 2,151
agent | llm | language model + test 976
agent | llm | language model + verification 525
agent | llm | language model + vulnerab 144
After manual inspection 67
After snowballing 106

OR “repair” OR “requirement” OR “software” OR “test” OR
“verification” OR “vulnerab”).

Based on the keywords, we conduct 57 searches on DBLP
on July 1st, 2024, and obtain 10,362 hits. Table 1 presents
the statistics of papers collected through keyword searching.
The first two authors manually review each paper to filter
out those not within the scope of this survey. As a result, we
identify 67 relevant papers through this process.

3.2.2 Snowballing
To enhance the comprehensiveness of our survey, we adopt
snowballing approaches to identify papers that are transi-
tively relevant and expand our paper collection [35]. Specif-
ically, between July 1 and July 10, 2024, we conduct both
backward and forward snowballing. Backward snowballing
involves examining references in each collected paper to
identify relevant ones within our scope, while forward
snowballing uses Google Scholar to find relevant papers
citing the collected ones. This iterative process continues
until no new relevant papers are found. In this process, we
retrieve an additional 39 papers.

3.3 Statistics of Collected Papers
As shown in Table 1, we have collected a total of 106 papers
for this survey. Figure 3 presents the cumulative number of
papers published over time, up to July 10, 2024. We observe
that there is a continuous increase of research interest in this
field, highlighting the necessity and relevance of this survey.
Additionally, Figure 4 shows the distribution of publication
venues for the papers, covering diverse research communi-
ties such as software engineering, artificial intelligence, and
human-computer interaction. In particular, the majority of
the papers are from arXiv and have not yet undergone peer
review. This is expected, as this field is emerging and still
undergoing rapid development.

4 ANALYSIS FROM SE PERSPECTIVES

In this section, we organize the collected papers from the
perspective of different SE tasks. Figure 5 presents the SE

Fig. 3: Cumulative Number of Papers Over Time

Fig. 4: Distribution of Publication Venues of All Papers

tasks along the common life cycle of software development
and maintenance.

It is worth noting that, LLM-based agents can be
designed not only to tackle individual SE tasks but also
to support end-to-end software development or mainte-
nance processes involving multiple SE activities. From
the collected papers, we observe LLM-based agents de-
signed for (i) end-to-end software development and (ii) end-to-
end software maintenance. Specifically, agents for end-to-end
software development can generate a complete program
based on requirements by performing multiple SE tasks,
such as requirements engineering, design, code generation,
and code quality assurance (e.g., verification, static checking,
and testing); agents for end-to-end software maintenance
can generate patches for user-reported issues by supporting
multiple SE maintenance activities, such as debugging (e.g.,
fault localization and repair) and feature maintenance. As
shown in previous papers [2], [3], standalone LLMs are
primarily specialized in tackling single SE tasks and are
generally inadequate for complex end-to-end software de-
velopment and maintenance processes. In contrast, LLM-
based agents, through their components (i.e., planning,
memory, perception, and action), coordination among mul-
tiple agents, and human interaction, provide the autonomy
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Fig. 5: Agent Distribution along Software Development and Maintenance Tasks

and flexibility necessary to tackle these complex tasks.
Distribution of LLM-based agents in different SE activ-

ities. In Figure 5, the numbers in brackets indicate the count
of collected papers in each category. Notably, if LLM-based
agents are designed for end-to-end software development
or maintenance, they are only reported at the end-to-end
level rather than at the level of individual tasks. Overall,
we observe that the majority of LLM-based agents focus
on individual-level SE tasks, especially for code generation
and code quality assurance (e.g., static checking and testing);
in addition, a portion of agents are designed for end-to-
end software development or maintenance tasks, indicating
the promise of LLM-based agents in tackling more complex
real-world SE tasks.

4.1 Requirements Engineering
Requirements Engineering (RE) is a crucial phase for ini-

tializing the software development procedure. Generally, it
can cover the following phases [44]–[46].
• Elicitation: New requirements are elicited and collected.
• Modeling: Abstract yet interpretable models are used to

describe requirements, e.g., Unified Modeling Language
(UML) [47] and Entity-Relationship-Attribute (ERA)
model [48].

• Negotiation: Negotiation plays a crucial role in facilitating
communication of different stakeholders and ensuring
consistency, especially in conflicting requirements.

• Specification: Requirements are determined and docu-
mented in a formal format.

• Verification: Requirements and models are validated to
ensure they fully and unambiguously reflect the intent of
stakeholders.

• Evolution: Requirements evolution refers to the ongoing
process of refining and adapting requirements in response
to changing needs and conditions.

In real-world software development, RE can take lots
of manual efforts due to the strong demand for mas-
sive interactions with various stakeholders. Although re-
searchers have leveraged deep learning models (including
standalone LLMs) to boost requirements engineering activ-
ities, most of them still remain on individual tasks during
RE, such as classification [49], specification [50], informa-
tion retrieval [51], evaluation [52], and enhancement [53]
of existing requirements. Recently, multi-agent systems are
designed to automate individual phases or multiple phases.
Table 2 summarizes existing LLM-based agents specifically
designed for RE, and Figure 6 illustrates their common
pipeline.

Fig. 6: Pipeline of LLM-based Agents for Requirements
Engineering

A. LLM-based Agents for Individual RE Phases. Elic-
itation [54] is a multi-agent framework for the requirement
elicitation phase, which aims at mining requirements as
completely as possible. Elicitation first initializes multiple
agents with different personas within the designed context
to cover various user viewpoints, and then makes them sim-
ulate interactions with the target product while document-
ing records (i.e., action, observation, and challenge) in each
step. The potential requirements are eventually identified
through the agent interviews and filtered on the provided
criteria. Experimental results indicate that Elicitation can
uncover and categorize hidden needs while reducing costs
compared with conventional methodologies such as user
studies.

SpecGen [55] is a system designed for generating re-
quirement specifications of a given program. It contains
two stages: conversation-driven specification generation
and mutation-based specification generation. In the first
stage, an agent generates Java Modeling Language (JML)
requirement specifications [58], which are further validated
by the external OpenJML verifier [59]. The feedback is
integrated into the prompt and kicks off iterative generation.
In the second stage, specifications that fail the validation
are mutated and verified to generate more diverse spec-
ifications. Experimental results demonstrate that SpecGen
outperforms state-of-the-art approaches.

B. LLM-based Agents for Multiple RE Phases. In
addition to automating individual RE phases, some agents
address multiple RE phases. For example, Arora et al. [56]
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TABLE 2: Existing LLM-based Agents for Requirements Engineering

Agents Multi-Agent
Covered RE Phases

Elicitation Modeling Negotiation Specification Verification Evolution
Elicitron [54] ✓ ✓
SpecGen [55] × ✓
Arora et al. [56] ✓ ✓ ✓ ✓ ✓
MARE [57] ✓ ✓ ✓ ✓ ✓

propose a multi-agent system to cover four phases of RE:
elicitation, specification, analysis (synonymous with negoti-
ation), and validation. For each phase, they explore the roles
that can be simulated by LLM-based agents and systemi-
cally analyze the strengths and weaknesses. In the elicitation
phase, agents play the role of stakeholders or requirement
engineers and collect preliminary requirements, which are
then formatted into structured documentation by another
agent in the specification phase. Then, the analysis phase
involves multiple stakeholder agents, aiming to evaluate,
prioritize, and refine requirements. The validation phase
marks the final validation by the stakeholder agents, and
then the requirement documentation is decided and ready
for subsequent design/implementation.

MARE [57] is another multi-agent framework that covers
multiple RE phases, including elicitation, modeling, verifi-
cation, and specification. In the elicitation phase, a set of
stakeholder agents express their needs, which would then
be organized into a draft by the collector agent. Subse-
quently, the modeler agent identifies entities and relation-
ships in the draft and constructs a requirement model; In
the verification phase, the checker agent assesses the quality
of the current requirements draft on its criteria and hands
it over to the documenter agent, which will write the re-
quirement specifications or report errors. All of these agents
are equipped with predefined actions and can communicate
within a shared workspace, enabling the seamless exchange
of intermediate information.

4.2 Code Generation
Code generation has been extensively explored with the
development of AI technology [33]. Due to being pre-trained
on massive textual data (especially large code corpus), LLMs
demonstrate promising effectiveness in generating code for
given code contexts or natural language descriptions. Nev-
ertheless, the code generated by LLMs can sometimes be
unsatisfactory due to issues such as the notorious hallucina-
tion [60]. Therefore, beyond simply leveraging standalone
LLMs for code generation, researchers also build LLM-
based agents that can enhance the capabilities of LLMs via
planning and iterative refinement. Figure 7 illustrates how
existing LLMs extend standalone LLMs in code generation.

4.2.1 Code Generation with Planning
LLM-based agents employ advanced planning methods to
extend the code generation capabilities of LLMs. Chain-
of-thought (CoT) [99] is the most popular strategy, which
decomposes the code generation task into sub-tasks and
achieves higher generation correctness [61], [70], [76], [84],
[86], [91]–[93], [95]. For example, CodeCoT [84] leverages

Fig. 7: Pipeline of LLM-based Agents for Code Generation

CoT to break down the given requirements into steps that
are described in natural language and then convert them
to code. Some works employ dynamic planning strategies,
where observations of the current action determine the
next step [62], [85], [87], [88]. For example, CodePlan [88]
employs an adaptive planning algorithm that dynamically
detects the affected code snippets in the repository and
adapts the plan. However, there is still a gap between the
narrative-based steps and the final generated code. There-
fore, some works propose different representations to de-
scribe the planning steps, including pseudocode [95], interme-
diate code [61], or code skeleton [93], [97]. For example, Agent-
Coder [95] prompts the agent to generate pseudocode af-
ter problem understanding and algorithm selection phases,
which serves as a draft for the final code. In addition, some
existing works explore multi-path planning strategies. For
example, LATS [76] simulates all possible generation paths
as a tree and optimizes the plan with the Monte Carlo Tree
Search algorithm. In MapCoder [98], the planning agent
generates multiple plans along with confidence scores for
sorting. The highest-scoring plan is used to generate the
target code. If the code is erroneous, the plan with the
next highest confidence is selected to continue the iterative
generation process.

4.2.2 Code Generation with Iterative Refinement
One essential capability of agents is to act on the feedback
from the environment. In the code generation scenario, some
agents dynamically refine the previously-generated code
based on the feedback via multiple iterations. We organize
the relevant research based on the feedback sources, includ-
ing model feedback, tool feedback, human feedback, and
hybrid feedback. Table 3 summarizes existing LLM-based
agents for code generation with the iterative refinement.

A: Model Feedback. Model feedback can be classified
into peer-reflection and self-reflection.
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TABLE 3: Existing LLM-based Agents for Code Generation

Agents Multi-Agent
Iterative Refinement

Model Feedback Tool Feedback Human Feedback Hybrid Feedback

Parsel [61] ✓

Reflexion [62], Self-Repair [63], AutoGen [64],

INTERVENOR [65], TGen [66], AutoCoder [67]
✓ ✓ ✓ ✓

CAMEL [68], Li et al. [69], DyLAN [70] ✓ ✓

SELF-DEBUGGING [71], SEIDR [72], µFiX [73],

AlphaCodium [74], LDB [75], LATS [76], RRR [77]
× ✓ ✓ ✓

ToolCoder [78], SELFEVOLVE [79], KPC [80],

LEMUR [81], CODEAGENT [82], LLM4TDD [83],

CodeCoT [84], CodeAct [85], CoCoST [86],

InterCode [87], CodePlan [88], TOOLGEN [89]

× ✓

Self-Refine [90] × ✓

Flows [91] ✓ ✓ ✓ ✓ ✓

MINT [92] × ✓ ✓ ✓

CodeChain [93] × ✓ ✓

ClarifyGPT [94] × ✓ ✓

AgentCoder [95], Gentopia [96],

SoA [97], MapCoder [98]
✓ ✓

A.1: Peer-reflection. Peer-reflection refers to information
exchange and interaction between multiple models. The
most common paradigm is collaboration in multi-agent sys-
tems through role specialization and structured communica-
tion (e.g., code review) [62], [64], [68]. This approach under-
scores the specialized responsibilities of each role and how
they exchange information based on these responsibilities.
Besides, when generating initial code, some works produce
multiple results at once [69]. Thus, a selection mechanism is
employed to retain the most suitable result. Li et al. [69] use
Bilingual Evaluation Understudy (BLEU) to calculate and
aggregate the similarity scores of each initial code with the
rest, retaining the result with the highest score. Moreover,
there is also a modality that involves treating each agent role
equally in expressing their opinions or engaging in debates
to solve problems. DyLAN [70] allows multiple agents to
engage in dynamic interactions over multiple rounds, orga-
nized into a multi-layer feed-forward network. The network
employs an additional LLM ranker to analyze the responses
of agents from the previous layer and selects the best-
performing agent to continue in subsequent interactions.

A.2: Self-reflection. Apart from the interaction between
models, there are works that conduct self-refinement of a
single model [71], [73], [90]. This means that the current
modification is based on the previous output of the model,
iteratively optimizing through this approach. Le et al. [93]
guide LLMs to generate modularized code, leveraging clus-
ter representatives from previously generated sub-modules
in each iteration. SELF-DEBUGGING [71] draws inspiration
from the rubber duck debugging method used by program-
mers. During the explanation phase, the model provides a
line-by-line explanation of the generated initial code. As
Wang et al. [92] mention in their work, all models benefit
from natural language feedback, with absolute performance
gains by 2–17% each additional turn of natural language
feedback.

B: Tool Feedback. The code generated by models can

be of limited quality with numerous uncertainties. One
solution to address this challenge is to equip LLM-based
agents with tools that can collect informative feedback and
assist the agents to generate and refine code.

B.1: Dynamic Execution Tools. One common group is to
invoke the compiler, interpreter, and execution engine to di-
rectly compile or execute the code. This approach leverages
the outputs and run-time behaviors, such as test results or
compilation errors, as feedback for code improvement [79],
[81]–[87], [92]–[98].

B.2: Static Checking Tools. Agents can get more restricted
knowledge on code constraints by applying code analysis
tools. For example, some agents apply static analysis tools
to obtain syntactically-valid program symbols/tokens [89]
or dependencies between code during code generation [82],
[88]. Including the analyzed information into the prompt
can guide LLMs towards generating valid code.

B.3: Retrieval Tools. Agents can get the access to rich
external resources by applying retrieval or searching tools.
For example, some agents retrieve local knowledge repos-
itories [86] such as private API documentations [78], [82]
to facilitate better code generation; in addition, some apply
online search engines [78], [82], [86], [96] or web crawling
[80] to collect information such as content from relevant
websites (e.g., StackOverflow and datagy.io) [78], [82], [86], [96]
and official online documentations [80], [86]. Including the
retrieved resources into the prompt can provide additional
knowledge for language models. Notably, ToolCoder [78]
integrates the agent with online search and local documen-
tation search tools that provide helpful information for both
public and private APIs, alleviating the hallucination of
LLMs.

C: Human Feedback. Another approach involves in-
corporating human feedback into the process, as humans
play a critical role in clarifying ambiguous requirements.
For instance, in software development, humans can check
whether the generated code aligns with their initial intent.
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Any discrepancies are often attributed to vagueness or in-
completeness in the requirements, prompting a revision of
the requirement documents [91], [92]. To further minimize
human involvement, some methods enable the agent to
handle the task of observing execution results. For example,
ClarifyGPT [94] automatically identifies potential ambigu-
ities in the manually-given requirements and proactively
poses relevant questions for humans; then the responses
from humans are further used to refine the requirements.

