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Predicting, preventing, and rapidly responding to patient deteri-
oration in hospital is a major goal for improving patient safety. 
Unrecognized clinical deterioration is the leading cause of 
unplanned transfers to intensive care units (ICUs) in hospital, 
which are associated with longer hospital stays and higher mor-
tality than ICU transfers that occur directly from the emergency 
department.1–3 Researchers have tried to predict in-hospital 
deterioration,4 including using complex statistical models5 and 
machine learning methods6,7

Evidence about the effectiveness of using prediction tools as 
early warning systems to detect and reduce patient deterioration 
in hospitals is mixed, despite widespread use of such tools.8,9 
Recent literature reviews10,11 have identified only a small number 

of studies that report the effect of early warning systems on hos-
pital or 30-day mortality, many of which had serious methodo
logical limitations such as reporting only unadjusted or uncon-
trolled estimates. In 1 review,10 of the 6 studies that used robust 
methodology, only a single study reported a significant improve-
ment in patient outcomes with the implementation of an early 
warning system. This 19-hospital study at Kaiser Permanente 
Northern California found that an automated prediction model 
with remote nurse monitoring and on-the-ground intervention by 
rapid response teams was associated with a 16% relative reduc-
tion in 30-day mortality.12 The technical and clinical features of 
statistically advanced early warning systems that may be associ-
ated with improvements in clinical outcomes remain uncertain.11
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Abstract
Background: The implementation and 
clinical impact of machine learning–
based early warning systems for patient 
deterioration in hospitals have not been 
well described. We sought to describe the 
implementation and evaluation of a 
multifaceted, real-time, machine 
learning–based early warning system for 
patient deterioration used in the general 
internal medicine (GIM) unit of an aca-
demic medical centre.

Methods: In this nonrandomized, con-
trolled study, we evaluated the associa-
tion between the implementation of a 
machine learning–based early warning 
system and clinical outcomes. We used 
propensity score–based overlap weight-
ing to compare patients in the GIM unit 
during the intervention period (Nov. 1, 
2020, to June 1, 2022) to those admitted 
during the pre-intervention period (Nov. 1, 

2016, to June 1, 2020). In a difference-in-
differences analysis, we compared 
patients in the GIM unit with those in the 
cardiology, respirology, and nephrology 
units who did not receive the intervention. 
We retrospectively calculated system pre-
dictions for each patient in the control 
cohorts, although alerts were sent to clin
icians only during the intervention period 
for patients in GIM. The primary outcome 
was non-palliative in-hospital death.

Results: The study included 13 649 patient 
admissions in  GIM and 8470  patient 
admissions in subspecialty units. Non-
palliative deaths were significantly lower 
in the intervention period than the pre-
intervention period among patients in 
GIM (1.6% v. 2.1%; adjusted relative risk 
[RR]  0.74, 95% confidence interval 
[CI] 0.55–1.00) but not in the subspecialty 
cohorts (1.9% v. 2.1%; adjusted RR 0.89, 

95% CI  0.63–1.28). Among high-risk 
patients in GIM for whom the system trig-
gered at least 1 alert, the proportion of 
non-palliative deaths was 7.1% in the 
intervention period, compared with 
10.3% in the pre-intervention period 
(adjusted RR 0.69, 95% CI 0.46-1.02), with 
no meaningful difference in subspecialty 
cohorts (10.4% v. 10.6%; adjusted RR 0.98, 
95% CI  0.60–1.59). In the difference-in-
differences analysis, the adjusted relative 
risk reduction for non-palliative death in 
GIM was 0.79 (95% CI 0.50–1.24).

Interpretation: Implementing a machine 
learning–based early warning system in 
the GIM unit was associated with lower 
risk of non-palliative death than in the 
pre-intervention period. Machine 
learning–based early warning systems 
are promising technologies for improving 
clinical outcomes.
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The purpose of this study was to explore the association 
between the implementation of a multifaceted, machine 
learning–based early warning system  —  composed of a real-
time risk prediction tool, clinical alerts, and a clinical care 
pathway for high-risk patients — and clinical outcomes among 
patients in the general internal medicine (GIM) unit of an aca-
demic health centre.

Methods

Study design and setting
We conducted a nonrandomized, controlled study at 
St.  Michael’s Hospital, an inner-city academic health centre in 
Toronto, Canada. The GIM unit includes around 70 beds man-
aged by 5 medical teams, including an attending physician, resi-
dents, medical students, and interprofessional staff. The GIM unit 
has a 4-bed step-up unit that can provide more intensive nursing, 
and the hospital has a critical care response team to provide ICU 
outreach services to deteriorating ward patients. The early warn-
ing system, called CHARTwatch, was implemented on the GIM 
unit in the fall of 2020 through a phased implementation 
between August and October, after 3 years of development and 
validation studies.7,13–15 Before implementing CHARTwatch, the 
critical care response team was activated based on physician or 
nurse judgment, but no formal deterioration detection score was 
available to guide these decisions. The prespecified primary aim 
of CHARTwatch was to reduce non-palliative deaths (defined as 
deaths without receiving palliative care) by expediting interven-
tions that might reduce risk of death and by prompting earlier 
consultation with palliative care specialists when clinicians felt it 
was appropriate.