D: Hybrid Feedback. Agents can also incorporate mul-
tiple types of feedback and progressively enhance each
other as hybrid feedback. For example, a common ap-
proach is to combine tool feedback and model feedback.
Specifically, an LLM receives error messages returned after
executing a program or test case, and utilizes its contextual
understanding to provide corresponding feedback output
(e.g., explanations, suggestions, instructions, etc.) [62]–[67],
[71]–[77], [91], [97]. For example, in the multi-agent sys-
tem INTERVENOR [65], a teacher coder is designated to
observe the program execution results and provide error
explanations and bug-fixing plans for the student coder
to understand and regenerate the code. Furthermore, to
accurately pinpoint issues, some works provide more fine-
grained environment feedback for the subsequent process-
ing of the model. LDB [75] constructs a control flow graph,
which divides the program into multiple blocks. It uses
breakpoints to obtain the runtime values of variables, and
the model compares these values against the requirements,
assessing each block for anomalies.

4.3 Static Code Checking

Static code checking refers to examining the quality of code
without executing the code. In particular, static code check-
ing has been essential in the modern continuous integra-
tion pipeline, as it is efficient to identify diverse categories
of code quality issues (e.g., different bugs, vulnerabilities,
or code smells) before extensively executing the tests. In
practice, it is common to adopt static analysis techniques
to automatically detect bugs/vulnerabilities (i.e., static bug
detection) or involve peer reviews to check the quality of
code (i.e., code review).

4.3.1 Static Bug Detection

Preliminary studies [2], [3] show that LLMs can help
identify potential quality issues in the given code un-
der inspection. For example, fine-tuning LLMs on existing
buggy/correct code or simply prompting LLMs has demon-
strated promising effectiveness in identifying the bugs, vul-
nerabilities, or code smells in the given code snippets [15],
[100]. However, given the diversity and complexity of the
root causes of different code issues as well as the long code
contexts under inspection, standalone LLMs exhibit limited
accuracy and recall in the real-world static code checking
scenario [101]. Recently, researchers have built LLM-based
agents to enhance the capabilities of standalone LLMs in
bug or vulnerability detection. Table 4 summarizes these
agents and Figure 8 illustrates their common pipeline.

A. Co-inspection with Multi-agent. One effective vul-
nerability detection strategy focuses on the perspective of

Fig. 8: Pipeline of LLM-based Agents for Static Bug Detec-
tion

multi-agent collaboration. Mao et al. [111] propose an ap-
proach for vulnerability detection through mutual discus-
sion and consensus among different LLMs representing the
testers and developers respectively. It mimics the real-world
code review process that involves the collaboration of var-
ious roles within a team, enhancing the detection effective-
ness through the interaction and reflection between LLMs.
Moreover, GPTLENS [104] is an adversarial yet synergic
framework for detecting vulnerabilities in smart contracts.
It is designed as a two-stage method involving several
auditor agents and a critic agent, all adopting GPT-4 as the
backend. The auditor agents randomly generate potential
vulnerabilities and corresponding reasoning as thoroughly
as possible, while the critic scrutinizes and scores the can-
didates based on specific criteria. Their evaluation on 13
real-world smart contract CVEs indicates the effectiveness
by an improvement of up to 76.9% in the identification
rate. Fan et al. [105] conceive the Intelligent Code Analysis
Agent (ICAA) concept for static code analysis. ICAA is
an integration of AI models (e.g., the LLMs), engineering
process designs, and traditional non-AI components (e.g.,
static analysis tools). As a dynamic decision-making system,
ICAA can be composed of multiple sub-agents to enhance
its functionality. Two examples of ICAA implementations
include bug detection and code-intention consistency check-
ing, both of which rely on the collaboration of various sub-
agents, such as the ReAct-based Analysis Agent and the
Report Agent.

B. Additional Knowledge from Tool Execution. Other
approaches concentrate on strengthening the capabilities of
LLMs via tool invocation. ART [102] is a general framework
that boosts LLMs for unseen tasks with multi-step planning
and effective tool utilization. ART includes a tool library
(e.g., search tools), which can facilitate task decomposition
and the appropriate invocation of tools. In addition, ART
accommodates the integration of human inputs, allowing
for seamless updates to its libraries. ART is evaluated on the
multiple downstream tasks such as bug detection, and out-
performs both few-shot prompting and the automated gen-
eration of CoT reasoning. Sun et al. [110] propose LLM4Vuln
to enhance the vulnerability reasoning capabilities of LLMs
by decoupling and augmenting them. The agent improves
in several aspects. It retrieves external knowledge from
both the raw text of vulnerability reports and summarized
key sentences, which include information about the func-
tionality of the vulnerable code and its root cause. This
information is stored in a vector database. Additionally, the
agent invokes tools to actively seek further context about the
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TABLE 4: Existing LLM-based Agents for Static Bug Detection

Agents Multi-Agent
Tool Utilization

Dataset Target Program Bug Category
Tool Category Specific Tools

ART [102] × Custom Toolkit
Code Generation Tool
Code Execution Tool

BigBench [103] Python Program Code Errors

GPTLENS [104] ✓ - - Self-curated Smart Contract Smart Contract Vulnerability

ICAA [105] ✓ Custom Toolkit

Context Splitting Tool
Code Retrieval Tool

Document Retrieval Tool
Web Search Tool

NFBugs [106]
Self-curated

Python Program
Java Program

Non-functional Bugs
API Misusage

E&V [107] × Static Analysis Clang [108] Sampled syzbot [109] Linux Kernel Kernel Address Sanitizer Bugs

LLM4Vuln [110] × Custom Toolkit
Database Retrieval Tool
Context Collection Tool

Self-curated Smart Contract Smart Contract Vulnerability

Mao et al. [111] ✓ - - SySeVR [112] C/C++ Program

Library/API Function Call
Arithmetic Expression

Array Usage
Pointer Usage

IRIS [113] × Static Analysis CodeQL [114] CWE-Bench-Java [113] Java Program

Path-Traversal
OS Command Injection

Cross-Site Scripting
Code Injection

LLIFT [115] × Static Analysis UBITect [116] Rnd-300 [115]
Linux Kernel
C Program

UBI Bugs

target code (e.g., function or variable definitions) through
function calls.

C. Combined with Traditional Static Bug Detection.
Some researchers have combined LLM-based agents with
traditional static checking techniques to improve their static
bug detection capability. For example, LLIFT [115] is an
LLM-assisted Use-Before-Initialization (UBI) bug detection
tool. Based on undecided bugs reported by the powerful
static analysis tool UBITect, LLIFT further leverages the
capability of LLMs in code comprehension and summariza-
tion to identify UBI bugs in the Linux kernel. However,
LLMs have the inherent limitation in accepting and under-
standing long input context (e.g., numerous functions in the
Linux kernel) as well as the hallucination and stochasticity
issues. LLIFT addresses these issues by augmenting the
basic LLM with some agentic techniques. For example,
instead of flooding the LLMs with all possible related code,
it only responds to the LLM’s demand for specific func-
tion definitions through static analysis, achieving a balance
between context length and information completeness. Be-
sides, it employs in-context learning, task decomposition,
self-validation, and majority voting strategies to further
alleviate hallucination and stochasticity and guarantee de-
tection accuracy. This framework identifies 13 UBI bugs
from 1,000 potential UBI bug instances reported by UBI-
Tect [116], with a precision rate of 50%. E&V [107] is an
agent designed for conducting static analysis of code in the
Linux kernel. The high-level workflow of E&V is a loop of
employing an LLM-based agent for static analysis through
pseudo-code execution, verifying the output of pseudo-
code, and providing feedback for re-analysis. To avoid fact
hallucination caused by missing necessary code snippets
(e.g., caller and callee functions in inter-procedural analysis),
a source code retrieval component is introduced to fetch
needed functions or structures through traditional static
analysis tools (e.g., Clang [108]). E&V has been evaluated
against 170 Linux Kernel bugs and correctly pinpointed the

blamed function in 81.2% of the cases. IRIS [113] is an agent
augmented with CodeQL (a static analysis tool) [114] for
vulnerability detection. IRIS first utilizes CodeQL to extract
candidate APIs in the given repository. Then, it labels these
APIs as potential sources or sinks of the given vulnerability
via querying the LLM-based agent, which will be further
handed over to CodeQL for detecting vulnerable paths. The
final verdict is achieved by prompting the LLM agent to
analyze the vulnerable paths and surrounding code of the
source and sink.

4.3.2 Code Review

Developers review each other’s code changes to ensure and
improve the code quality before merging the changes into
the branch. To mitigate the manual efforts in code review,
researchers leverage learning approaches to automate the
code review procedure. In particular, code review is formu-
lated as a binary classification problem (i.e., code quality
classification [117]) or a sequence-to-sequence generation
problem (i.e., review comment generation [118]), which are
tackled by fine-tuning or prompting deep learning models
(including LLMs). Different from these works, LLM-based
agents mimic the real-world peer review procedure by in-
cluding multiple agents as different code reviewers. Table 5
summarizes existing agents for code review.

CodeAgent [119] is a multi-agent system that simulates
a waterfall-like pipeline with four stages (i.e., basic infor-
mation synchronization, code review, code alignment, and
document) and set up a code review team with six agents of
different characters (i.e., user, CEO, CPO, CTO, coder, and
reviewer). In the basic information synchronization phase,
CEO, CPO, and coder agents analyze the input modality and
programming language. After that, the coder and reviewer
agents collaborate to conduct code review and produce the
analysis report. In the code alignment phase, the coder and
reviewer agents continue to revise the code based on the
analysis reports. Finally, in the document phase, the CEO,
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TABLE 5: Existing LLM-based Agents for Code Review

Agents Multi-Agent Roles
Review Target

Consistency Vulnerability Code Smell Code Optimization

CodeAgent [119]
User, CEO, CPO,

CTO, Coder, Reviewer
✓ ✓ ✓ ✓

Rasheed et al. [120]
Code Review, Bug Report,

Code Smell, Code Optimization Agent
✓ ✓ ✓

ICAA [105]
Context & Prompt Incubation Agent,

Consistency Checking Agent, Report Agent
✓

CORE [121] Proposer LLM, Ranker LLM ✓

CTO, and coder agents cooperate to document the holistic
code review process. Experimental results demonstrate the
effectiveness and efficiency of CodeAgent in various code
review tasks, including consistency analysis, vulnerability
analysis, format analysis, and code revision.

Different from CodeAgent which constructs a team that
can conduct various code review tasks, Rasheed et al. [120]
design an approach with each agent specialized for a single
code review task individually. Notably, it proposes four
agents including the code review agent, bug report agent,
code smell agent, and code optimization agent. Each agent
is trained on relevant Github data and evaluated on 10
AI-based projects. The results demonstrate the potential of
applying multi-agent systems in the code review task.

ICAA [105] designs a multi-agent system to identify
code-intention inconsistencies. It first uses the Context &
Prompt Incubation Agent to collect necessary information
from the code repository through a thinking-decision-action
loop. The Consistency Checking Agent will then analyze
collected information and identify inconsistencies, which
will be handed over to the Report Agent to form a final
report.

CORE [121] designs a system with two agents along
with traditional static analysis tools to fix code quality
issues automatically. Specifically, the Proposer agent takes
the static analysis report, the suspicious file, and the issue
documentation from language-specific static analysis tools
(e.g., CodeQL [114]) and the tool provider (e.g., the QA
team, and proposes candidate revisions for each suspicious
file. After that, static analysis tools will prune revisions that
still have issues, while the rest will be scored and re-ranked
based on their likelihood of acceptance by the Ranker agent.

4.4 Testing

Software testing is essential for software quality assurance.
LLMs have demonstrated promising proficiency in test gen-
eration, including generating test code, test inputs, and test
oracles. However, generating high-quality tests in practice
can be challenging, as the generated tests should not only
be syntactically and semantically correct (i.e., both the inputs
and oracles should satisfy the specification of the software
under test) but also be sufficient (i.e., the tests should cover
as many states of the software under test as possible). As
shown by previous work [122], the tests generated by stan-
dalone LLMs still exhibit correctness issues (i.e., compilation
errors, run-time errors, and oracle issues) and unsatisfactory
coverage. Therefore, researchers build LLM-based agents to
extend the capabilities of standalone LLMs in test genera-

tion. We organize these works based on the test levels (i.e.,
unit testing and system testing).

Fig. 9: Pipeline of LLM-based Agents for Unit Testing

4.4.1 Unit Testing

Unit testing checks the isolated and small unit (e.g., method
or class) in the software under test, which helps quickly
identify and localize the bugs, especially for complicated
software systems. Yuan et al. [122] perform a study showing
the potentials of LLMs (e.g., ChatGPT) in generating unit
tests with decent readability and usability. However, the
unit tests generated by standalone LLMs still exhibit com-
pilation/execution errors and limited coverage. Therefore,
recent works have built LLM-based agents that primarily ex-
tend standalone LLMs by iteratively refining the generated
unit tests towards better correctness, coverage, and fault
detection capabilities. Table 6 summarizes the existing LLM-
based agents for unit test generation, and Figure 9 illustrates
their common pipeline.

A. Iterative Refinement to Fix Compilation/Execution
Errors. The test cases directly generated by LLMs can exhibit
compilation or execution errors. Therefore, inspired by pro-
gram repair [128], LLM-based agents further eliminate such
errors by iteratively collecting the error messages and fixing
the buggy test code [122]–[124]. For example, TestPilot [123]
generates tests by constructing detailed prompts, includ-
ing the function signature, implementation, documentation,
and usage examples; it reflects on the feedback of failing
tests and error messages to refine prompts and generate
corrective tests iteratively. ChatTester [122] leverages LLMs
to understand the intention of focal methods, and then
generates a corresponding unit test; in addition, the iterative
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TABLE 6: Existing LLM-based Agents for Unit Testing

Agents Multi-Agent Feedback Goal Feedback Source Target Language

ChatTester [122] × Reduce compilation/execution errors Error messages Java, Python
TestPilot [123] × Reduce compilation/execution errors Error messages JavaScript
ChatUniTest [124] × Reduce compilation/execution errors Error messages Java
TELPA [125] × Increase coverage Program analysis results Python
CoverUp [126] × Increase coverage Execution results & Coverage Python
MuTAP [127] × Enhance fault detection Surviving mutants Python

test refiner of ChatTester performs a more fine-grained re-
finement than TestPilot, which analyzes error messages and
leverages static analysis tools to localize the buggy code for
the next iteration refinement. Similarly, ChatUniTest [124]
adopts a generation-validation-repair mechanism to refine
the tests.

B. Iterative Refinement to Increase Coverage.
CoverUp [126] is an LLM-powered test generation system
designed to achieve high coverage rates. It dissects the task
by segmenting the source code and employs the SlipCover
tool [129] to conduct a detailed coverage analysis. Using
an iterative approach, CoverUp refines its prompts to focus
on areas of the code that lack coverage, thereby enhancing
the overall quality and comprehensiveness of the generated
test suite. Yang et al. [125] propose TELPA to enhance the
coverage of hard-to-reach branches in software testing. Its
methodology involves a two-pronged program analysis:
backward and forward method invocation analysis, for
a better understanding of the methods with uncovered
branches. TELPA also employs counter-example sampling
to guide LLMs toward generating novel tests that diverge
from ineffective ones. The feedback-based process refines
these tests iteratively through a CoT strategy, further im-
proving coverage.

C. Iterative Refinement to Increase Fault Detection Ca-
pabilities. MuTAP [127] is a single LLM-based agent system
that aims at generating unit tests of better bug detection ca-
pabilities with the feedback of mutation testing. It employs
prompt augmentation with surviving mutants and refining
steps to correct syntax and intended behavior. During each
iteration, the LLM first generates initial test cases and self-
refines their syntax errors and wrong behaviors, with the
help of the Python parsing tool executing the tests. Then the
tests run against the mutated programs, while the surviving
mutants serve as feedback to direct the LLM in improving
the test cases.

4.4.2 System Testing
System testing is a comprehensive process that assesses

an integrated software system/component to guarantee
that it fulfills its specification and operates as intended
across diverse settings. For example, fuzzing testing and
GUI (Graphical User Interface) testing are common testing
paradigms at the system level. Leveraging LLMs for system
testing can be challenging, as generating valid and effective
system-level test cases should satisfy the constraints that are
contained implicitly and explicitly in the specifications or
domain knowledge of the software system under test. LLM-
based agents are designed to better incorporate the domain
knowledge of the software system under test compared to

generating system-level tests via standalone LLMs. We then
organize these works according to the software systems un-
der test. Table 7 summarizes the existing agents for different
software systems.