This manuscript is reported in accordance with the Transpar-
ent Reporting of a Multivariable Prediction Model for Individual 
Prognosis Or Diagnosis and Artificial Intelligence (TRIPOD+AI)16 
and Developmental and Exploratory Clinical Investigations of 
Decision Support Systems Driven by Artificial Intelligence 
(DECIDE-AI) items.17

Data collection
We collected data from the hospital’s electronic medical record 
and routine administrative data systems. Patient diagnoses were 
coded using the Canadian version of the International Classifica-
tion of Diseases and Related Health Problems, 10th Revision (ICD-
10-CA), which are mandatorily coded at the time of hospital dis-
charge and reported to the Canadian Institute for Health 
Information.

Participants
The program’s evaluation was planned before the COVID-19 pan-
demic and was initially conceived as a matched cohort study 
comparing patients in GIM before and after deployment. Given 
that the pandemic could confound pre–post analysis, we 
decided to also measure changes in the pre- and post-
intervention periods that occurred on other medical wards in the 
hospital that did not receive the intervention. We included the 
cardiology, nephrology, and respirology units as comparators 

because their patient populations are nonobstetrical, largely non-
surgical, and mostly admitted acutely through the emergency 
department; they have similar interprofessional team structures. 

We included 4  patient cohorts admitted through the emer-
gency department. The GIM intervention cohort included all 
patients cared for by a GIM team on the GIM unit between Nov. 1, 
2020, and June 1, 2022. We ended the observation period at this 
time because the CHARTwatch machine learning model was 
changed to accommodate new software and data pipelines. The 
GIM pre-intervention cohort included all patients cared for by a 
GIM team on the GIM unit between Nov. 1, 2016, and June 1, 2020. 
The contemporaneous subspecialty cohort included all patients 
admitted to the cardiology, nephrology, or respirology units 
between Nov. 1, 2020, and June 1, 2022. The pre-intervention 
subspecialty cohort included all patients admitted to the cardiol-
ogy, nephrology, or respirology units between Nov. 1, 2016, and 
June 1, 2020.

To facilitate statistical comparisons across the cohorts, we 
retrospectively calculated CHARTwatch predictions for each 
patient in the control cohorts, just as we would have if the inter-
vention had been live. These predictions were not presented to 
clinicians and did not influence care, but allowed us to statis
tically balance cohorts based on patients’ baseline risk of death 
in hospital and to identify the patients who would have received 
high-risk alerts in each of the control groups. We were then able 
to compare outcomes and processes of care among the sub-
group of patients who were high-risk in the intervention group 
and control groups.

We excluded patients with COVID-19 (based on ICD-10 codes 
U07.1 or U07.2),18 as they did not exist in the control period, and 
patients with influenza (ICD-10 codes J09, J10.0, J10.1, J10.8, 
J11.0, J11.1, or J11.8),19 as nearly no influenza admissions 
occurred in the intervention period. Because the primary aim 
was a reduction in non-palliative deaths, we excluded patients 
who had a preadmission palliative care comorbidity (defined by 
the ICD-10 diagnosis code Z51.5) and patients whose code status 
was to receive comfort measures at baseline. Patients who 
received palliative care after admission remained in the study, as 
an aim of the intervention was to improve timely access to pallia-
tive care.

Intervention
The intervention consisted of a machine learning model that 
used real-time data from the electronic medical record to predict 
patient deterioration, communication of predictions to phys
icians and nurses, a clinical pathway for high-risk patients, and a 
multidisciplinary implementation team that monitored and 
refined the intervention regularly after it was launched.7,13–15 
Appendix  1, Sections 1–5, available at www.cmaj.ca/lookup/
doi/10.1503/cmaj.240132/tab-related-content, provides a more 
detailed description of each component.

The deterioration prediction model was a time-aware multi-
variate adaptive regression spline (MARS) model (Appendix, Sec-
tions 1–4). The model is made time-aware by incorporating risk 
score predictions from earlier in the encounter, the change in 
risk score since the previous assessment, and summaries of 
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changes in the risk score over time. To communicate risk to clin
icians, patients were sorted into high-, medium-, and low-risk 
categories. A specific clinical care pathway was developed and 
implemented for high-risk patients, whereas medium- and low-
risk categories were provided to inform clinicians about the 
patient’s status with no specific care pathway. Based on clinical 
input, the threshold for the high-risk group was set at a positive 
predictive value (PPV) of 30% for deterioration during the hospi-
tal admission in the training data since 1 truly alerted patient for 
every 2 falsely alerted patients was deemed an acceptable num-
ber of false alarms. Based on this threshold, the model had a 
sensitivity of 53% and a PPV of 31% for detecting clinical deteri
oration during the hospital admission (death or transfer to the 
ICU, step-up care, or the palliative care unit) in the held-out test-
ing data. Additional alarm silencing rules were enacted to mini-
mize alarm fatigue (Appendix 1).