A. OS Kernel. KernelGPT [130] is an LLM-based
agent for kernel fuzzing. The analysis agent serves as the
brain to automatically generate driver syscall specifications.
It identifies drivers first and iteratively completes each
specification component, during which it can determine
whether additional information is needed based on its pre-
vious memory. A code extractor (implemented using LLVM
toolchain [132]) is invoked to parse the kernel codebase
for the provision of source code information. KernelGPT
finally invokes the Syzkaller tool [131] (e.g., syz-extract) and
receives its feedback messages to validate and correct the
generated syscall specifications iteratively.

B. Compiler. WhiteFox [133] encompasses two LLM-
based agents working together, an analysis agent and a
generation agent. The former examines the low-level op-
timization source code and produces requirements on the
high-level test programs that can trigger the optimizations,
while the latter crafts test programs based on summarized
requirements. The generation agent further incorporates
tests that have successfully triggered optimizations as feed-
back during the iterative process, thereby producing more
satisfactory tests. LLM4CBI [134] is a single agent that aims
at isolating compiler bugs by generating test cases of better
fault detection capabilities. The agent utilizes tools to collect
static information about the program (e.g., srcSlice [136]
for data flow) to construct precise prompts to guide the
LLM for program mutation. The memorized component
records meaningful prompts and selects better ones to in-
struct LLMs to generate variants. The generated programs
undergo validation by static analysis (e.g., the Frama-C
tool [138]), and the feedback helps LLMs to avoid the same
mistakes. The final test cases are used to identify suspicious
files with spectrum-based fault localization techniques.

C. Mobile Applications. LLM-based agents are pro-
posed to automate the testing process of mobile applica-
tions, including GUI testing, bug replay, and user acceptance
testing.

C.1: GUI Testing. Some agents are developed to execute
GUI testing for mobile applications. GUI testing is a com-
monly used software testing method aimed at verifying
whether the user interface meets service specifications and
user requirements. Previous LLM-based GUI testing ap-
proaches lack adequate autonomy, long-term planning, and
coherence [154], [155]. The emergence of LLM-based agents
enables GUI testing to focus more on higher-level test objec-
tives [139], [144], [145], such as clear task objectives, without
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TABLE 7: Existing LLM-based Agents for System Testing

Software System Agents Multi-Agent
Tool

Output
Tool Category Specific Tools

OS Kernel KernelGPT [130] × Static Analysis
syz-extract [131]

LLVM Toolchain [132]
Syzkaller Specifications

Compiler
WhiteFox [133] ✓ - - Test Cases

LLM4CBI [134] × Static Analysis

OClint [135]
srcSlice [136]
Gcov [137]

Frama-C [138]

Mutated Programs

Mobile App

GPTDroid [139] × Execution Environment

VirtualBox [140]
pyvbox [141]

Android UIAutomator [142]
Android Debug Bridge [143]

Test Scripts

DroidAgent [144] ✓ Custom Toolkit Navigation Action Toolkit Test Scripts
AXNav [145] ✓ Custom Toolkit Navigation Action Toolkit Bug Replay Video

AdbGPT [15] × Execution Environment
Genymotion [146]

Android UIAutomator2 [147]
Android Debug Bridge [143]

Bug Replay Steps

XUAT-Copilot [148] ✓ - - Test Scripts
Web App RESTSpecIT [149] × - - HTTP Requests

Universal

Fuzz4All [150] ✓ - - Test Cases
PentestGPT [151] ✓ Testing Tool Metasploit [152] Test Operations

Fang et al. [153] ×
Custom Toolkit

Web Browsering Tool
File Creation and Editing Tool Exploit Actions

Execution Environment
Terminal

Code Interpreter

relying on specific GUI states. Liu et al. [139] propose a
framework called GPTDroid, where the LLM iterates the
entire process by perceiving GUI page information, gen-
erating test scripts in the form of Q&A, executing these
scripts through tools, and receiving feedback from the ap-
plication. GPTDroid keeps a long-term memory to retain
testing knowledge, which would help to improve the rea-
soning process. The DroidAgent [144] framework employs
multiple LLM-based agents coordinating through different
memory modules and can set its own tasks according to
the functionalities of the apps under test. It is composed
of four LLM-based agents: planner, actor, observer, and
reflector, each with specific roles and supported by memory
modules that enable long-term planning and interaction
with external tools. AXNav [145] is another multi-agent
system designed for replaying accessibility tests on mobile
apps. It includes the planner agent, the action agent, and the
evaluation agent, which together form the LLM-based UI
navigation system. These agents translate test instructions
into executable steps, conduct tests on a cloud-based iOS
device, and summarize the test results in a chaptered video
annotated with potential issues in the application, respec-
tively.

C.2: Bug Replay. For automating Android bug replay,
Feng et al. [15] introduce AdbGPT. Equipped with the
knowledge of Step-to-Reproduce (S2R) entity specifications
(i.e., predefined actions and action primitives), AdbGPT
analyzes bug reports to translate identified entities into a
sequence of actions for bug reproduction using the CoT
strategy. It then perceives GUI states dynamically and maps
the S2R entities to actual GUI events to replicate the reported

bug.
C.3: User Acceptance Testing. To increase the automation

of the user acceptance testing process, Wang et al. [148]
propose XUAT-Copilot. The system is primarily comprised
of three LLM-based agents responsible for action planning,
state checking, and parameter selection, as well as two
additional modules for state awareness and case rewriting.
These agents interact with the testing equipment collabora-
tively, making human-like decisions and generating action
commands.

D. Web Applications. RESTful APIs are popular among
web applications as they provide a standardized, state-
less, and easily integrable means of communication that
enhances scalability and performance through a resource-
oriented approach. RESTSpecIT [149] leverages LLMs to
automatically infer RESTful API specifications and conduct
black-box testing. Given an API name, RESTSpecIT gener-
ates and mutates HTTP requests through a reflection loop.
By sending these requests to the API endpoint, it analyzes
the HTTP responses for inference and testing. The LLM uses
valid requests as feedback to refine the mutations in each
iteration. Requests are validated based on the status code
and message of the returned response.

E. Universal Software Categories. Some agent systems
are not designed with a task-specific workflow, enabling
them to be universally applicable across various target soft-
ware systems. Xia et al. [150] present Fuzz4All, the first uni-
versal LLM-based fuzzer for general and targeted fuzzing
across multiple programming languages. For a higher cost-
effectiveness ratio, Fuzz4All consists of two agents, (i)
the distillation LLM for user input distillation and initial
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TABLE 8: Existing LLM-based Agents for Fault Localization

Agents Multi-Agent
Tools

Input Context FL Granularity Target Language
Tool Category Specific Tools

AgentFL [160] ✓ Static Analysis Tree-sitter [161] Project Level Method Java

RCAgent [162] ✓ Custom Toolkit

Code Analysis Tool
Log Analysis Tool

Memory Retrieval Tool
Information Collection Tools

Project Level Component Java, Python

AUTOFL [163] × Custom Toolkit Repository Retrieval Tools Project Level Method Java

prompt generation, and (ii) the generation LLM for fuzzing
input generation. They are powered by LLMs with different
capabilities. In the fuzzing loop, the generation LLM refers
to the previously generated samples and dynamically ad-
justs its strategy, thereby producing diverse fuzzing inputs.
Deng et al. [151] design a modular framework, PentestGPT,
to conduct Penetration Testing. The system includes infer-
ence, generation, and parsing modules. With the planning
strategy of Pentesting Task Tree (which is based on the cy-
bersecurity attack tree [156]) and CoT methods, PentestGPT
solves the problems of context loss and inaccurate instruc-
tion generation that may be encountered during automated
penetration testing. Fang et al. [153] develop a benchmark
consisting of 15 one-day vulnerabilities to assess the efficacy
of their agent framework in exploiting such weaknesses,
utilizing various LLM backbones. Their agents are imbued
with an understanding of the Common Vulnerabilities and
Exposures (CVE) descriptions and are capable of harnessing
a suite of tools to facilitate the exploitation process. These
tools include web browsing capabilities for navigation, web
search functionalities for traversing web pages, as well as
terminal and code interpreter access for the generation and
execution of scripts.

4.5 Debugging

Software debugging typically includes two phases: fault
localization [157] and program repair [158]. In particular, fault
localization techniques aim at identifying buggy elements
(e.g., buggy statements or methods) of the program based
on the buggy symptoms (e.g., test failure information); then,
based on the buggy elements identified in the fault localiza-
tion phase, program repair techniques generate patches to
fix the buggy code. In addition, recent works also propose
unified debugging to bridge fault localization and program
repair in a bidirectional way [159]. We then organize the
works in LLM-based agents for debugging into three parts,
i.e., fault localization, program repair, and unified debug-
ging.

Fig. 10: Pipeline of LLM-based Agents for Fault Localization

4.5.1 Fault Localization

Learning-based fault localization has been widely studied
before the era of LLMs, which typically trains deep learning
models to predict the probability of each code element
being buggy or not [164]. However, precisely identifying
the buggy element in the software is challenging, given the
large scale of the software systems as well as the massive
and diverse error messages, which are often beyond the
capabilities of standalone learning models including LLMs.
Therefore, recent works build LLM-based agents, which
incorporate multi-agents and tool usage to help LLMs tackle
these challenges. Table 8 summarizes the existing LLM-
based agents for fault localization, and Figure 10 illustrates
their common pipeline.

A. Multi-agent Synergy. AgentFL [160] is a multi-agent
system for project-level fault localization. The main insight
of AgentFL is to scale up LLM-based fault localization
to project-level code context via the synergy of multiple
agents. The system consists of four distinct LLM-driven
agents: test code reviewer, source code reviewer, software
architect, and software test engineer. Each agent is cus-
tomized with specialized tools and a unique set of expertise.
With the four agents, AgentFL streamlines the project-level
fault localization process by breaking it down into three
phases: fault comprehension, codebase navigation, and fault
confirmation.

RCAgent [162] is a multi-agent system for root cause
analysis in industrial cloud settings. RCAgent includes
two components: the controller agent and expert agents.
The controller agent oversees the comprehensive thought-
action-observation cycle, while the expert agents act for
specialized tasks and can be utilized by the controller agent.
A key-value store is employed for the controller agent to
memorize the observation information (e.g., logs and table
entries) to help the decision-making, as well as handling
the context length constraint. The expert agents perform
code analysis and log analysis tasks respectively, and their
summarized results are fed back to the controller agent as
observation. The agents can invoke tools for information
collection (e.g., log data and repositories retrieval) or mem-
ory retrieval, through the function calling. Besides, a self-
consistency mechanism is built to enhance the performance.

B. Tool Invocation. AUTOFL [163] is a single-agent sys-
tem, which enhances standalone LLMs with tool invocation
(i.e., four specialized function calls) to better explore the
repository. It first performs root cause explanation, invoking
tools to oversee the source code repository for pertinent
information, requiring only a single failing test and its
failure stack. During this stage, it autonomously decides
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TABLE 9: Existing LLM-based Agents for Program Repair

Agents Multi-Agent Feedback Source Target Software Benchmark Fix Rate

ChatRepair [166] × Execution/Compilation Java
Sampled Defects4J [167] &

QuixBugs [168]
162/337 (Defects4J)
80/80 (QuixBugs)

CigaR [169] × Execution/Compilation Java
Sampled Defects4J &

HumanEval-Java [170]
69/267 (Defects4J)

102/162 (HumanEval)
RepairAgent [171] × Execution/Compilation Java Defects4J 164/835

AutoSD [172] ✓ Execution Java/Python
Defects4J & BugsInPy [173] &

Almost-Right HumanEval
189/835 (Defects4J)

187/200 (HumanEval)

ACFIX [174] ✓
Static Checking
Model Debate

Smart Contract Self-curated Dataset 112/118

Conversational APR [128] × Execution/Compilation Java/Python Sampled QuixBugs 59/60

FlakyDoctor [175] ✓
Execution

Static Checking
Java

Sampled IDoFT [176] &
DexFix dataset [177]&

Sampled ODRepair dataset [178]

245/419 (Implementation-Dependent Flakiness)
185/247 (Order-Dependent Flakiness)

whether to continue function calling or to terminate with
the production of root cause explanation. Subsequently, a
post-processing step is used to correlate the outputs with
exact code elements, aiming at bug localization. In addition,
AgentFL [160] and RCAgent [162] also incorporate tool
invocation (e.g., static analysis, dynamic instrument, and
code base navigation) into their framework.

4.5.2 Program Repair
Fine-tuning and fixed prompting have been the most widely
adopted paradigms for program repair techniques based
on standalone LLMs. In particular, program repair is for-
mulated as a translation problem [165] (i.e., translating the
buggy code to correct code) or a generation problem [12]
(e.g., infilling the correct code in the buggy code context).
However, patches generated by LLMs in a single iteration
are not always correct; they may fail to pass all the tests
or may be overfitting to the test cases. Therefore, existing
LLM-based agents all follow an iterative paradigm to refine
patch generation based on the tool or model feedback in
each iteration. Table 9 summarizes the existing LLM-based
agents for program repair, and Figure 11 illustrates their
common pipeline.

Fig. 11: Pipeline of LLM-based Agents for Program Repair

ChatRepair [128], [166] is the first automated approach
to iteratively refine patch or program generation based on
environmental feedback. In each iteration, ChatRepair lever-
ages tools to compile and execute the generated patches, and
generates new patches based on the compilation/execution
feedback and also earlier patch attempts in the same session.

CigaR [169] is a similar agent system for function-level
program repair. CigaR leverages feedback to refine its out-
puts iteratively and decides to reboot the repair process

when needed, ensuring the production of both plausible and
diverse patches.

RepairAgent [171] adopts a more agentic design and
improves the iterative refinement procedure by making the
hard-coded feedback mechanism more flexible. In particu-
lar, RepairAgent allows the LLM itself to decide when or
which tool to invoke. In addition to the basic tools (e.g.,
compilation tools and test execution tools) used in previous
work, RepairAgent further includes tools for code reading,
codebase searching, and hypotheses stating/discarding.

AutoSD [172] is a multi-agent system that iteratively
fixes the buggy program via simulating the scientific debug-
ging [179]. AutoSD includes four components: LLM-based
hypothesis generator, execution-based validator, LLM-based
conclusion maker, and LLM-based fixer. In each iteration,
the generator first generates a hypothesis about the bug,
then invokes the debugger tool for hypothesis validation;
the conclusion maker further identifies whether the hypoth-
esis is rejected or not; and the fixer finally returns potential
patches with explanations.

ACFIX [174] is a multi-agent system for fixing the ac-
cess control vulnerabilities in smart contracts. By special-
izing LLMs with different roles, ACFIX includes a Role-
based Access Control (RBAC) mechanism identifier, a role-
permission pair identifier, a patch generator, and a validator.
In particular, the validator checks the validity of the gener-
ated patches with both tool feedback (static grammar rule
checking) and model feedback (multi-agent debate process).
The feedback is further provided to iteratively refine the
patch.

FlakyDoctor [175] is an agent to repair flaky tests. It takes
into consideration test execution results and the location of
test failures. Following this, the system generates targeted
repairs and tests them for validation. This process is itera-
tive, with the aim of continually refining the repairs until
the issue of test flakiness is resolved.

4.5.3 Unified Debugging
Instead of tackling fault localization or program repair as
isolated phases, unified debugging techniques treat them as
a unified procedure, which leverages the outputs of each
phase to refine each other. In particular, traditional uni-
fied debugging techniques [180]–[182] primarily pre-define
heuristic rules to refine fault localization based on the patch
validation results during program repair. Recently, LLM-
based agents have enhanced traditional unified debugging
techniques with more flexibility by leveraging LLMs to
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TABLE 10: Existing LLM-based Agents for End-to-end Software Development

Agents Multi-Agent Process Model Roles Creation Collaboration Mode Communication Protocal

Self-Collaboration [4] ✓ Waterfall Pre-defined Ordered Natural Language
Low-code LLM [183] ✓ - Pre-defined Ordered Natural Language
Prompt Sapper [184] × - Pre-defined Ordered Natural Language
Talebirad et al. [185] ✓ - Dynamic Ordered Natural Language
ChatDev [186] ✓ Waterfall Pre-defined Dual-role Natural Language
MetaGPT [187] ✓ Waterfall Pre-defined Ordered Structured
AgentVerse [188] ✓ - Dynamic Ordered Natural Language
AutoAgents [189] ✓ - Dynamic Ordered Natural Language
Qian et al. [190] ✓ - Pre-defined Ordered Natural Language
AISD [191] ✓ Waterfall Pre-defined Ordered Natural Language
LLM4PLC [192] × - Pre-defined Ordered Natural Language
CodePori [193] ✓ - Pre-defined Ordered Natural Language
LCGWaterfall [194] ✓ Waterfall Pre-defined Ordered Natural Language
LCGScrum [194] × Agile Pre-defined Debate Natural Language
CodeS [195] ✓ - Pre-defined Ordered Natural Language
Qian et al. [196] ✓ - Pre-defined Ordered Natural Language
CTC [197] ✓ Waterfall Pre-defined Dual-role Natural Language
AgileCoder [198] ✓ Agile Pre-defined Dual-role Natural Language

comprehend, utilize, and unify the outputs of both fault
localization and program repair.

FixAgent [159], a multi-agent system for unified debug-
ging, enables end-to-end fault localization, bug repair, and
bug analysis. Based on manual debugging (e.g., rubber duck
debugging), FixAgent uses agent specialization and synergy
(i.e., LLM localizer, LLM repairer, LLM crafter, and LLM
revisitor) to incorporate key variable tracking and program
context comprehension. FixAgent can fix 79 out of 80 bugs
in the QuixBugs [168] benchmark.

LDB [75] is an agent for end-to-end fault localization and
program repair. LDB divides the buggy program into basic
blocks according to a control-flow graph, and leverages
LLMs to detect the incorrect blocks with run-time execution
values and then to provide refinement suggestions.

4.6 End-to-end Software Development

Given the high autonomy and the flexibility from multi-
agent synergy, LLM-based agent systems can further tackle
the end-to-end procedure of software development (e.g.,
developing a Snake Game application from scratch) beyond
an individual phase of software development. In particular,
alike the real-wold software development team, these agent
systems can cover the entire software development life cycle
(i.e., requirements engineering, architecture design, code
generation, and software quality assurance) by incorporat-
ing the synergy between multiple agents that are specialized
with different roles and relevant expertise. Table 10 summa-
rizes the existing LLM-based agents for end-to-end software
development.

4.6.1 Software Development Process Model
Real-world software teams often follow classic software pro-
cess models (e.g., waterfall [199], incremental model [200],
unified process model [201], and agile development [202])
to facilitate a more standardized software development life
cycle. Existing LLM-based agents for end-to-end software

development also design their workflows according to com-
mon software process models, e.g., waterfall process model
and agile development. Figure 12 illustrates how existing
LLM-based agents go through different process models.

A. Waterfall Process Model. The majority of existing
LLM-based agent systems (e.g., AISD [191], LCG [194], Chat-
Dev [186], CTC [197], and Self-Collaboration [4]) follow the
classic waterfall process model for software development.
The traditional waterfall process model [199] is a linear
and sequential software development workflow that divides
the project into distinct phases, i.e., requirements engineer-
ing, design, code implementation, testing, deployment, and
maintenance. Once a phase is finished, the project moves
forward to the next phase without iteration. Based on this
process, some end-to-end software development agents [4],
[187], [191], [194] further extend the traditional waterfall
process by including iterations in specific phases to ensure
the high quality of the generated content. For example, the
results of the testing phase might be fed back to the de-
veloper agent to revise the generated code; MetaGPT [187]
further integrates the waterfall model with human-like
Standardized Operating Procedures (SOPs), which assign
responsibilities to each role and standardize the intermedi-
ate outputs, promoting collaboration among different team
members.

B. Agile Development. Some works explore the po-
tential of LLM-based agents with the agile develop-
ment, including Test-Driven-Development (TDD) [194] and
Scrum [194], [198]. TDD prioritizes writing tests before the
actual coding and fosters a cycle of writing test suites, im-
plementing the code to pass the test suites, and concluding
with a reflective phase to refinement. Scrum is an agile
software development process model that breaks down soft-
ware development into several sprints, achieving complex
software systems through iterative updates. Experiments
on function-level code generation benchmarks show that
the Scrum model can achieve the best and most stable
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Fig. 12: Process Models Adopted by LLM-based Agents for End-to-end Software Development

performance, followed by the TDD model [194].

4.6.2 Role Specialization of Software Development Team
Imitating real-wold software development teams, multi-
agent systems for end-to-end software development often
assign different roles to tackle specialized sub-tasks and
collaborate throughout the software development life cycle.

A. Role Categories. The roles in existing agents are
primarily designed by simulating real-world software de-
velopment teams or specialized by the workflow.

A.1: Simulating Real-world Software Teams. Most end-to-
end frameworks simulate the real-world software develop-
ment teams and assign basic roles including managers (e.g.,
project managers or product managers), requirement ana-
lyzers, designers, developers, and quality assurance experts
(e.g., software testers or code reviewers) to cover the entire
pipeline of software development [4], [187], [191], [193],
[194], [198]. In addition to these common roles, there are
some special roles that can be assigned to tackle fine-grained
tasks. For example, a Scrum master role is also included into
the requirements analysis and planning tasks for the agents
with the Scrum workflow [194], [198]; and CEO/CTO roles
are also included in some agents to complete the design
task [186], [197]; in addition, there are special supervisor
roles in some agents to ensure the smooth progress of the
collaboration (e.g., providing coordination or critiques), such
as the oracle roles in previous work [185] and the action
observer in AutoAgents [189]. The detailed categories of
roles in existing agents are discussed in Section 5.2.1

A.2: Specialized by Workflow. Instead of simulating the
real-world development teams, some agents break down
roles according to the agent framework workflow. For ex-
ample, CodeS [195] decomposes the complex code gener-
ation task into the implementation of repository, file, and
method layers, and sets up the roles of RepoSketcher, FileS-
ketcher, and SketchFiller. Co-Learning [190] and its subse-
quent work [196] abstract the code generation process into
instruction-response pairs, thus only setting up the roles of
instructor and assistant.

B. Role Creation. The roles in multi-agent systems are
either created in a pre-defined way or in a dynamic way.

B.1: Pre-defined. The majority of specialized roles are pre-
defined by the agent framework [4], [183], [186], [187], [190],

[191], [193]–[198]. In other words, the roles are fixed by the
agent for each task.

B.2: Dynamic Creation. In addition to the pre-defined
roles, some agents assign roles in a dynamic way, which
can equip multi-agent systems with more flexibility. For
example, AutoAgents [189] designs a drafting stage that
aims at determining the roles of the multi-agent group via
the communication between two meta agents: the planner
and the agent observer; in addition, AgentVerse [188] sets
up a group of different roles through an expert recruitment
stage. Talebirad et al. [185] propose a novel framework and
enable an agent to spawn additional agents to the system.
Such dynamic strategies aim at creating roles in a more
diverse and flexible way.

4.6.3 Collaboration Mechanism in Multi-agent

Within the multi-agent systems for end-to-end software
development, it is essential to schedule how each agent is
coordinating with each other. We then discuss the collab-
oration mode and the communication protocol adopted in
existing agents.

A. Collaboration Mode. In particular, there are mainly
two collaboration modes in multi-agent systems for end-to-
end software development, i.e., the ordered mode and the
unordered mode.

A.1: Ordered Mode. It is a sequential mode wherein each
agent makes decisions independently and uses optional
feedback mechanisms to improve quality of their generated
content. Ordered mode is the most prevalent collaboration
mode adopted in existing agent systems [4], [186]–[193],
[195]–[198]. Previous research [188] suggests that this ap-
proach is more suitable for software development, as it
focuses on producing only the final refined decision.

A.2: Unordered Mode. It primarily introduces an un-
ordered debate mechanism, where multiple agents present
their opinions separately and equally, with the ultimate de-
cision reached via summarization. For example, LCG [194]
involves the sprint meeting in the Scrum process model,
wherein participating agents propose their opinions and
share them with all other agents through a buffer. The
Scrum master ultimately summarizes and extracts user sto-
ries. Besides, some works adopt a multi-role mechanism
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TABLE 11: Benchmarks for End-to-end Software Development

Benchmarks #Tasks Input Scale Output Scale Language Evaluated Agents

SRDD [186] 1,200
Software Description

(55 words)
Multiple Files Python [186], [190], [196], [197]

CAASD [191] 72
Software Description

(50 words)
Multiple Files Python [186], [187], [191]

SoftwareDev [187] 70
Software Description

(30 words)
Multiple Files Python [186]–[188]

SketchEval [195] 19
README

(421 words)
Structured Multiple Files Python [186], [195]

ProjectDev [198] 14
Software Description

(262 words)
Multiple Files Python [186], [187], [198]

HumanEval [170]
HumanEval-ET [203]

164
Function Description

(68 words)
Single Function Python [4], [187]–[189], [193], [194], [198]

MBPP [204]
MBPP-ET [203]

974
Function Description

(15 words)
Single Function Python [4], [187], [193], [194], [198]

TABLE 12: Metrics Used in Evaluating Agents for End-to-
end Software Development

Category Metrics Used Agents

Execution Validation

Pass Rate
PassK

Executability
#Errors

[4], [186], [187]
[188]–[190]

[193], [194], [196]
[197], [198]

Similarity SketchBLEU [195]
Cosine Distance

[186], [190], [195]
[196], [197]

Costs

Running Time
Token Usage

Expenses
#Sprints

[187], [198]

Manual Efforts Human Revision Costs [187]

Generated Code Scale
Line of Code

Code Files
Completeness

[186], [187], [190]
[196], [197]

to ensure the generation quality [186], [190], [196]–[198].
Instead of passing intermediate results from one agent to
another, these works assign two agents to work together to
complete a sub-task in a communication way. For example,
in ChatDev [186] and CTC [197], agents with different roles
will collaborate to complete specific tasks (e.g., the system
design is achieved through communication between the
CEO and CTO).

B. Communication Protocol. Within the multi-agent
systems, agents communicate with other agents to exchange
information. In particular, there are two communication
protocols, i.e., the pure natural language and the structured
communication.

B.1: Natural Language. The most common communica-
tion protocol is direct dialogue [4], [186], [188], [189], [191],
[193], [194], which leverages natural language to exchange
information. This approach allows for flexible expression of
intent and is close to human communication.

B.2: Structured. Some agents (e.g., MetaGPT [187]) struc-
ture communication by having agents exchange documents
and diagrams instead of relying solely on dialogue, as pure
natural language may be insufficient for solving complex
tasks due to distortion in multi-turn communication [187].

4.6.4 Agent Evaluation

Given the complexity of end-to-end software development,
researchers further build diverse benchmarks and metrics
for a comprehensive evaluation.

A. Benchmarks. Table 11 summarizes the benchmarks
used for evaluating existing LLM-based agents for end-to-
end software development. In particular, we can observe
that there are still a large number (e.g., 7) of papers using the
classic code generation benchmarks (e.g., HumanEval [170]
or MBPP [204]) for evaluating end-to-end software devel-
opment. Although these traditional code benchmarks can
represent end-to-end software development to some extent,
they still involve simplified, small-scale development tasks
(i.e., input of short function descriptions and output of a sin-
gle function, as shown in Table 11). In addition, there are five
more complicated benchmarks that aim at simulating the
end-to-end software development, i.e., SRDD [186], [190],
[196], [197], CAASD [191], SoftwareDev [187], SketchEval
[195], and ProjectDev [198]. The tasks in these benchmarks
include more complicated and longer requirement descrip-
tion (e.g., the average length of software description in Pro-
jectDev is 262 words), and their expected outputs are sup-
posed to contain multiple files. In particular, the benchmark
SketchEval is built upon the real-world GitHub repositories,
and its input descriptions are extracted from the README
file of the software while its output expects multiple files
that are organized in a repository structure.

B. Metrics. Table 12 summarizes the metrics used for
evaluating existing LLM-based agents for end-to-end soft-
ware development. In fact, given the difficulty of generating
complicated program, it can be possible that the generated
program cannot perfectly pass the tests. Therefore, in addi-
tion to the common metrics (e.g., Pass Rate or Pass@K) that
execute the generated program for validation, there are mul-
tiple dimensions for assessing how existing agents perform
in end-to-end to software development. In particular, there
are (i) the similarity metrics between the generated program
and the ground truth (e.g., SketchBLEU [195] measures the
structure similarity), (ii) the costs of executing or generating
the program, (iii) the manual efforts to further refine the
generated program, and (iv) the scale of the generated
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TABLE 13: Existing LLM-based Agents for End-to-end Software Maintenance

Agents Multi-Agent
Phases

Preprocessing
Issue

Reprod.
Issue

Localization
Task

Decomp.
Patch

Generation
Patch

Verification
Ranking

MAGIS [205] ✓ × × Retrieval-based × w/ local context Code Review ×
AUTOCODEROVER [206] ✓ × × Navigation/Spectrum-based × w/ cross-file context Static Check ×

SWE-agent [207] × × ✓ Navigation-based × w/ local context Static Check ×
CodeR [208] ✓ Plan Selection ✓ Spectrum-based × w/ cross-file context Dynamic Check ×

RepoUnderstander [209] ✓ Knowledge Graph Const. × Simulation ✓ w/ cross-file context Static Check ×
MASAI [210] ✓ Test Template Generation ✓ Navigation-based ✓ w/ local context Static/Dynamic Check ✓

Agentless [211] × Repository Tree Const. × Navigation-based × w/ local context Static/Dynamic Check ✓

Fig. 13: Pipeline of LLM-based Agents for End-to-end Software Maintenance

program.

4.7 End-to-end Software Maintenance
Software systems undergo maintenance as requirements

continuously change (i.e., adding, deleting, or modify-
ing features) or unexpected software behaviors arise. In
practice, users report unsatisfactory behaviors that they
encounter; developers then diagnose the reported issues
and modify the software to fix them. Such an end-to-end
software maintenance process can be time-consuming and
labor-intensive in practice, as it involves multiple phases
including understanding user-reported issues, localizing
code for maintenance, and precisely editing code to address
issues. Recently, there has been an increasing number of
multi-agent systems aiming at automatically solving issues
of real-world software projects. Table 13 summarizes the
characteristics of these agents.

4.7.1 Common Pipeline
Figure 13 illustrates the pipeline of existing LLM-based
agent systems for end-to-end software maintenance. Basi-
cally all of the existing agents follow a common pipeline
of three phases, i.e., issue localization, patch generation, and
patch verification, where different agents incorporate differ-
ent strategies to tackle each phase. In addition, some agents
further include additional phases, i.e., preprocessing, issue
reproduction, issue localization, task decomposition, patch
generation, patch verification, and patch ranking.

A. Preprocessing. To better understand the whole repos-
itory, some agents first perform preprocessing to prepare
pre-knowledge before the entire procedure. The agent sys-
tem RepoUnderstander [209] constructs a knowledge graph
of the entire code repository to facilitate the subsequent pro-
cess of issue localization. Meanwhile, Agentless [211], which
is simplistic and less agentic, simply turns the whole project
into a tree-like structure that demonstrates all directories
and files of the repository in a hierarchical format, which

facilitates the issue localization phase. In CODER [208], a
manager agent first chooses a plan from several workflows
pre-defined by human experts. In MASAI [210], the test
template generator is used to analyze the testing setup
of the repository and generate a test template with the
running command, which further serves as an example for
the following issue reproduction phase.