Model predictions were reported directly to physicians and 
charge nurses via text paging and emails, initially 3  times per 
day, and then increased to hourly on Jan. 19, 2021 (Appendix 1). 
Clinicians were asked to adhere to a clinical pathway for high-
risk patients, including physician reassessment within 1  hour, 
increased monitoring of vital signs by nurses, and triggers for 
possible palliative care consultation when the most responsible 
physicians felt it was appropriate.15 The GIM teams escalated 
care to the ICU outreach team as needed.

Outcomes
The primary outcome was non-palliative in-hospital deaths, 
defined as deaths that occurred without a documented palliative 
care intervention, identified by the presence of a palliative care 
ICD-10 code or transfer to the inpatient palliative care unit. 
Secondary outcomes included overall deaths, palliative deaths 
and transfers (defined as the composite of deaths with palliative 
care or transfers to the inpatient palliative care unit), transfer to 
ICU, the composite of transfer to ICU or death, and length of hos-
pital stay. The first CHARTwatch prediction was calculated in all 
cohorts at the time of transfer from the emergency department 
to an inpatient ward. This time-point was set as the baseline, and 
we measured all outcomes from this time until hospital dis-
charge. For the subgroup analysis of high-risk patients, we meas
ured outcomes after the first high-risk prediction. 

We also measured the following pre-specified processes of 
care in the 24  hours after the first high-risk CHARTwatch alert, 
selected based on clinical expertise, the published literature,11,20 
and data that could be reliably extracted from the hospital elec-
tronic medical record, namely new antibiotics, glucocorticoids, 
intravenous fluids, radiography, computed tomography, ultra
sonography, magnetic resonance imaging, new physician order 
for code status, number of vital sign measurements documented 
in the medical record, and transfer to the GIM step-up unit.

Covariates
We included prespecified covariates that were expected to influ-
ence the risk of in-hospital death based on the clinical and scien-
tific expertise of our team, namely admitting service (GIM, 
cardiology, nephrology, respirology), age, sex, CHARTwatch risk 

score at baseline (defined as the time of first transfer to a med
ical ward or, for the high-risk subgroup, the time of the first high-
risk alert), number of hospital admissions in previous 6 months, 
number of admissions for the same primary diagnosis in the pre-
vious 6 months,21 admission on a weekend,22 Charlson comorbid-
ities,23 calendar month at admission, most responsible discharge 
diagnosis (categorized using the Clinical Classifications Software 
Revised),24,25 vital signs, code status at baseline (categorized as 
ICU acceptable, do not resuscitate or not for ICU, and not docu-
mented), homelessness, neighbourhood material resources and 
neighbourhood racialized and newcomer population (as defined 
by the Ontario Marginalization Index, categorized into quin-
tiles),26 and ICU admission before transfer to a GIM or sub
specialty ward. Race, ethnicity, and language data were not col-
lected reliably for individual patients at our hospital.27

Statistical analysis
We reported patient characteristics for each of the 4  study 
cohorts. The primary comparison was between patients admit-
ted to the GIM unit where CHARTwatch was deployed during the 
intervention period and those admitted to this unit during the 
pre-intervention period. We reported changes during the same 
periods in medical subspecialty units where CHARTwatch was 
not deployed. We then stratified the analysis into high-risk and 
low-risk groups. We categorized patients as high risk if they 
received at least 1 high-risk CHARTwatch prediction. Because 
there was no specific intervention for medium- or low-risk 
patients, we analyzed these patients together as the low-risk 
group for this study. We expected the intervention to affect the 
high-risk patient group, as this was the focus of the high-risk clin-
ical care pathway. Low-risk patients received standard care, and 
the results in this group served as a balancing measure to iden-
tify unintended consequences of diverting resources toward 
high-risk patients.

We used propensity score–based overlap weights to balance 
differences in measured baseline characteristics that could influ-
ence the risk of in-hospital death. The propensity score, defined 
as the probability of being admitted during the intervention 
period versus the control period, was estimated using multivari-
able logistic regression separately for the GIM and subspecialty 
cohorts. We fit a separate propensity score model for the high-
risk subgroups. The general model included covariates measured 
at baseline before the first CHARTwatch prediction; the high-risk 
model was the same but the CHARTwatch risk score, vital signs, 
and code status were measured at the time of, or immediately 
before the first high-risk prediction. We modelled vital signs as 
restricted cubic splines with 3 knots.

Each patient was weighted according to the overlap weight,28 
which is the probability of being assigned to the opposite expos
ure group based on propensity score. Patients with a high pro-
pensity score, that is, a high probability of receiving either expos
ure, were assigned the largest weights, thus reducing the 
influence of observations at the extremes of the probability dis-
tribution. Overlap weights produce the smallest standard errors 
among weight-balancing approaches and achieve perfect bal-
ance for covariates included in the propensity score.28,29
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We used Poisson regression, weighting by overlap weights, to 
compare binary outcomes, and linear models to compare 
continuous outcomes (i.e., length of stay). We included a robust 
variance estimator to account for weighting. Follow-up was cen-
sored at 90 days post-admission if patients did not experience an 
outcome and were not discharged.

We performed a difference-in-differences analysis30 as a second
ary analysis to compare the observed changes on GIM versus sub-
specialty wards. This allowed us to control for secular trends and 
account for the known, stable differences between patients in GIM 
and subspecialty wards (e.g., some patients in cardiology units are 
admitted for cardiac procedures, the nephrology unit includes 
patients admitted for kidney transplants). We combined the GIM 
and subspecialty cohorts and created a propensity score model to 
weight the patients. The propensity score modelled the probability 
of being admitted during the intervention versus control periods 
and included the same covariates as the overall model, as well as 
type of admission (GIM v. subspecialty).

We performed analyses using R version 3.6.3 and the tidy-
verse,31 tableone,32 PSweight,33 survey,34 and geepack35 packages. 

Ethics approval
Ethics approval was obtained from the St. Michael’s Hospital 
Research Ethics Board (no. 19-317).

Results

Patient characteristics
Study cohorts are described in Figure 1, and patient characteristics 
are shown in Table 1 and Appendix 1, Supplemental Tables 1–3. 

The study included 13 649 patients admitted to  GIM (9626  pre-
intervention and 4023 intervention) and 8470 patients admitted 
to subspecialty units (6103 pre-intervention and 2367 contempor
aneous). In GIM, 482 patients became high risk during the interven-
tion period and 1656 patients became high risk in the control period. 

In the GIM intervention cohort, the median age was 68 (inter-
quartile range [IQR]  55–80) years, 43.3% were female, 10.5% 
were not for ICU-level care, 14.5% were experiencing homeless-
ness, 25.9% were living in neighbourhoods with the lowest 
material resources, and 34.7% were living in neighbourhoods 
with the greatest racialized and newcomer populations. In the 
subspecialty contemporaneous cohort, the median age was 66 
(IQR  54–77) years, 41.1% were female, 4.5% were not for ICU-
level care, 3.8% were experiencing homelessness, 25.6% were liv-
ing in neighbourhoods with the lowest material resources, and 
36.1% were living in neighbourhoods with the greatest racialized 
and newcomer populations (Appendix 1, Table S1).

Before weighting, baseline characteristics, except for median 
age, were generally well balanced; after weighting, measured risk 
factors were perfectly balanced between the groups.

Outcomes in the GIM and subspecialty cohorts
Outcomes are reported in Table 2 and Figure 2. After weighting, 
non-palliative deaths were significantly lower in the GIM inter-
vention group (2.1%) than in the GIM pre-intervention group 
(1.6% intervention; adjusted relative risk [RR]  0.74, 95% confi-
dence interval [CI]  0.55–1.00). We did not observe a significant 
difference in overall deaths (3.7% pre-intervention v. 3.4% inter-
vention; adjusted RR 0.93, 95% CI 0.75–1.14), palliative deaths or 
transfers (2.0% pre-intervention v. 2.3% intervention; adjusted 

Low risk
n = 7970

High risk
n = 1656

Low risk
n = 3541

High risk
n = 482

Low risk
n = 5417

High risk
n = 686

Low risk
n = 2112

High risk
n = 255

GIM cohorts Subspecialty cohorts

Admitted to a GIM ward
during study periods

n = 14 954 

Excluded:
• COVID-19  n = 731
• Influenza  n = 233
• Palliative  n = 394

GIM cohort
n = 13 649

GIM pre-intervention
 (Nov. 1, 2016, to June 1, 2020)

n = 9626

Excluded:
• COVID-19  n = 176
• Influenza  n = 62
• Palliative  n = 99

Contemporaneous subspecialty
 (Nov. 1, 2020, to June 1, 2022)

n = 2367

• Cardiology  n = 5378
• Respirology  n = 1602
• Nephrology  n = 1819

Admitted to subspecialty ward 
during study periods

Subspecialty cohort
n = 8470

Pre-intervention subspecialty
 (Nov. 1, 2016, to June 1, 2020)

n = 6103

GIM intervention
 (Nov. 1, 2020, to June 1, 2022)

n = 4023

Figure 1: Study cohorts. Patients were categorized as high risk if they received at least 1 high-risk alert in the intervention cohort or if they would have 
received one had the intervention been active in the control cohorts. All other patients were defined as low risk. See Related Content tab for accessible 
version. Note: GIM = general internal medicine.
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Table 1 (part 1 of 2): Patient characteristics of general internal medicine (GIM) cohorts