B. Issue Reproduction. A test script that triggers the
unexpected behaviors users encounter is essential for issue
resolution. It not only helps with issue localization but also
serves as the verification criterion for patch correctness.
However, in practice, users do not always provide such
reproduction tests when they report issues; and such repro-
duction tests are often added by developers after they fix the
buggy software. Therefore, some agents design the issue re-
production phase that aims at generating the test script that
can trigger the unexpected behaviors encountered by users.
For example, SWE-agent [207] and CodeR [208] directly
leverage LLMs to generate reproduction tests based on issue
descriptions when there is no existing reproduction script in
issue descriptions. However, generating reproduction tests
can be challenging, as the tests must be executable and
ideally should fail on the buggy software version while
passing on the fixed version. Therefore, to increase the
success rate of issue reproduction, the multi-agent system
MASAI [210] includes a two-stage approach for issue re-
production, which first investigates the test framework and
existing tests for generating a sample test template (gener-
ated in the preprocessing phase) and then uses the template
as a demonstration to create the reproduction script.

C. Issue Localization. Issue localization is one of the
most important phases where the agents are supposed to
precisely identify the code elements (e.g., classes, methods,
or code blocks) that are related to issues and should be
edited. We then summarize the common localization strate-
gies used in existing LLM-based agents.

C.1: Retrieval-based Localization. All the existing agents
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use the retrieval-based strategy as the basis for issue local-
ization, which identifies the relevant code elements based
on their similarity with issue descriptions. For example, in
MAGIS [205], all code files are compared to issue descrip-
tions via BM25 [212], and the Top-K relevant code files are
selected as the potential issue locations.

However, only using retrieval-based strategy can be
insufficient and often at coarse granularities (e.g., files).
Therefore, some agents further extend the basic retrieval
with other strategies, e.g., navigation-based localization,
spectrum-based localization, and simulation-based localiza-
tion.

C.2: Navigation-based Localization. This strategy provides
agents with a set of code search actions that can navigate
through the entire code repository to check all directories
and files. For example, the issue localization phase of SWE-
agent [207] uses several pre-defined search-based interfaces
to locate the target directories or files and then to view
the code snippets in the target file through scrolling inter-
faces. Similarly, MASAI [210] assigns an edit localizer that
can navigate the repository to find the related code snip-
pets. AUTOCODEROVER [206] designs a stratified context
retrieval process, which allows the LLM itself to decide
whether to further refine the location based on the cur-
rent context, thus forming an iterative navigation process.
Agentless [211] provides the hierarchical structure of the
target repository and instructs the LLM to gradually localize
files, classes, functions, and concrete edit locations.

C.3 Spectrum-based Localization. Some agents integrate
the traditional fault localization approaches, especially
spectrum-based fault localization techniques [157], which
calculate the suspiciousness score of code elements based
on their coverage of failed tests and passing tests. For ex-
ample, AUTOCODEROVER [206] explores spectrum-based
techniques for issue localization by using the ground-truth
reproduction tests provided in SWE-bench Lite, which im-
proves issue resolution rate from 17.00% to 20.33%. While
AUTOCODEROVER explores the spectrum-based fault lo-
calization in an ideal case (as the ground-truth reproduction
tests are not always available in practice), CODER [208]
investigates the improvement of the spectrum-based fault
localization in a more practical setting by using tests gener-
ated in the issue reproduction phase. In particular, CODER
calculates the suspiciousness scores based on the coverage
of the reproduction tests, and then combines them with the
basic retrieval-based strategy (i.e., BM25 similarity between
code elements and issue descriptions) via weighted compu-
tation.

C.4 Simulation. Simulation is a special technique adopted
by RepoUnderstander [209] for issue localization. It applies
the classic Monte Carlo Tree Search algorithm. By recur-
sively incorporating nodes of the high BM25 score with
the issue, it evaluates and ranks the most relevant paths in
the repository knowledge graph. The collected code is then
summarized for issue localization.

D. Task Decomposition. Before generating patches,
some agents decompose the task into more fine-grained
sub-tasks. For instance, in MAGIS [205], its manager agent
breaks down the issue into file-level tasks and delegates
them to a newly-formed development team; similarly, in
RepoUnderstander [209], its summary agent summarizes

the collected code and issue description, and then outlines
the fine-grained steps for issue resolution.

E. Patch Generation. In this phase, the agents generate
patches for the localized suspicious code elements. The
input context of this phase typically includes the issue/task
description and the suspicious code elements for modifica-
tion [205], [207], [210], [211]. In addition, some agents (e.g.,
AUTOCODEROVER [206], CodeR [208], and RepoUnder-
stander [209]) further refine the input contexts by includ-
ing relevant cross-file code contexts that are collected by
retrieval APIs.

F. Patch Verification. Agents further verify the correct-
ness of the generated patches, which is challenging as the re-
production tests are not always available in practice. There-
fore, agents incorporate different verification strategies.

F.1: Code Review. Some agents (e.g., MAGIS [205]) design
a quality assurance agent to review the quality of generated
patches.

F.2: Static Checking. Some agents (e.g., AU-
TOCODEROVER [206], RepoUnderstander [209],
MASAI [210], Agentless [211], and SWE-agent [207])
use static checking approaches to assess the syntactic
correctness, indentation, and compatibility of the generated
patch with the repository environment.

F.3: Dynamic Checking. Since the static checking cannot
find the semantic violation of the patches, some agents (e.g.,
CodeR [208] and MASAI [210]) further perform dynamic
checking by executing the reproduction test on the patch.
The patch that passes the reproduction test can be consid-
ered as effectively resolving the issue. In particular, exist-
ing reproduction tests are reused (if available); otherwise,
reproduction tests generated during the issue reproduction
phase are used. Agentless [211] also implements a dynamic
checking approach by conducting regression testing to filter
out incorrect candidate patches.

G. Patch Ranking. Since the patch verification phase can
sometimes be insufficient for filtering out all the incorrect
patches, some agents further include a patch ranking phase
to identify the patch with the highest probability of being
correct. For example, in MASAI [210], a ranker agent is
responsible for ranking all potential patches based on the
issue description and reproduction tests; In Agentless [211],
all patches are normalized and re-ranked based on the
number of occurrences with the majority voting strategy.

4.7.2 Benchmarks

To evaluate how LLM-based agents tackle end-to-end soft-
ware maintenance, researchers build benchmarks from real-
world Github issues, including SWE-bench [213], SWE-
bench Lite [214], SWE-bench Lite-S [211], and SWE-bench
Verified [215]. Table 14 summarizes the evolution timeline of
existing benchmarks for end-to-end software maintenance.

SWE-bench [213] is the first benchmark for end-to-end
software maintenance, which consists of 2,294 real-world
GitHub issues across 12 popular Python repositories. Each
task in SWE-bench includes an original text from a GitHub
issue (i.e., the issue description or problem statement),
the entire code repository, the execution environment (i.e.,
Docker environment), and validation tests (i.e., tests that are
hidden from the evaluated agents).
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Fig. 14: Benchmark Evolution in Software Maintenance

However, the full SWE-bench benchmark can take too
much evaluation costs and it contains particularly diffi-
cult or problematic tasks [211], which can underestimate
the evaluation of LLM-based agents. Therefore, researchers
have dedicated lots of manual efforts to identifying high-
quality tasks with reasonable difficulty, self-contained in-
formation, informative issue descriptions, and sufficient
evaluation tests. For example, SWE-bench Lite [214] is a
subset of SWE-bench that manually removes tasks requir-
ing complicated edits (e.g., editing more than one file) or
the tasks including images or hyperlinks; SWE-bench Lite-
S [211] removes tasks that contain exact patches, misleading
solutions, or insufficient information in the issue descrip-
tions; similarly, SWE-bench Verified [215] removes cases
with unspecified descriptions or insufficient tests.

5 ANALYSIS FROM AGENT PERSPECTIVE

This section organizes the collected papers from the per-
spective of agents. Specifically, Section 5.1 summarizes the
components of existing LLM-based agents for SE; Section 5.2
focuses on existing multi-agent systems for SE by sum-
marizing their roles and collaboration mechanisms; and
Section 5.3 summarizes how humans coordinate with agents
for SE.

5.1 Agent Framework

Based on the common framework of LLM-based
agents [21], [26], [28], this section summarizes the common
paradigms of the planning, perception, memory, and action
components in existing LLM-based agents for SE.

5.1.1 Planning
In SE, intricate tasks such as development and mainte-
nance activities necessitate the orchestrated efforts of var-
ious agents through multiple iterative cycles. Therefore,
planning is an essential component for agent systems by
meticulously delineating task sequences and strategically
scheduling agents to ensure the seamless progression of the
SE process. Figure 15 presents the taxonomy of the planning
components in existing LLM-based agents for SE.

A. Single Planner vs. Multiple Planners. In LLM-
based agent systems, planning is typically handled by a
specialized agent [4], [61], [91], [98], [105], [144], [145], [183],
[187], [191], [193] or as a core responsibility of an individual
agent [76], [82], [85], [86], [148], [162], [192]. Some works
use the function-calling interface [216] provided by GPT-
3.5 [217] or GPT-4 [218], handing over the planning task to
high-performance models [82]. However, given the pivotal
role that planning plays in influencing subsequent action
steps, some works incorporate a collaborative approach
among several agents to further enhance the accuracy and
practicality of the plans formulated [91], [186], [189], [195],
[197], [198], [205].

B. Single-turn Planning vs. Multi-turn Planning. The
fundamental planning strategy is to craft a holistic plan
from the very beginning meticulously and then proceed
to implement it in successive rounds [4], [61], [82], [86],
[91], [98], [105], [183], [186], [187], [191]–[193], [195], [197],
[198], [205]. Further, many SE agents have adopted a ReAct-
like [219] architecture, which implements a multi-turn plan-
ning mechanism wherein the next-round actions will not be
determined until receiving the environmental feedback from
the previous round. This form allows for dynamic revision
and expansion of the plan, enabling it to adapt to more
flexible task scenarios, such as issue resolution [76], [210],
iterative code generation [82], [85], mobile app testing [144],
[145], [148], among others [162].

C. Single-path Planning vs. Multi-path Planning. Most
LLM-based agents use single-path planning strategies, i.e.,
they plan and execute tasks in a linear manner [4], [61],
[86], [105], [151], [186], [187], [191]–[195], [198], [205], [220].
However, agents inherit the randomness from the backbone
LLMs, leading to fluctuations in task decomposition. Some
approaches improve upon single-path planning by using
feedback from each round to dynamically plan the next
round of actions [82], [85], [88], [97], [144], [145], [148], [162],
[210]. Although these dynamic strategies are still single-
path, they offer considerable flexibility due to their ability
to be adjusted based on progress and execution outcomes.
Another approach to address this issue is to design a multi-
path planning strategy, which instructs the agents to gener-
ate or simulate multiple plans, and select [76], switch [98],
or aggregate [197] the optimal paths for execution.

D. Plan Representation. The plan can be exhibited in
different forms, including natural language descriptions,
semi-structured representations, or graphs.

• Natural Language. Most agents describe the plan in natural
language, especially as a list of procedural steps [4], [86],
[91], [98], [105], [183] or features to be implemented [187],
[191], [194], [198].

• Semi-structured. The agent system AXNav [145] represents
the action list in JSON format; and some code-generating
agent systems directly output the code skeleton [61], [97],
[192], [195] or present the plan as executable code [205],
which can be seen as a special plan form in SE tasks.

• Graph. Some agents model the plan as a graph to facilitate
the expansion and traceability of execution paths [76],
[88], [151].
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Planning

Number of Planners

Single-planner CodePori [193], AISD [191],
MetaGPT [187], MapCoder [98], etc.

Multi-planner ChatDev [186], MAGIS [205],
CTC [197], AutoAgents [189], etc.

Number of Turns

Single-turn
CodePori [193], Low-code

LLM [183], MetaGPT [187],
ChatDev [186], MAGIS [205], etc.

Multi-turn
CodeAct [85], CodeAgent [82],
XUAT-Copilot [148], DroidA-

gent [148], RCAgent [162], etc.

Number of Paths

Single-path CodePori [193], AISD [191],
MetaGPT [187], AXNav [145], etc.

Multi-path MapCoder [98], LATS [76], CTC [197]

Plan Representation

Natural Language CoCoST [86], MapCoder [98],
Self-Collaboration [4], etc.

Semi-structured
AXNav [145], CodeS [195], SoA
[97], Parsel [61], MAGIS [205]

Graph CodePlan [88], Pentest-
GPT [151], LATS [76]

Fig. 15: Taxonomy of Planning Strategies in LLM-based Agents for Software Engineering

5.1.2 Memory

The memory component is a pivotal mechanism responsible
for storing the trajectories of historical thoughts, actions,
and environmental observations, enabling agents to sustain
coherent reasoning and address intricate tasks. In SE, com-
plex development and maintenance tasks generally necessi-
tate agents conducting iterative revisions, wherein historical
intermediate information, e.g., generated code and testing
reports, significantly impacts integrity and continuity. We
then detail the implementation of memory mechanisms in
SE from four perspectives: memory duration, ownership,
format, and operation. Figure 16 presents the taxonomy of
the memory components in existing LLM-based agents for
SE.

A. Memory Duration. Inspired by human memory sys-
tems, agent memory can be classified into short-term mem-
ory and long-term memory based on the memory duration.

A.1: Short-term Memory. Short-term memory, also known
as working memory [221], is integrated into agents to en-
hance their ability to sustain trajectories of the current ongo-
ing task and is frequently used when multi-turn interactions
are involved. In SE, there are some predominant patterns of
short-term memory.

• Dialog Records. This pattern is generally used to memorize
the pure dialog history among agents and is typically
in the form of history summary [148], [189] and multi-
turn instruction-response pairs [186], [197], [198]. It is
straightforward to implement and can offer a thorough
and detailed historical record of the task-solving process.
However, the weakness is that the dialog history can be
lengthy and contain irrelevant and redundant informa-
tion.

• Action-Observation-Critique Records. While dialog history
concentrates on the thoughts and responses among

agents, some works highlight the interaction between
agents and the environment by memorizing the action-
observation sequences. Moreover, the critique information
is also retained in case certain reflection mechanisms are
introduced [144]. This pattern has been adopted in SE
tasks that necessitate iterative feedback from the environ-
ment, e.g., mobile app testing [139], [144], [148], wherein
operations on widgets in each turn should be memorized
to facilitate the next-turn decision-making, and iterative
code generation [62], [88], [187], [189], wherein the pre-
vious editing, execution, or debugging history serves as
important information for code revision.

• Intermediate Outputs. Some agents store the outputs of
previous turns in short-term memory to avoid overrun-
ning the limited space as well as being overly influenced
by irrelevant or inaccurate chat history. For example, in
E&V [107], only intermediate analysis results are summa-
rized to avoid inconsistency with the previously gener-
ated outputs. In SoA [97], to implement a self-organized
framework, each agent is equipped with memory that
stores the self-generated code and unit tests. These in-
termediate results allow delayed test execution and code
modification for agents in different layers, facilitating
hierarchical collaborative code generation.

A.2: Long-term Memory. Long-term memory, on the other
hand, is used to memorize valuable experiences of historical
tasks, which can be recalled by agents when solving unseen
tasks. Due to extensive trajectories, long-term memory com-
monly uses distilling techniques or only stores the pivotal
information.

• Distilled Trajectory. The entire task execution trajectory
may involve extensive context, and given the limited
memory space, it can be challenging to store it all
completely. As a result, distilling techniques have been
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Memory

Memory Duration

Short-term Memory

Dialog Records ChatDev [186], AGILE-
CODER [198], CTC [197], etc.

Action-Observation-
Critique Records

DROIDAGENT [144], GPTDroid [139],
MetaGPT [187], AutoAgents [189], etc.

Intermediate output E&V [107], SoA [97]

Long-term Memory

Distilled Trajectory DROIDAGENT [144], Qian et
al. [190], [196], MetaGPT [187]

Selective Storage ChatDev [186], AGILE-
CODER [198], CTC [197], etc.

Memory Ownership

Specific Memory XUAT-Copilort [148], SoA [97],
GPTDroid [139], Reflexion [62], etc.

Shared Memory MetaGPT [187], Self-Collaboration [4],
MARE [57], AGILECODER [198], etc.