Characteristic

Unweighted Weighted

No. (%) of 
patients in GIM 

pre-intervention*
n = 9626

No. (%) of 
patients in GIM 
intervention*
n = 4023 SMD

Percentage of 
patients in GIM 

pre-intervention*
n = 9626

Percentage of 
patients in GIM 
intervention*
n = 4023 SMD†

Age, yr, median (IQR) 66.1 (52.7–78.79) 68.3 (54.9–79.7) 0.085 67.3 67.7 0.008

Sex, female 3915 (40.7) 1741 (43.3) 0.053 42.3 42.3 0

First CHARTwatch score, mean ± SD 0.09 ± 0.02 0.09 ± 0.02 0.217 0.09 0.09 0

Admissions in previous 6 mo 0.073 0

    0 8330 (86.5) 3569 (88.7) 88.0 88.0

    1 715 (7.4) 271 (6.7) 7.0 7.0

    ≥ 2 581 (6.0) 183 (4.6) 5.0 5.0

Admissions for same primary diagnosis in 
previous 6 mo

0.075 0

    0 9200 (95.6) 3902 (97.0) 96.6 96.6

    1 293 (3.0) 82 (2.0) 2.4 2.4

    ≥ 2 133 (1.4) 39 (1.0) 1.1 1.1

Admitted on weekend 2184 (22.7) 1030 (25.6) 0.068 24.6 24.6 0

Preadmission comorbidities

    Myocardial infarction 66 (0.7) 19 (0.5) 0.028 0.5 0.5 0

    Heart failure 897 (9.3) 323 (8.0) 0.046 8.5 8.5 0

    Peripheral vascular disease 105 (1.1) 47 (1.2) 0.007 1.1 1.1 0

    Cerebrovascular disease 716 (7.4) 429 (10.7) 0.113 9.8 9.8 0

    Dementia 281 (2.9) 192 (4.8) 0.096 4.1 4.1 0

    Chronic pulmonary disease 909 (9.4) 203 (5.1) 0.170 6.1 6.1 0

    Connective tissue disease 129 (1.3) 35 (0.9) 0.045 1.0 1.0 0

    Peptic ulcer disease 113 (1.2) 63 (1.6) 0.034 1.4 1.4 0

    Liver disease, mild 365 (3.8) 192 (4.8) 0.048 4.3 4.3 0

    Liver disease, moderate or severe 171 (1.8) 39 (1.0) 0.069 1.1 1.1 0

    Diabetes 1351 (14.0) 556 (13.8) 0.006 14.1 14.1 0

    Diabetes with complications 1834 (19.1) 727 (18.1) 0.025 18.5 18.5 0

    Hemiplegia 145 (1.5) 76 (1.9) 0.030 1.8 1.8 0

    Kidney disease 455 (4.7) 226 (5.6) 0.040 5.3 5.3 0

    Cancer 484 (5.0) 257 (6.4) 0.059 5.9 5.9 0

    Cancer with metastasis 189 (2.0) 86 (2.1) 0.012 2.0 2.0 0

     AIDS 79 (0.8) 36 (0.9) 0.008 0.9 0.9 0

Temperature, mean ± SD 36.4 ± 0.6 36.4 ± 0.6 0.030 36.4 ± 0.6 36.4 ± 0.6 0.011

Heart rate, mean ± SD 83.1 ± 14.7 81.9 ± 14.4 0.086 82.2 ± 14.5 82.2 ± 14.5 0.001

Systolic blood pressure, mean ± SD 129.4 ± 20.2 131.2 ± 0.5 0.086 130.7 ± 20.4 130.7 ± 20.5 0.004

Diastolic blood pressure, mean ± SD 73.2 ± 10.9 74.1 ± 10.6 0.086 73.9 ± 10.8 73.9 ± 10.7 0.003

Oxygen saturation, mean ± SD 96.4 ± 2.4 96.8 ± 2.2 0.173 96.7 ± 2.3 96.7 ± 2.3 0.002

Respiratory rate, mean ± SD 19.1 ± 2.0 18.8 ± 1.8 0.164 18.9 ± 1.9 18.9 ± 1.9 0.01

Code status 0.191 0

    Not for intensive care 856 (8.9) 421 (10.5) 10.1 10.1

    Intensive care acceptable 4331 (45.0) 2124 (52.8) 50.2 50.2

    Not documented 4439 (46.1) 1478 (36.7) 39.8 39.8

Homelessness 1619 (16.8) 583 (14.5) 0.064 15.1 15.1 0
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RR 1.14, 95% CI 0.88–1.49), ICU transfers (3.6% pre-intervention 
v. 3.9% intervention, adjusted RR  1.09, 95% CI  0.89–1.32 ), or 
length of hospital stay.

In the subspecialty cohorts, after weighting, there was no sig-
nificant difference in non-palliative deaths (2.1% pre-
intervention v. 1.9% contemporaneous; adjusted RR  0.89, 95% 
CI 0.63–1.28), overall deaths, palliative deaths or transfers, ICU 
transfers, or length of hospital stay.

Outcomes and processes in the high-risk subgroup
Weighted and unweighted outcomes in the high-risk subgroup 
are reported in Figure 3 and Appendix 1, Table S4. After weight-
ing, the proportion of non-palliative deaths in the pre-
intervention GIM cohort was 10.3% and 7.1% in the intervention 
period (adjusted RR 0.69, 95% CI 0.46–1.02). We did not observe a 
significant difference in overall deaths (16.6% pre-intervention v. 
15.4% intervention; adjusted RR 0.92, 95% CI 0.71–1.20), pallia-
tive deaths or transfers (7.5% pre-intervention v. 9.7% interven-
tion; adjusted RR 1.30, 95% CI  0.89–1.87), ICU transfers (13.1% 
pre-intervention v. 15.1% intervention; adjusted RR  1.15, 95% 
CI 0.87–1.52), or length of hospital stay.

In the subspecialty cohorts, after weighting, there was no sig-
nificant difference in non-palliative deaths (10.6% pre-
intervention v. 10.4% contemporaneous; adjusted RR 0.98, 95% 
CI 0.60–1.59) or secondary outcomes.

Processes of care in the 24  hours after the first high-risk 
alert are reported in Table  3. After weighting, patients in the 
GIM intervention cohort were more likely than controls to 
receive antibiotics (28.9% pre-intervention v. 49.4% interven-
tion, p < 0.001), to receive systemic glucocorticoids (10.4% pre-
intervention v. 17.0% intervention, p = 0.001), and to have vital 
signs measured more frequently (median 3 [IQR 2–5] measure-
ments pre-intervention v. median  5 [IQR  4–7] measurements 
intervention, p  <  0.001). After weighting, patients in the con-
temporaneous subspecialty cohort were also more likely to 
receive antibiotics (34.9% pre-intervention v. 47.0% contem-
poraneous, p = 0.004).

We did not observe any changes in imaging use, code 
status orders, or intravenous fluid orders in either the GIM or 
subspecialty groups.

Outcomes among low-risk patients in GIM
Compared with the pre-intervention period, we did not 
observe any significant change in non-palliative deaths 
(adjusted RR  1.09, 95% CI  0.67–1.77) or overall death 
(adjusted RR 1.19, 95% CI 0.85–1.66) among low-risk patients 
in GIM after overlap weighting (Appendix  1, Table  S5). This 
group did have an increase in ICU transfers (1.6% pre-
intervention v. 2.2% intervention; adjusted RR  1.39, 95% 
CI 1.03–1.86).

Table 1 (part 2 of 2): Patient characteristics of general internal medicine (GIM) cohorts

Characteristic

Unweighted Weighted

No. (%) of 
patients in GIM 

pre-intervention*
n = 9626

No. (%) of 
patients in GIM 
intervention*
n = 4023 SMD

Percentage of 
patients in GIM 

pre-intervention*
n = 9626

Percentage of 
patients in GIM 
intervention*
n = 4023 SMD†

Neighbourhood material resources 0.104 0

    Q1 (most resources) 2441 (25.4) 1118 (27.7) 27.2 27.2

    Q2 1229 (12.8) 533 (13.2) 13.1 13.1

    Q3 1152 (11.97) 514 (12.8) 12.6 12.6

    Q4 1323 (13.7) 589 (14.6) 14.5 14.5

    Q5 (least resources) 2934 (30.5) 1044 (25.9) 27.1 27.1

    Missing 547 (5.7) 225 (5.6) 5.5 5.5

Neighbourhood racialized and newcomer 
populations

0.084 0

    Q1 (least) 316 (3.3) 108 (2.7) 27.9 27.9

    Q2 501 (5.2) 225 (5.6) 5.5 5.5

    Q3 1397 (14.5) 688 (17.1) 16.4 16.4

    Q4 3507 (36.4) 1382 (34.4) 35.1 35.1

    Q5 (most) 3358 (34.9) 1395 (34.7) 34.7 34.7

    Missing 547 (5.7) 225 (5.6) 5.5 5.5

Note: IQR = interquartile range, SD = standard deviation, SMD = standardized mean difference.
*Unless indicated otherwise.
†Standardized differences after overlap weighting based on propensity score are, by definition, 0. For clarity and simplicity, we elected to present some variables in this 
table more simply than they were inputted in the propensity score model (e.g., age was entered as 10-year age bands and vital signs were modelled using restricted cubic 
splines). Thus, we report the standardized differences for the summary statistic presented in this table, which is why the standardized difference for some variables is 
greater than 0.
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Table 2: Clinical outcomes in the general internal medicine (GIM) and subspecialty cohorts

Outcome*

Unweighted Weighted

RR (95% CI)

No. (%) of  
patients in  

pre-intervention†

No. (%) of 
patients in 

intervention†
p 

value

Percentage of 
patients in 

pre-intervention†

Percentage of 
patients in 

intervention†

Primary outcome, GIM

Non-palliative death 207 (2.2) 59 (1.5) 0.01 2.1 1.6 0.74 (0.55–1.00)

Primary outcome, subspecialty

Non-palliative death 128 (2.1) 43 (1.8) 0.5 2.1 1.9 0.89 (0.63–1.28)

Secondary outcomes, GIM

Overall death 329 (3.4) 138 (3.4) 1.0 3.7 3.4 0.93 (0.75–1.14)

Palliative care 155 (1.6) 100 (2.5) 0.001 2.0 2.3 1.14 (0.88–1.49)

Transfer to ICU 368 (3.8) 150 (3.7) 0.8 3.6 3.9 1.09 (0.89–1.32)

Transfer to ICU or death 622 (6.5) 248 (6.2) 0.5 6.6 6.3 0.96 (0.82–1.11)

Length-of-stay, d, median (IQR) 5.3 (2.8–9.9) 5.6 (3.0–10.5) 0.001 5.5 (2.8–10.3) 5.6 (2.9–10.5) –

Secondary outcomes, subspecialty

Overall death 155 (2.5) 62 (2.6) 0.9 2.7 2.5 0.96 (0.71–1.30)

Palliative care 38 (0.6) 23 (1.0) 0.1 0.8 0.9 1.12 (0.65–1.93)

Transfer to ICU 753 (12.3) 283 (12.0) 0.7 12.8 11.8 0.92 (0.81–1.05)