Memory Format

Natural Languages
ChatDev [186], CTC [197], XUAT-
Copilot [148], MAGIS [205],AG-

ILECODER [198], etc.

Programming Languages CodePlan [88], SoA [97]

Structured Messages MetaGPT [187], MARE [57], E&V [107]

Key-value Pairs Qian et al. [190], [196], RCAgent [162]

Embeddings DROIDAGENT [144]

Trees LATS [76], Olausson et al. [63]

Memory Operations

Memory Writing

Preprocessing
XUAT-Copilot [148], DROIDA-

GENT [144], MAGIS [205],
Qian et al. [190], [196], etc.

Eliminiation Reflexion [62], Qian et al. [190], [196]

Memory Reading

Filtering Criteria

Recency ChatDev [186], AGILE-
CODER [198], CTC [197], etc.

Relevance
MetaGPT [187], AGILE-

CODER [198], CodePlan [88]

Similarity Qian et al. [190], [196],
DROIDAGENT [144]

Reading Manners

Reflection LCG [194], AutoAgents [189]

Retrieval
DROIDAGENT [144],
Qian et al. [190], [196]

Subscription MetaGPT [187], AGILECODER [198]

Fig. 16: Taxonomy of Memory Design in LLM-based Agents for SE

proposed, e.g., trajectory summarization [144], [187] and
shortcut extraction [190], [196]. These distilled records re-
tain the task execution process in a more concise manner,
thereby alleviating the burden on limited memory and
prompt windows.

• Selective Storage. Another manner to save long-term mem-
ory space is to store vital data of each task, e.g., the
final results [186], [189], [197], [198], reflections [62], [189],
and action-observations [76], [144], [162]. Compared to
complete historical trajectories, these data highlight the
pivotal trace information, which can still retain the effects
and feedback of previous tasks.

B. Memory Ownership. In agent systems, the memory
module can be designed to serve specific agents or to serve
all agents. Based on its ownership, we categorize memory
into Specific Memory and Shared Memory.

B.1: Specific Memory. Specific memory is an agent mech-
anism designed specifically for a limited group of agents.
This type of memory has strict pre-defined usage regula-
tions, only storing and serving specific agents in the work-
flow [62], [76], [88], [97], [98], [107], [139], [144], [148], [162],
[186], [187], [189], [190], [196]–[198], [205]. For example, in

SoA [97], each agent is equipped with individual memory
for storing its own generated code fragments and unit tests,
which will be used to evaluate the correctness of the final
code and provide feedback to the agent for modification.

B.2: Shared Memory. Shared memory, on the other hand,
serves all agents by maintaining the record of their out-
puts and offering essential historical data. In most cases,
shared memory serves as a dynamic information exchange
hub in the intricate SE environment, which is akin to the
traditional blackboard system [222]. Generally, information
stored in the shared memory is the intermediate results of
previous phases, hence the agents from subsequent phases
can obtain necessary information in a more convenient
manner [4], [57], [160], [187], [198]. Representative work like
MetaGPT [187] introduces a shared message pool, which
saves artifacts from different agent roles, e.g., the product
requirement documents from the product manager. Another
typical application of shared memory is to store comments
in a decentralized debate scenario. Specifically, LCGscrum
[194] simulates the Sprint Meeting by providing a shared
buffer, storing the problem and the discussion comment
of all participated agents from which the product manager
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could extract a list of user stories.
C. Memory Format. In this section, we elaborate on the

format of data stored in the memory. In SE tasks, the most
commonly used storage formats include natural languages,
program languages, structured messages, key-value pairs,
embeddings, and trees.

C.1: Natural Languages. LLM-based agents solve tasks
specified in natural language, which is thus the most funda-
mental and prevalent data format in memory [4], [62], [139],
[148], [186], [189], [194], [197], [198], [205]. The advantage
of raw natural language is that it allows for a more flexible
storage of trajectories, thereby enhancing the universality.
Moreover, raw natural language can better preserve the
integrity of the original dialogue, which minimizes the loss
and distortion of essential information.

C.2: Programming Languages. Some agents directly store
the generated code for subsequent utilization [88], [97].
For example, SoA [97] is a hierarchical code generation
framework with each agent focusing on single function
implementation. It stores the generated function code and
unit tests in the memory for testing, modification, and
aggregation.

C.3: Structured Messages. In this format, memory is orga-
nized as a list of messages with multiple attributes. The
strength of this format is that it allows data to be stored
in a structured manner, making it more convenient for
indexing and processing. Moreover, it can store vital meta-
data of the message, e.g., message source and destination,
task type, etc., so it is easier for agents to trace and sub-
scribe to required messages, making it commonly used in
shared memory. Representative works like MetaGPT [187]
and MARE [57], both wrap the artifacts of each agent as
informative messages, involving the original content, in-
struction, task name, sender, and receiver, etc. In E&V [107],
intermediate results of previous turns will be summarized
and stored in JSON format.

C.4: Key-value Pairs. In this format, information received
from the agents is stored in an external memory, with
a key extracted for the agents to query required his-
tory memories [162], [190], [196]. More specifically, in Co-
Learning [190], shortcuts are extracted from the trajecto-
ries to construct two key-value databases: the solution-to-
instruction database for the instructor, and the instruction-
to-solution database for the assistant. RCAgent [162] stores
the whole observation body in a key-value store, remaining
a snapshot key for agents for query details.

C.5: Embeddings. In this format, the memory is embedded
into a vector, which can help retrieve the most relevant task
experiences. Representative work like DROIDAGENT [144]
embeds the textual history into vectors and stores them in an
external embedding database. Compared to text similarity
retrieval, it can further provide semantic similarity retrieval.

C.6: Trees. Some approaches construct a tree or graph
for memorizing, especially in scenarios requiring flexible
extension or path tracing. For example, in LATS [76], the
task-solving process is modeled into a tree with each node
representing a state with the instruction, the action, and
the observation, and then an extended Monte Carlo Tree
Search algorithm can be integrated. Similarly, Olausson et
al. [63] propose a repair tree that stores multiple generation-
feedback-repair paths.

D. Memory Operations. We categorize operations on
memory into two main sections: memory writing and mem-
ory reading.

D.1: Memory Writing. The purpose of memory writing is
to store essential information in the memory. In SE, the most
commonly considered problems include how to process the
received information (memory preprocessing) and how to
avoid memory overflow (memory overflow).

• Memory Preprocessing. Information stored in memory is
usually the raw task execution trajectories [186], [197],
[198]. However, considering that the raw task trajecto-
ries might be lengthy, distilling approaches have been
proposed to retain a more informative summary in the
memory [62], [107], [144], [148], [187], [190], [196], [205].
For instance, in XUAT-Copilot [148], dialog and action his-
tory are stored in working memory as summarized texts.
Moreover, Co-Learning [190] proposes a novel distilling
approach by first constructing a task execution graph and
then extracting shortcuts linking non-adjacent solution
nodes, which can serve as solution refinement paths for
future tasks.

• Memory Elimination. The limited memory storage and
prompt window size result in finite memory records.
When overflow occurs, some records must be forgotten.
For example, in Reflexion [62], the past experiences are
stored in a sliding window with a maximum number of
3 to avoid exceeding the prompt window. Additionally,
low-quality and rarely-used data also consume memory
storage space. Previous research [190] sets a threshold to
filter out experiences with limited information. Further,
an elimination mechanism based on the usage frequency
is introduced to exclude rarely-used experiences [196].

D.2: Memory Reading. Memory reading aims at obtaining
the required task history and experiences from the memory
module. We elaborate on the memory reading process from
two perspectives: the filtering criteria required historical
records and reading manners to obtain these records.

Filtering Criteria. The factors influencing whether a his-
torical record should be integrated into the current task can
be chiefly categorized into three parts: recency [88], [139],
[144], [148], [186], [187], [197], [198], [205], relevance [88],
[187], [198] and similarity [144], [190], [196]. Agents integrate
the most relevant and similar task experiences to provide
the best reference for the current task. Additionally, the
preference and weight of these factors vary across different
works. In DROIDAGENT [144], the planner agent considers
the 20 most recent task summaries and the 5 most similar
task knowledge items. In MAGIS [205], the agent uses the
most recent summary of a code file to identify differences.
In MetaGPT [187] and AGILECODER [198], agents retrieve
only relevant messages from shared memory based on their
roles.

Reading Manners. In SE, instead of directly providing the
raw memory to the agent [4], [139], [160], [186], [187], [197],
[198], [205], researchers prefer using three manners for ob-
taining relevant memory: reflection, retrieval, and subscription.

• Reflection. Reflection refers to extracting pivotal experi-
ences from the extensive trajectory memory [189], [194].
For example, in AutoAgents [189], the dynamic memory
mechanism is designed to instruct an agent to extract in-
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sights from long-term memory that will serve the current
action. In LCG scrum [194], the product manager summa-
rizes the comments collected from all agents and extracts
a list of user stories to implement.

• Retrieval. In this manner, the memory is retrieved based on
its text or semantic similarity with the current tasks [144],
[190], [196]. For example, in Co-Learning [190], the rea-
soning module uses the prompt as a query to retrieve
similar shortcuts from the constructed experience pool,
which will serve as examples to facilitate future reasoning.
In DROIDAGENT [144], the past tasks and widgets with
similar GUI state embeddings are retrieved by comparing
the cosine similarity.

• Subscription. The subscription mechanism is chiefly used
in shared memory. It permits agents to directly obtain re-
quired information according to their roles, without addi-
tional interaction costs with other agents, thus improving
efficiency. Representative works include MetaGPT [187]
and AGILECODER [198], both adopting this kind of
publish-subscribe mechanism.

5.1.3 Perception
Existing LLM-based agents for SE primarily adopt two
perception paradigms: textual input perception and visual
input perception.

A. Textual Input. Text can flexibly express the intent,
information, and knowledge. In SE, the majority of historical
data, e.g., documentation, code, and issues, is stored in the
textual form. This alignment with the strengths of LLMs
in processing natural language makes textual input the
predominant form of perception for agents for SE. Textual
input in existing agents can be further categorized into
natural language input (i.e., instructions and auxiliary infor-
mation collected from the environment) and programming
language input (i.e., the code context). For example, in
NL2Code tasks [186], [187], user requirements and function
descriptions are provided as the instruction to agents. But
in some code-related tasks, e.g., software testing [126], [127]
and debugging [159], [160], [171], [174], the target code can
also be provided for analysis. Specifically, in repository-level
tasks such as issue-resolution [206]–[208], repository-level
fault localization [160], and code edits [88], only a portion of
code snippets are provided due to context length limitations,
with further inspections achieved through navigation in the
code repository.

B. Visual Input. Images represent a two-dimensional
medium for storing information. In traditional SE scenarios,
there is also a portion of data presented in image form, e.g.,
UML diagrams [223] and UI pages. A small number of exist-
ing agents use this visual information to enhance their un-
derstanding of target tasks. For example, in MetaGPT [187],
the product manager creates a competitive quadrant chart
for the architect, who then provides system architecture and
sequence flow diagrams to the engineer agents.

Visual input is more widely used in mobile app testing
tasks, since the clickable widgets can be located easily in
screenshots. Previous work [144] has also discovered that
the widgets in some apps might be presented in raw pictures
without any textual information [144]. Therefore, in XUAT-
Copilot [148] and AXNav [145], the screenshot of the current
page is provided to the agent to visualize the accessible

widgets. Just as humans use their eyes to interpret images,
these agents integrate external visual models to process
and understand image data. XUAT-Copilot [148] uses the
SegLink++ model [224] for detecting bounding boxes and a
ConvNeXts model [225] for text recognition.

5.1.4 Action

The action component of existing LLM-based agents for SE
primarily involves using external tools to extend their capa-
bilities beyond the interactive dialogue typical of standalone
LLMs. Figure 17 summarizes the tools used in these agent
systems.

A. Searching Tools. In SE, agents frequently use search-
ing tools to retrieve relevant information (e.g., documen-
tation or code snippets) that can be helpful for the task
completion.

A.1: Web Searching. Online search engine tools use com-
munity and tutorial websites to offer programmers accurate
and practical suggestions based on shared experiences and
Q&A. When faced with gaps in specific domain knowl-
edge, programmers distill their needs into a query and use
existing search engines (e.g., Google, Bing, WikiSearch) to
find the necessary information, an approach that can also
be employed by agents [78], [96], [105], [153], [187], [193].
For example, some agents [78], [81], [82], [188] use Duck-
Duckgo [228] to search the relative content such as APIs.
Paranjape1 et al. [102] employ SerpAPI [229] and extract
answer box snippets when they are available or combine
the Top-2 search result snippets together. He et al. [230]
query Google and then extract pertinent information to
construct prompts for LLMs. Depending on the task at hand,
the search space can be restricted to specific websites (e.g.,
as StackOverflow) or certain websites can be blocked to
prevent data leakage.

A.2: Knowledge Base Searching. Besides using a web
searching tool to externally collect the information from the
wide, it is also common for existing agents to retrieve rel-
evant knowledge from the self-established knowledge base
(e.g., memory pool or code repository). In particular, similar-
ity and string matching are two common retrieval strategies.
Similarity-based retrieval approaches include sparse word-
bag and dense text embedding. Both approaches vector-
ize codes or documents, calculating similarity between the
query and the segment in knowledge base to obtain relevant
information. The sparse word-bag approach (e.g., BM25 [78],
[82]) vectorizes text while partially preserving its semantics.
Dense text embedding model such as dual-encoder encodes
the text into embedding vectors and calculates their cosine
similarity [64], [77], [105], [110], [144], [151], [162], [190].
String matching approaches directly split the given code
element name and match it within the knowledge base [107],
[171], which is used for locating files within a repository by
the file name.

B. File Operation. As SE activities frequently access
massive files especially for the code repository and doc-
umentation, it is common for agent systems [113], [153],
[171], [172], [207], [210] to use file operations including shell
commands (e.g., Linux shell) or the code utils (e.g., Python
os package) for file browsing, file adding, file deleting, and
file editing. For example, for file browsing, agents open files
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Action

Searching Tools

Web Searching MetaGPT [187], CodePori [193],
ICAA [105], AgentVerse [188], etc.

Knowledge
Base Searching

CodeAgent [82], ToolCoder [78],
Co-Learning [190], EV [107], etc.

File Operation SWE-agent [207], RepairA-
gent [171], MASAI [210], etc.

GUI Operation GPTDroid [139], XUAT-Copilot [148],
AXNav [145], AdbGPT [15]

Static Program Analysis

Static Informa-
tion Collection

Abstract Syntax Tree AutoCodeRover [206], TOOLGEN [89],
AdbGPT [15], TELPA [125], etc.

Control Flow Graph LDB [75], LLM4CBI [134]

Call Graph TELPA [125], AutoSpec [226]

Data Flow Graph IRIS [113], LLM4CBI [134]

Code Dependency Graph AgileCoder [198], CodePlan [88]

Code Completion Tokens TOOLGEN [89], CodePlan [88],Re-
poAgent [227], RRR [77]

Code Quality Checking RRR [77], CTC [197], Code-
CoT [84], ACFIX [174], etc.

Dynamic Analysis

Method Call Trace AgentFL [160]

Runtime Values AUTOSD [75], LDB [75]

Coverage CoverUp [126], TELPA [125],
LLM4CBI [134]

Testing Tools

Test Validation
AUTOSD [172], LCG [194],

AISD [191], ClarifyGPT [94], etc.

Test Generation TELPA [125]

Mutation Testing MuTAP [127]

Fault Localization Tools
RepairAgent [171], Au-

toCodeRover [206]

Version Control Tools RepoAgent [227]

Fig. 17: Taxonomy of Action Components in LLM-based Agents for SE

based on their paths, scroll through the contents, and jump
to specific lines.