Transfer to ICU or death 821 (13.5) 322 (13.6) 0.9 14.1 13.3 0.95 (0.84–1.07)

Length-of-stay, d, median (IQR) 5.9 (2.9–12.0) 6.5 (2.9–12.4) 0.3 6.0 (2.9–12.0) 6.4 (2.9–12.2) –

Note: CI = confidence interval, ICU = intensive care unit, IQR = interquartile range, RR = relative risk.
*Non-palliative, in-hospital death was defined as death that occurred without documented palliative care intervention, identified by the presence of a palliative care 
diagnosis code or transfer to the inpatient palliative care unit. Palliative care is a composite of deaths with palliative care or transfers to the inpatient palliative care unit.
†Unless indicated otherwise.
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Figure 2: In-hospital deaths during the pre-intervention and intervention periods in the general internal medicine (GIM) and subspecialty cohorts after 
propensity score–based overlap weighting. Supporting data are presented in Table 2. 
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Table 3: Process of care within 24 hours after the first high-risk alert, after weighting*

Process of care

Percentage of patients in GIM†
Percentage of patients in 

subspecialty†

Pre-
intervention Intervention Difference, % p value

Pre-
intervention Contemporaneous Difference, % p value

Antibiotics 28.9 49.4 20.5 < 0.001 34.9 47.0 12.1 0.004

Systemic 
corticosteroid

10.4 17.0 6.6 < 0.001 30.9 38.4 7.5 0.06

Change in code 
status

12.1 15.0 2.9 0.1 6.4 6.2 –0.2 0.9

Intravenous fluid 
order

34.5 34.0 –0.5 0.9 11.3 13.9 2.6 0.3

Transfer to 
step-up unit

3.0 2.4 –0.6 0.6 NA NA NA NA

Radiography 28.5 25.3 –3.2 0.2 1.0 0.7 –0.3 0.7

Computed 
tomography

12.9 11.8 –1.1 0.6 1.1 0.2 –0.9 0.08

Ultrasonography 9.0 6.8 –2.2 0.2 0.3 < 0.001 –0.3 0.2

Magnetic 
resonance 
imaging

4.0 2.1 –1.9 0.06 0.2 < 0.001 –0.2 0.3

No. of vital sign 
measurements, 
median (IQR)

3 (2–5) 5 (4–7) 2 < 0.001 4 (3–5) 4 (3–5) 0 0.07

Note: GIM = general internal medicine, IQR = interquartile range, NA = not applicable.
*We included interventions ordered after the high-risk alert. We used the timestamp of when imaging tests were performed to determine if they occurred in the 24 hours 
after the alert. All interventions in the 24 hours after the first high-risk alert were included, irrespective of whether a patient was transferred to the intensive care unit 
(interventions could have occurred before or after transfer), since we felt these were all reflective of care that had been delivered and could plausibly have been 
influenced by a high-risk alert.
†Unless indicated otherwise.
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Figure 3: In-hospital deaths during the pre-intervention and intervention periods in the general internal medicine (GIM) and subspecialty high-risk 
cohorts after propensity score–based overlap weighting. Supporting data are presented in Appendix 1, Table S4, available at www.cmaj.ca/lookup/
doi/10.1503/cmaj.240132/tab-related-content.
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Difference-in-differences analysis
After overlap weighting, the difference in non-palliative deaths in 
the GIM group was not significantly different than the respective 
difference in the subspecialty group among all patients (RR 
reduction 0.79, 95% CI 0.50–1.24) and among high-risk patients 
(RR reduction 0.66, 95% CI 0.37–1.20). The difference in overall 
deaths in the GIM group was also not significantly different than 
the difference in the subspecialty group overall (RR reduc-
tion 0.85, 95% CI 0.59–1.22, p = 0.35) or in the high-risk group (RR 
reduction 0.84, 95% CI 0.52–1.35).

Interpretation

The implementation of a multifaceted, machine learning–based 
early warning system in GIM at an academic centre was associ-
ated with lower non-palliative, in-hospital deaths than before 
implementation. Subspecialty wards, which did not receive the 
intervention, did not observe a significant change across the 
same time periods. A difference-in-differences comparison 
between GIM and subspecialty units demonstrated no statis
tically significant difference in outcomes, although CIs were wide 
and did not rule out a clinically meaningful benefit. The outcome 
of non-palliative death was prespecified and reflected the 
intended aims of the early warning system, which were to pre-
vent death when possible and improve access to high-quality 
end-of-life care. Overall, these results suggest that our approach 
to implementing a machine learning–based early warning sys-
tem holds promise for improving clinical outcomes but they 
should be interpreted with caution because of the potential for 
unmeasured confounding and limited sample size.

Early warning scores are widely used in hospitals. Three 
recent systematic reviews identified at least 37  studies of 
machine learning–based early warning systems.4,6,11 All reviews 
reported important methodological limitations in the literature, 
including poor reporting, small sample sizes, insufficient valida-
tion, and inconsistent use of model performance and outcome 
metrics. Few studies have explored the implementation of 
machine learning–based early warning systems. In 2024, van der Vegt 
and colleagues11 systematically reviewed studies of deployed 
systems and identified key uncertainties in the field, including 
what type of machine learning model should be used, how pre-
dictions should be reported to clinicians, and how early warning 
systems should integrate with clinical workflow.

Our study offers insights to address these uncertainties. We 
previously compared various machine learning modelling 
approaches, including deep learning and simpler machine learn-
ing models,13,14 and found that the simpler MARS models per-
formed similarly to the deep learning neural network models. 
Here, we reported the clinical effects associated with the real-
world deployment of the simpler MARS model, strengthening the 
general observation that simpler modelling approaches can be 
effective in the prediction of patient deterioration. In this study, 
we described in detail how the machine learning model was 
trained and validated and how machine learning model predic-
tions were incorporated into clinical workflows (Appendix 1). Our 
system directly engages clinicians through real-time alerts, 

twice-daily emails to charge nurses to inform nurse–patient 
assignments, and daily emails to the palliative care team. We 
developed a care pathway for high-risk patients that focuses on 
increasing nurse monitoring, enhancing communication 
between nurses and physicians, and encouraging physicians to 
reassess patients. Our system does not require remote nurse 
monitoring as in the Kaiser Permanente intervention,12 which is 
important for generalizability, given that many centres would 
not have the resources to sustain remote nurse monitoring. To 
reduce alert fatigue, we employed several alert silencing rules.

Little is known about the effect of early warning systems on pro-
cesses of care.10,11 In the systematic review by van der Vegt and col-
leagues,11 only a single study reported on detailed processes of care 
and found an increase in oximetry and calls to the primary team 
and, in contrast to our study, fewer antibiotics after implementation 
of an early warning system.20 The only other metrics reported by 
more than 1 group in the systematic review were ICU transfer rates 
and time from alert to clinical escalation.11 We advance this litera-
ture by evaluating numerous process measures. We found that the 
intervention was associated with significantly greater prescribing of 
antibiotics and corticosteroids, as well as more frequent vital sign 
monitoring, compared with the pre-intervention period. These find-
ings suggest that the intervention was associated with closer patient 
monitoring and treatments that could reduce deterioration. More 
palliative deaths or transfers occurred after the intervention, but 
this trend was not statistically significant, and fewer deaths 
occurred overall, although this was also not significant. This sug-
gests that an increase in palliative care alone does not fully explain 
the observed association with fewer non-palliative deaths. We 
observed a small absolute increase in ICU transfers among low-risk 
patients in GIM (around 0.6%) but no increase in deaths, suggesting 
that resource diversion toward high-risk patients did not negatively 
affect their care or reduce the likelihood of care escalation.

Limitations
We did not include a randomized control group. The risk of 
unmeasured confounding is especially important because the first 
wave of the COVID-19 pandemic affected our hospital 6 months 
before the intervention. We attempted to account for this by using 
rich clinical data and propensity score–based weighting, by excluding 
patients with COVID-19 or influenza, and by using subspecialty med
ical wards as a contemporaneous control, but this remains an import
ant limitation. Patients admitted to hospital for common non-
COVID-19 medical conditions in Ontario and Alberta had similar or 
greater 30-day mortality during the pandemic (April 2020 to Septem-
ber 2021) than before the pandemic.36 This suggests that a reduction 
in deaths during our study period would have been unlikely based on 
general trends in the province, which is consistent with our observa-
tions from subspecialty control units. There was no contamination of 
patients, most responsible physicians, or interprofessional teams 
across the GIM and subspecialty units. Control units did not receive 
early warning alerts or a protocol for high-risk patients. We did not 
include patients in GIM who were admitted to off-service units (i.e., 
bedspaced)37 in the analysis. Our study may be underpowered. We 
initially planned to compare a 1-year intervention period with a 3-year 
pre-intervention period, which we expected would yield around 
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4000 patients in the intervention period and 12 000 control patients, 
giving 80% power to detect a 1% absolute reduction in deaths from a 
baseline of around 5% to an anticipated intervention rate of 4%. How-
ever, the event rate was lower than expected (in part because of the 
exclusion of patients with COVID-19 or influenza, although we were 
not able to distinguish admissions for versus with COVID-19) and we 
had not planned a priori to compare with subspecialty controls. We 
chose to extend the study to June 2022 to increase the sample size, 
but not beyond, as the machine learning model was adjusted at that 
time because of a change in data pipelines and software tools. The 
performance of the original model was not a concern, but including 
predictions from a second model would have complicated our statis-
tical analysis because a single model could not be used to predict 
patient risk across the different patient cohorts. This was a single-
centre study on a GIM unit, limiting generalizability to other special-
ties and centres. Finally, we were not able to capture all important 
measures, such as cardiac arrests, code-blue calls, the timing or qual-
ity of palliative care, or patient experiences. Future research will 
explore equity-related considerations related to the intervention and 
the qualitative experiences of clinical team members.

Conclusion
The implementation of a machine learning–based early warning 
system was associated with lower non-palliative hospital deaths 
in GIM after deployment, compared with before system imple-
mentation. These findings should be interpreted with caution 
because of the potential for unmeasured confounding. Our 
results can inform the approach to implementing machine 
learning–based early warning systems, which are promising 
technologies for improving patient outcomes.
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