C. GUI Operation. For SE activities related to soft-
ware with GUI, it is necessary to enable various GUI
interaction operations for agent systems [15], [139], [145],
[148], including clicking, text input, scrolling, swiping, re-
turning, and termination. In particular, for UI element
identification, they use visual and text recognition models
(e.g., SegLink++ [231], Screen Recognition [232], and Con-
vNeXts [233]), dump (e.g., Android UIAutomator [147]), or
parse the UI view hierarchy [15], [139]; then they simulate
the testing environment using virtual Android devices (e.g.,
Genymotion [146], VirtualBox [140], and pyvbox [141]) and
autonomously execute or reply actions through tools such
as Android Debug Bridge [143] to mimic user interactions.
These actions enable agent systems to test in various GUI
environments.

D. Static Program Analysis. Static program analysis
tools are widely used in agent systems for SE tasks, as they
can provide more rigorous code features (e.g., data-flow and
control-flow) for LLMs. Existing agents primarily use static

program analysis tools for two purposes: collecting static
program information and checking code quality.

D.1: Static Information Collection. Agents invoke static
analysis tools to parse the program and to collect additional
program information; and the collected information can
further help agents better understand the program and thus
tackle the relevant tasks. Existing agents primarily collect
the following static information.

• Abstract Syntax Tree (AST). AST is a common representa-
tion to describe the syntactic structure of the source code
and is widely used by agents. In particular, the collected
ASTs help agents extract syntactic elements (e.g., class
names, method names, and variable names) [15], [77], [82],
[88], [88], [89], [107], [125], [126], [198], [206], [210], [226]
and identify dependency among these code elements [88],
[125], [198], [226], [227]. Tree-sitter [161] and ANTLR [234]
are AST parsing tools that are widely used in existing
agent systems [82], [88], [160], [171], [174], [198], [210].

• Control Flow Graph (CFG). LDB [75] uses CFG to di-
vide a program into multiple blocks, making it easier to
track intermediate variables with the help of the debug-
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ger. LLM4CBI [134] calculates the cyclomatic complexity
based on a CFG that represents failed tests and accurately
identifies high-complexity blocks of the code. These com-
plicated code blocks would be regarded as the targets for
program mutation.

• Call Graph (CG). TELPA [125] constructs a method CG,
extracting all call sequences that reach uncovered target
methods. Based on these sequences, new test cases are
generated to ensure comprehensive coverage of previ-
ously untested methods. AutoSpec [226] treats loops as
nodes as well, constructing an extended call graph; and
it then traverses the CG from the bottom up to generate
specifications.

• Data Flow Graph (DFG). IRIS [113] constructs a data flow
graph to assist taint analysis, which helps detect security
vulnerabilities. LLM4CBI [134] performs data flow analy-
sis to output a list of the most complex variables defined
and used in the failed test, which guides test generation.

• Code Dependency Graph (CDG). Agents such as Agile-
Coder [198] and CodePlan [88] build a Code Depen-
dency Graph for the entire codebase. The graph repre-
sents complex relationships between code blocks (e.g., call
relationships, inheritance, and import dependencies) and
enables the accurate extraction of task-relevant context
information (e.g., error trace-back path for repair) within
constraints of a limited prompt length. In addition, by
dynamically maintaining the CDG, agents can perform
incremental analysis in a more efficient way.

• Code Completion Tokens. In code generation tasks, it is
common for agents [77], [88], [89], [227] to use language
servers (e.g., Jedi [235] and EclipseJDTLS [236]) to collect
candidate tokens at the certain position. In particular,
candidate tokens returned by language servers often pass
the syntactic violation (e.g., only defined variable names
are returned), which can effectively alleviate the halluci-
nations of standalone LLMs.

D.2: Code Quality Checking. Static analysis tools are also
widely used by agent systems to check code quality, e.g.,
syntactic correctness checking, code format checking, code
complexity checking, vulnerability detection, and specifi-
cations checking. The checked results can then provide
feedback or additional hints for agents to further improve
code quality. In particular, existing agents [77], [84], [197]
use compilers or interpreter (e.g., GCC or Python) for syn-
tactic correctness checking; existing agents [82], [192] use
Black [237] and nuXmv [238] for code format checking; the
agent in [134] uses OClint [135] and srcSlice [136] for code
complexity checking; existing agents [134], [174] use static
analysis tools such as Frama-C [138] and Slither [239] to
detect vulnerabilities; the agent in [226] uses static tools
(e.g., Frama-C) to verify the satisfiability and sufficiency of
generated specifications.

E. Dynamic Analysis. In addition to static analysis,
existing agents also use dynamic analysis tools to collect
dynamic runtime information (i.e., method call trace, run-
time values, and coverage) that can further provide runtime
behaviors for agents.

• Method Call Trace. AgentFL [160] uses the
java.lang.instrument package [240] to record all method
call traces during the execution of failed tests, which can

facilitate more accurate fault localization.
• Runtime Values. Some agents [75], [172] mimic manual

debugging to set breakpoints, so as to capture runtime
values for variables. The runtime values can be integrated
into the prompt along with requirements to aid in defect
localization.

• Coverage. Coverage serves as important feedback for
whether each code element is executed by tests or not.
For example, some agents [125], [126], [134] leverage tools
such as SlipCover [129], Pynguin [241], and Gcov [137] to
collect the coverage information.

F. Testing Tools. Test cases validate whether the software
behaviors violate the specifications, and it is common for
agents in SE to invoke testing tools, including tools for test
validation, test generation, and mutation testing.

F.1: Test Validation. Validating the software with test exe-
cution frameworks (e.g., PyTest, unittest, or JUnit) can reveal
the runtime errors and test failures, which are widely used
in existing agent systems [62]–[67], [71]–[74], [79], [81]–[85],
[87], [91], [92], [94], [95], [97], [98], [102], [122], [123], [125],
[128], [133], [153], [159], [171], [172], [175], [187], [188], [191],
[194], [198], [206], [210], [230]. The revealed execution vio-
lations can further serve as feedback for agents to improve
programs; otherwise, the absence of execution violation can
serve as a signal for the correctness of programs (e.g., a
plausible patch is found for program repair agents).

F.2: Test Generation Tools. Although an LLM itself has
promising capabilities of directly generating test code, tradi-
tional test generation tools provide complementary benefits
as they are good at generating high-coverage tests in a cost-
efficient way. For example, some agents [125] use automated
test case generation tools (e.g., Pynguin [241]) to generate an
initial set of unit test cases.

F.3. Mutation Testing. Some agents [127] use mutation
testing tools (e.g., MutPy [242]) to evaluate the sufficiency
of test cases, as killing mutants (i.e., exhibiting different
behaviors on the mutated program than the original pro-
gram) indicates the fault detection capabilities of tests. The
mutation testing results can further serve as the feedback
for agents to iteratively enhance the tests.

G. Fault Localization Tools. Agent systems [171],
[206] can invoke traditional fault localization techniques,
especially spectrum-based fault localization tools (e.g.,
GZoltar [243]) to localize suspicious code elements. For
example, RepairAgent [171] invokes GZoltar to get the sus-
piciousness score of each code element (i.e., the probability
of being fault).

H. Version Control Tools. Version control systems
manage the changes of various files in a repository such
as changes in code, configuration files, or documenta-
tion throughout the software development process. Some
agents [227] involving managing an entire repository of-
ten leverage version control tools. For example, RepoA-
gent [227] uses Git [244] to track changes in code files and
promptly synchronize updates to project documentation.

5.2 Multi-agent System

Based on our statistics, 52.8% of existing agents for SE
are multi-agent systems. These systems benefit from the
division of specialized roles and coordination among agents,
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Agent Roles

Manager Roles

Task Decomposition

Manager Bot [193], Planner [144],
[145], Manager [205], Scrum

Master [194], [198], Controller [162],
Planning Agent [98], Instructive

Agent [196], Product Man-
ager [187], Planning LLM [183]

Decision Making CEO & CTO [119], In-
structor [190], AI User [68]

Team Organization Mother Agent [97], Planner
& Agent Observer [189]

Requirement
Analyzing Roles

Product Manager [185], [187],
[191], [198], Analyst [4], Task

Interpretation and Planing LLM [105],
Requirement Engineer [194], Task

Specifier Agent [68], User [54],
Stakeholder & Collector & Modeler

& Checker & Documenter [57]

Designer Roles

Software Archi-
tecture Designer

Architect [187], [194], Software Ar-
chitect [185], [191], CEO & CTO [186]

UI/UX Designer
User Experience Designer [185],

User Interface Designer [185],
UI/UX Designer [188]

Developer Roles

Dev-bot [193], Writer [64], Engi-
neer [187], Programmer [67], [95], [186],
[188], [191], Software Developer [185],
SketchFiller [195], Coder Agent [66],
Child Agent [97], Coding Agent [98],

AI assistant [68], Developer [194],
[198], [205], Code Learner [65],

Code Model [63], Coder [4]

Software Quality
Assurance Roles

Code Reviewer

Reviewer [119], [186], [197], QA
Engineer [205], Verification Bot [193],

Senior Developer [198], Critic
Agent [68], Code Review Agent

& Bug Report Agent & Code
Smell Agent & Code Optimization
Agent [120], Test Code Reviewer
& Source Code Reviewer [160],

Safeguard [64], Auditor & Critic [104],
Consistency Checking Agent [105]

Tester

Crafter [159], Tester [194], [198], Test
Designer [95], QA Engineer [187],
Software Tester [185], Generation

LLM [133], Action Agent &
Evaluation Agent [145], Actor &

Observer [144], Operation Agent [148]

Debugging Roles

Test Failure Analysis
Remediation Agent [66], Feedback

Model [63], Questioner [67],
Reflector [144], Revisitor [159]

Test Failure Reproduction Test Template Generator
& Issue Reproducer [210]

Repair
Localizer & Repairer [159],
Generator [174], Fixer [210],

Debugging Agent [98]

Assistant Roles
Repository Custodian [205], RepoS-

ketcher [195], Edit Localizer [210], Re-
trieval Agent [98], Report Agent [105]

Fig. 18: Taxonomy of Agent Roles in LLM-based Multi-agent Systems for SE
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which effectively addresses the complexity of SE tasks, par-
ticularly for end-to-end activities spanning multiple phases.
This section provides an overview of existing multi-agent
systems for SE, with a focus on their agent roles and
coordination mechanisms.

5.2.1 Agent Roles
In a multi-agent system, each agent is typically assigned

a specialized role designed to address specific tasks. This
role assignment forms the foundation of the system, directly
influencing task decomposition and agent coordination.
Specifically, role assignment mainly delineates duties, avail-
able actions, attributes, and constraints of roles. It makes
agents as experts of corresponding tasks. Figure 18 summa-
rizes common agent roles in existing multi-agent systems
for SE.

A: Manager Roles. Managerial roles, such as CEO, CTO,
commander, and controller, serve as the leaders of a multi-
agent team. These roles are responsible for making deci-
sions, planning, task decomposition and assignment, and
overseeing team coordination.

A.1: Roles for Task Decomposition. To enhance the overall
system performance, managers break down a project into
manageable sub-tasks and draw up a guiding plan for
developers or testers to execute [98], [144], [145], [162], [193],
[196], [198], [205]. They analyze problem statements, facili-
tate discussions on issues among various agent roles [194],
review design documents submitted by designers [187],
and incorporate related information gathered by assistants.
Subsequently, they produce a specific task list or implemen-
tation blueprint, which may be presented in either natural
language or as a structured workflow [183].

A.2: Roles for Decision Making. This role is designed for
orchestrating collaboration within a team and providing
further guidance for task execution. For example, CEO
and CTO in CodeAgent [119] communicate with staff and
make high-level decisions. Similarly, the instructor in the
agent [190] and the AI user within the CAMEL system [68]
issue directions to working agents.

A.3: Roles for Team Organization. This role is primarily de-
signed for flexibly deciding the constitution of the agent
team, i.e., what roles are included in the team. The main
benefits of including such roles are to flexibly optimize costs
and better meet project demands. For instance, SoA [97]
sets the mother agent, which generates new mother or child
agents and designates concrete tasks (e.g., unimplemented
functions) to them. AutoAgents [189] includes a planner
agent and an observer agent, which collaborate to assemble
a team for particular tasks. The planner agent is responsible
for assigning existing LLM agent roles or generating new
ones, while the observer agent assesses and reviews the rel-
evant roles. These roles are represented in a structured JSON
format, encapsulating details such as name, description,
available tools, suggestions, and prompts to guide agent
behaviors.

B. Requirement Analyzing Roles. These roles are pri-
marily responsible for analyzing software requirements,
such as translating vague and preliminary user concepts
into a coherent and structured format. Existing agents [4],
[105], [185], [187], [194], [198] include such roles (e.g., prod-
uct manager [191] or task specifier [68]) to identify key

requirement elements and intended objectives for a precise
and organized requirement document, which may range
from an elaborated task or function description [68] to a
formal software requirement specification [187].

In addition, some agents further design more fine-
grained roles for requirements analysis. For example, Elic-
itron [54] incorporates a set of User agents to identify diverse
user requirements by mimicking user perspectives and
conducting interviews for exploring potential user needs;
MARE [57] uses a requirements engineering team (i.e.,
stakeholder, collector, modeler, checker, and documenter)
to produce requirements specifications. The requirements
engineering process is segmented into four sub-tasks cor-
responding to specific roles, seamlessly transitioning rough
user ideas to precise requirement specifications.

C. Designer Roles. Designer roles take input informa-
tion on requirements (such as detailed task descriptions and
use cases) and shape the software architecture and system
integration.

C.1: Software Architecture Designer. This role is responsi-
ble for conceptualizing and defining the high-level structure
of software, e.g., the software architect role in agents [185]–
[187], [191], [194]. They create a design document that serves
as a blueprint for the subsequent stages of development;
and the design document can be presented in various
forms, including natural language descriptions, structured
formats (e.g., JSON for listing project architecture files), and
graphical representations (e.g., class diagrams and sequence
flowcharts [187]).

C.2: UI/UX Designer. This role primarily focuses on craft-
ing the visual and interactive aspects of the software inter-
face, such as user experience (UX) designer or user interface
(UI) designer roles in agents [185], [188].

D: Developer Roles. Developers take a vital role in soft-
ware development and maintenance activities, which is one
of the most common roles (e.g., also called as programmer
or coder) in existing agents [64], [66], [68], [97], [98], [185]–
[188], [193], [195] for tasks involving code generation. In ac-
cordance with software design schemes, task plans provided
by other agents, or user requirements, the developer roles
generate or finalize code at various levels (i.e., from function
to file and even project levels). In addition, the developer
roles also engage in the code refinement process, which
refines their previously generated code [4], [63], [65], [67],
[95], [194], [205]. Furthermore, the developer roles can be
set to meet more customized standards, such as elucidating
their work through supplementary docstrings or adhering
to particular coding criteria [191], [198].

E: Software Quality Assurance Roles. Agent systems in-
clude roles dedicated to software quality assurance, similar
to real-world QA teams. These roles typically encompass
code reviewers, testers, and debuggers, each focused on
checking and improving software quality.

E.1: Code Reviewer. This role is responsible for identify-
ing potential software quality issues by statically inspect-
ing the software without execution. For example, some
agents [119], [186], [188], [193], [197], [205] include such roles
to review generated code or patches; AgileCoder [198] and
CAMEL [68] include the roles such as senior developer or
critic agent to offer suggestions for enhancement; the agent
in [120] sets up code review agent, bug report agent, code
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smell agent, and code optimization agent to access code
quality from different aspects; AGENTFL [160] sets test code
reviewer and source code reviewer to summarize code be-
haviour to help fault location; in addition, some agents [64],
[104], [105] include such roles (e.g., the auditor agent and the
critic agent in GPTLENS [104] and the consistency checking
agent in [105]) to detect the vulnerability or implementation
issues.

E.2: Tester. The tester roles are widely incorporated in
multi-agent systems [95], [133], [144], [145], [148], [159],
[185], [187], [194], [198] for software quality assurance,
which are mainly responsible for writing new tests or gener-
ating testing action sequences. For example, the tester agent
in multi-agent systems [95], [159], [194] generates test cases
based on relevant code skeleton or patches, requirement
documents, existing tests, or rationale for the test; the tester
agent in multi-agent systems [144], [148] generates opera-
tional actions for GUI tests or systematic functional tests
based on the specified requirements.

E.3: Debugging Roles. In multi-agent systems, debugging
roles are responsible for diagnosing test failures or unex-
pected software behaviors.
• Test Failure Analysis. Some multi-agent systems include

debugging roles in analyzing test reports. For example,
the remediation agent in TGen [66] and the feedback
module in Self-repair [63] are similarly designed to an-
alyze the test failure reports and relevant faulty code
to provide explanations and suggestions; the questioner
agent in AutoCoder [67] describes execution errors to
help modify the generated code; the reflector agent in
DROIDAGENT [144] reflects and summaries on the test
results; and some agents [65], [159] further include de-
bugging roles (e.g., the revisitor) to provide explanations
for test failures.

• Test Failure Reproduction. MASAI [210] uses the test tem-
plate generator to produce test templates based on the
repository information, which further helps the issue
reproducer reproduce behaviors described in the issue
reports.

• Repair. Some multi-agent systems include such roles
in fault localization and program repair. For example,
agents [98], [159], [174], [210] include roles such as repairer
and fixer to generate patches for bugs;

F: Assistant Roles. Assistant roles primarily provide as-
sistance for other agents. For example, the repository custo-
dian in MAGIS [205], the RepoSketcher in CodeS [195], and
the edit localizer in MASAI [210] are designed to enhance
the comprehension of the target repository architecture for
the team; in addition, MapCoder [98] uses the retrieval agent
to facilitate memory recall; ICAA [105] introduces the report
agent to convert natural language responses into formatted
bug reports.

5.2.2 Collaboration Mechanism
The collaboration mechanism is essential for multi-agent
systems, which can significantly impact the effectiveness
and costs of the entire system. In particular, the collabo-
rative mechanisms of existing multi-agent systems for SE
tasks can be categorized into four types: layered structure,
circular structure, tree-like structure, and star-like structure.
Figure 19 illustrates each structure.

Fig. 19: Multi-agent System Collaboration Mechanisms

A. Layered Structure. It is a hierarchical structure, where
tasks are decomposed into several sub-stages and each is as-
signed to a specific agent or a group of agents selected from
the agent pool. Agents between different stages collaborate
in a sequential manner, i.e., they receive intermediate results
from agents in the previous stage as input and produce their
processed data to agents in the next stage. For example, the
workflow within agents of [105], [133], [160], [183], [191],
[206] is a simple chain, where each agent focuses on its
own sub-task and only interacts with adjacent agents. In
addition, agents can also refer to the message produced by
the previous non-adjacent agents [98], [187], [195]. In the
sequential workflow, each sub-task can also be handled by
a group of agents [57], [91]. In [119], [186], [197], each sub-
task is solved by the conversation between two agent roles.
LCG [194] and AgileCoder [198] incorporate even more
agents in a single stage. In addition to interactive collabora-
tion, another scenario involves agents within the same layer
working in parallel to offer their solutions. These solutions
are then combined and passed down to the next layer.
For example, GPTLENS [104] employs several auditors to
present possible vulnerable functions individually in the
generation stage. The work [69] incorporates the majority
voting mechanism. DyLAN [70] formulates the LLM-agent
collaboration structure into a multi-layered feed-forward
network.

B. Circular Structure. This structure typically manifests
as multi-turn dialogues or integrates the feedback mech-
anism within the overall collaborative processes among
agents. The feedback loop facilitates the refinement of the
agents’ outputs through iterative cycles. The circular struc-
ture may consist of dual roles in a dialogue or extend to
multiple roles, which results in a more complex iterative
circle.

B.1: Dual Roles. On the one hand, some agents [63], [66],
[67], [95], [174] implement a generation-validation style loop
between two agents. In this setup, one agent is tasked
with the primary function, such as generating code snip-
pets or patches, while the other agent provides validation
feedback, including static analysis results, test outcomes,
and improvement suggestions. In the INTERVENOR frame-
work [65], the code learner initiates the process by gener-
ating the initial code and subsequently engages in iterative
repairs guided by the suggestions from the code teacher. On
the other hand, some agents [68], [111], [190] adopt a dual-
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agent dialogue cooperative model to achieve objectives.
The work [111] facilitates agreement through a discussion
between the tester and the developer; and the agents [68],
[190] progress through tasks in a step-wise manner, utilizing
an instructor-assistant conversational approach.

B.2: Multiple Roles. When more agents are included, the
collaborative loop will become more flexible. For example,
some works [62], [145], [193] incorporate multiple agents
in a larger feedback loop, further dismantling the tasks.
DroidAgent [144] embeds an inner loop between the Actor
and Observer in the overall loop between the Planner and the
Reflector.

C. Tree-like Structure. Different from the layered struc-
ture, agents in the same layer of the tree-like structure do not
cooperate with each other for the same sub-task but focus on
their own work. For example, in SoA [97], the mother agent
can dynamically spawn new mother or child agents for
code generation, thereby forming a tree-like collaboration
structure. In MASAI [210], the tests for reproducing issues
and the possible patches are generated parallelly and finally
aggregated to the ranker to select the best one.

D. Star-like Structure. This structure is a centralized
structure, where a central agent serves as the pivot to
interact with other agents. For example, the controller agent
in the RCAgent [162] framework can invoke other expert
agents as a kind of tool when necessary. The commander
in AutoGen [64] coordinates with the writer and the safe-
guard separately, to craft code and ensure safety. XUAT-
Copilot [148] adopts the operation agent as the core, to
receive the judgment from the inspection agent and invoke
the parameter selection agent to help the action planning.

5.3 Human-Agent Collaboration
While most agents aim to achieve maximum automation,
where users only need to propose a request and wait for
the agents to complete the task, previous studies [183], [191]
show that LLM-based agents often encounter bottlenecks
during the software development process. Therefore, some
agents incorporate the human-agent cooperation paradigm
to further align and enhance the agent performance with hu-
man preference and expertise. As summarized in Figure 20,
existing agents primarily include the human participation
in four phases: planning, requirements, development, and
evaluation.

Fig. 20: Human-Agent Collaboration in SE

A. Planning Phase. Some agents include human inter-
vention into the planning stage of the agent workflow. For
example, the low-code LLM platform [183] offers users a
selection of predefined actions to modify auto-generated
workflows. The generated workflows can be checked and

revised by users before execution. However, revising the
system design requires a certain level of expertise, so
it is optional in some agents such as AISD [191] and
LLM4PLC [192].

B. Requirements Phase. The initial requirements (i.e.,
the task description) provided by users can be ambiguous,
which can lead to a gap between the final outputs of the
agent system and the user intention. Therefore, it is common
for agent systems to further include manual refinement
for the requirements. For example, ClarifyGPT [94] and
CodeAct [85] employ a dialogue-based interaction with
humans; similarly, Sapper IDE [184] and MARE [57] use
human feedback to refine the requirements. AISD [191]
enables users to assess and refine the generated use cases.
In addition, HARA [245] produces a concise and readable
summary table of the generated requirements for further
manual expert review.

C. Development Phase. Human involvement can be
included in the software development phase to guide agents
to strategize solutions and overcome potential failures.
Flows [91] leverages human-crafted solutions to produce
better code for competitive programming challenges. Both
AutoGen [64] and LLM4PLC [192] allow users to furnish
feedback when necessary, directing the workflow as needed.
In CodeS [195], the repository is constructed from a tripartite
sketch, assigning users the flexibility to edit each individual
layer.

D. Evaluation Phase. Human participation also serves
as a post-evaluation mechanism for the outcomes produced
by the agent system, which can further ensure the outputs
are aligned with user intention. For example, AISD [191]
and Prompt Sapper [184] both include human intervention
at the acceptance testing phase. Users can conduct manual
testing of the final system and the test reports help with
the necessary refinements. Similarly, in ART [102], users can
enhance agent performance on particular tasks by offering
feedback through the modification of the task and tool
libraries.

6 RESEARCH OPPORTUNITIES

This section discusses promising research directions and
open problems in LLM-based agents for SE.

Evaluation of Agents for SE. Given the emergence of
LLM-based agents for SE, it is crucial to develop compre-
hensive and rigorous evaluation frameworks, including (i)
designing more diverse metrics and (ii) constructing higher-
quality, more realistic benchmarks.

Metrics. Current evaluations of SE agents primarily focus
on their ability to solve specific tasks, such as measuring
the success rate of agents on benchmarks such as SWE-
bench. However, these evaluations often concentrate on the
final success rate without delving into the intermediate
states during the agent’s workflow. This lack of fine-grained
metrics makes it difficult to assess why agents fail in certain
tasks or to what extent they fall short. Given the complexity
of SE tasks, failures are common, and without deeper anal-
ysis, improving agent performance becomes challenging.
Therefore, the design of fine-grained metrics is necessary, al-
lowing researchers to move beyond “black-box” evaluations
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and gain insights into the agent’s decision-making process
and failure points.

Additionally, existing metrics heavily emphasize effec-
tiveness, leaving trustworthy requirements such as robust-
ness, security, and fairness underexplored. Given the flexi-
bility and autonomy of LLM-based agents, they may exhibit
unstable behavior, which can limit their practical application
in real-world SE environments. Evaluating these attributes
is essential for building trust in these systems.

Another critical consideration is the cost associated with
these agents, particularly as they often involve lengthy
workflows, frequent LLM invocations, and the management
of large datasets. According to our analysis, only 44.3%
of the papers we surveyed have explicitly considered the
efficiency of agents in SE tasks, incorporating quantitative
analyses of time, token consumption, monetary cost, and
feedback loops (e.g., tool invocation frequency or inter-agent
discussion frequency). These efficiency and computational
costs are particularly important when applying agents to
large-scale code repositories, complex documentation, or
intricate workflows.

Benchmarks. LLM-based agents significantly extend the
capabilities of standalone LLMs, showing great promise
in tackling more complex, end-to-end SE tasks. However,
existing benchmarks used for evaluating these agents often
suffer from quality issues. For instance, prior research [211],
[215] has identified that the SWE-bench benchmark includes
tasks with vague or incomplete issue descriptions, reducing
their relevance and applicability.

Moreover, many tasks in current benchmarks are far
simpler than real-world SE challenges. As outlined in Table
11, the software generated by LLM-based agents for end-
to-end development tends to be relatively small in scale
(e.g., consisting of a single function or a few files), which is
not representative of the complexity of real-world software
projects. In addition, previous work [215] reveals that the
majority of tasks (77.8%) in the SWE-bench benchmark can
be completed within an hour by an experienced software
engineer, further highlighting the gap between benchmark
tasks and real-world SE challenges.

To address these shortcomings, future research can focus
on creating more realistic, high-quality benchmarks that
better reflect the complexity and demands of real-world SE.
These improved benchmarks will enable more accurate and
meaningful evaluations of LLM-based agents’ capabilities
and potential.

Human-Agent Collaboration. Software development is
inherently a creative process, transforming human require-
ments into executable software. As such, aligning agent
systems with human preferences and intentions is a critical
goal. While some existing agents incorporate human partic-
ipation at various stages of the workflow (as discussed in
Section 5.3), there has been limited exploration of how to
more thoroughly integrate human involvement throughout
the entire software development life cycle. Additionally, the
interaction mechanisms between agents and humans remain
underexplored.

Currently, agents mainly involve humans in tasks such
as requirements clarification, planning adjustments, cod-
ing assistance, or evaluation. However, extending human
participation to other phases, such as architecture design,

test generation, code review, and the end-to-end software
maintenance process, remains largely unexplored. A deeper
integration of human input across these phases could sig-
nificantly enhance both the quality and adaptability of the
agent’s output.

Moreover, designing effective interaction mechanisms
is essential for human-agent collaboration. This includes
creating user-friendly interfaces for (i) displaying relevant
information, such as intermediate outputs from agents, and
(ii) collecting user feedback in a streamlined way. Given
the complexity of information produced during the agent’s
workflow, designing such interfaces presents challenges. For
instance, when agents are tasked with generating or main-
taining a software repository, simply presenting all code files
in a flat format would be resource-intensive and inefficient.
Therefore, more sophisticated methods of organizing and
representing complex data are required to facilitate effective
human-agent interaction.

Perception Modality. Most agents applied to SE tasks
primarily rely on textual or visual perception. This is largely
because software development and maintenance activities
are heavily associated with processing large volumes of
code, documentation, and images. However, there is still
significant potential to explore and incorporate more diverse
perception modalities into these agents.

For example, in the context of programming assistance,
most LLM-powered coding agents predominantly use tex-
tual input, such as chat interfaces or integrated development
environment (IDE) code contexts. Alternative input formats,
such as voice commands or user gestures, remain underuti-
lized. Expanding the range of perception modalities could
significantly enhance the flexibility and accessibility of cod-
ing assistants, allowing users to interact with agents in ways
that better suit their individual workflows and preferences.

Furthermore, exploring diverse perception modalities
may shape the future of software development and mainte-
nance, offering new opportunities to streamline interactions
and improve the efficiency of agent-driven processes.

Applying Agents for More SE Tasks. While exist-
ing agents have been deployed across various software
SE tasks, several critical phases remain underexplored. As
highlighted by our analysis in Section 4, there is a lack of
LLM-based agents specifically designed for tasks such as
design, verification, and feature maintenance during soft-
ware development and maintenance.

Developing agent systems tailored to these phases
presents unique challenges. Tasks like design and verifica-
tion require advanced reasoning and comprehension capa-
bilities from the LLM-based agents, extending beyond basic
code generation. These tasks demand a deeper understand-
ing of architecture, system logic, and the ability to make
informed decisions—skills that traditional LLM-controlled
agents may not yet fully possess.

Training Software-oriented LLMs for SE Agents.
LLMs are the central component controlling the “brain” of
agent systems. Most existing agents for SE rely on LLMs
trained on general-purpose data (e.g., ChatGPT [246]) or
code-specific data (e.g., Deepseek-Coder [247] and Star-
Coder [248]). While massive code from GitHub has been
leveraged to train LLMs for code, addressing complex SE
tasks requires more specialized data. The reason is that
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software is not just about code. For example, valuable data
from the whole software development life cycle, such as de-
sign, architecture, developer discussions/communications,
historical code changes, and even dynamic runtime infor-
mation, remain largely untapped. Incorporating such data
into training could lead to the development of more pow-
erful LLMs for software (not just for code), better suited for
the unique demands of SE. These enhanced models could
form the foundation for more advanced and capable agent
systems designed to tackle a wider range of SE tasks.

SE Expertise in Building Agents. Incorporating well-
established SE expertise into the design of agent systems
is crucial. For instance, widely adopted SE techniques can
be integrated as tools or sub-components of agent systems.
As discussed in Section 5.1.4, some existing agents already
leverage SE toolkits and techniques, but many other SE tools
and techniques—such as advanced debugging and testing
methods—remain underutilized. Further efforts are needed
to comprehensively integrate these tools and techniques into
agent systems to enhance their functionality.

In addition, SE domain knowledge can guide the work-
flow of agent systems. As noted in Section 4.6, some agents
for end-to-end software development follow traditional
software process models, such as the waterfall or agile mod-
els. However, many other software process models remain
unexplored. Rather than granting agents full autonomy,
existing software development and maintenance method-
ologies can be used to partially control their workflows. For
example, as revealed by the recent Agentless study [211]
and also further confirmed by OpenAI [215], LLMs using a
simplistic workflow based on traditional fault localization
and program repair pipelines can even outperform other
more complex, fully autonomous agents. This suggests
that leveraging domain expertise from SE can potentially
help improve the effectiveness, robustness, efficiency, inter-
pretability, and replicability of agentic solutions.

7 CONCLUSION

In this paper, we have presented a comprehensive and
systematic survey of 106 papers on LLM-based agents for
SE. We analyzed the current research from both the SE
and agent perspectives. From the SE perspective, we ana-
lyzed how LLM-based agents are applied across different
software development and maintenance activities. From the
agent perspective, we focus on the design of components in
LLM-based agents for SE. In addition, we discussed open
challenges and future directions in this critical domain.
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