
The Ultimate Guide to Fine-Tuning LLMs from

Basics to Breakthroughs: An Exhaustive Review of

Technologies, Research, Best Practices, Applied

Research Challenges and Opportunities

(Version 1.0)

Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar, Aafaq Khan, and
Arsalan Shahid

@ CeADAR Connect Group

CeADAR: Ireland’s Centre for AI, University College Dublin, Belfield, Dublin, Ireland

{ venkatesh.parthasarathy, ahtsham.zafar, aafaq.khan, arsalan.shahid } @ ucd.ie

August 2024

ar
X

iv
:2

40
8.

13
29

6v
1

 [
cs

.L
G

]
 2

3
A

ug
 2

02
4

Abstract

This technical report thoroughly examines the process of fine-tuning Large Language Models (LLMs),
integrating theoretical insights and practical applications. It begins by tracing the historical develop-
ment of LLMs, emphasising their evolution from traditional Natural Language Processing (NLP) models
and their pivotal role in modern AI systems. The analysis differentiates between various fine-tuning
methodologies, including supervised, unsupervised, and instruction-based approaches, underscoring their
respective implications for specific tasks.

A structured seven-stage pipeline for LLM fine-tuning is introduced, covering the complete lifecycle
from data preparation to model deployment. Key considerations include data collection strategies,
handling of imbalanced datasets, model initialisation, and optimisation techniques, with a particular
focus on hyperparameter tuning. The report also highlights parameter-efficient fine-tuning methods
such as Low-Rank Adaptation (LoRA) and Half Fine-Tuning, which balance resource constraints with
optimal model performance.

The exploration extends to advanced fine-tuning techniques and configurations like memory fine-
tuning, Mixture of Experts (MoE) and Mixture of Agents (MoA), demonstrating how these methods
harness specialised networks and multi-agent collaboration for improved outcomes. Proximal Policy
Optimisation (PPO) and Direct Preference Optimisation (DPO) are discussed as innovative approaches
to aligning models with human preferences, while the benefits of pruning and routing optimisations are
examined for enhancing efficiency.

In the latter sections, the report delves into validation frameworks, post-deployment monitoring, and
optimisation techniques for inference. It also addresses the deployment of LLMs on distributed and
cloud-based platforms. Additionally, cutting-edge topics such as multimodal LLMs and fine-tuning for
audio and speech processing are covered, alongside emerging challenges related to scalability, privacy,
and accountability.

This report aims to serve as a comprehensive guide for researchers and practitioners, offering action-
able insights into fine-tuning LLMs while navigating the challenges and opportunities inherent in this
rapidly evolving field.

Contents

1 Introduction 6
1.1 Background of Large Language Models (LLMs) . 6
1.2 Historical Development and Key Milestones . 6
1.3 Evolution from Traditional NLP Models to State-of-the-Art LLMs 6

1.3.1 Statistical Language Models (SLMs) . 6
1.3.2 Neural Language Models (NLMs) . 7
1.3.3 Pre-trained Language Models (PLMs) . 7
1.3.4 Large Language Models (LLMs) . 7

1.4 Overview of Current Leading LLMs . 8
1.5 What is Fine-Tuning? . 8
1.6 Types of LLM Fine-Tuning . 9

1.6.1 Unsupervised Fine-Tuning . 9
1.6.2 Supervised Fine-Tuning (SFT) . 9
1.6.3 Instruction Fine-Tuning via Prompt Engineering 10

1.7 Pre-training vs Fine-tuning . 10
1.8 Importance of Fine-Tuning LLMs . 10
1.9 Retrieval Augmented Generation (RAG) . 11

1.9.1 Traditional RAG Pipeline and Steps . 11
1.9.2 Benefits of Using RAG . 12
1.9.3 Challenges and Considerations in Serving RAG . 12
1.9.4 Use Cases and Examples . 12
1.9.5 Considerations for Choosing Between RAG and Fine-Tuning 12

1.10 Objectives of the Report . 13
1.10.1 Goals and Scope . 13
1.10.2 Key Questions and Issues Addressed . 13
1.10.3 Overview of the Report Structure . 13

2 Seven Stage Fine-Tuning Pipeline for LLM 14
2.1 Stage 1: Dataset Preparation . 14
2.2 Stage 2: Model Initialisation . 14
2.3 Stage 3: Training Environment Setup . 14
2.4 Stage 4: Partial or Full Fine-Tuning . 15
2.5 Stage 5: Evaluation and Validation . 15
2.6 Stage 6: Deployment . 16
2.7 Stage 7: Monitoring and Maintenance . 16

3 Stage 1: Data Preparation 17
3.1 Steps Involved in Data Preparation . 17

3.1.1 Data Collection . 17
3.1.2 Data Preprocessing and Formatting . 17
3.1.3 Handling Data Imbalance . 17
3.1.4 Splitting Dataset . 19

3.2 Existing and Potential Research Methodologies . 19
3.2.1 Data Annotation . 19
3.2.2 Data Augmentation . 20
3.2.3 Synthetic Data Generation using LLMs . 20

3.3 Challenges in Data Preparation for Fine-Tuning LLMs . 20

1

3.4 Available LLM Fine-Tuning Datasets . 21
3.5 Best Practices . 21

3.5.1 High-Quality Data Collection . 21
3.5.2 Effective Data Preprocessing . 21
3.5.3 Managing Data Imbalance . 21
3.5.4 Augmenting and Annotating Data . 21
3.5.5 Ethical Data Handling . 21
3.5.6 Regular Evaluation and Iteration . 21

4 Stage 2: Model Initialisation 22
4.1 Steps Involved in Model Initialisation . 22
4.2 Tools and Libraries for Model Initialisation . 23
4.3 Challenges in Model Initialisation . 24
4.4 Tutorials . 24

5 Stage 3: Training Setup 26
5.1 Steps Involved in Training Setup . 26
5.2 Setting up Training Environment . 26
5.3 Defining Hyperparameters . 27

5.3.1 Methods for Hyperparameter Tuning . 27
5.4 Initialising Optimisers and Loss Functions . 28

5.4.1 Gradient Descent . 28
5.4.2 Stochastic Gradient Descent (SGD) . 28
5.4.3 Mini-batch Gradient Descent . 29
5.4.4 AdaGrad . 29
5.4.5 RMSprop . 30
5.4.6 AdaDelta . 30
5.4.7 Adam . 31
5.4.8 AdamW . 31

5.5 Challenges in Training Setup . 32
5.6 Best Practices . 32

6 Stage 4: Selection of Fine-Tuning Techniques and Appropriate Model Configurations 34
6.1 Steps Involved in Fine-Tuning . 34
6.2 Fine-Tuning Strategies for LLMs . 35

6.2.1 Task-Specific Fine-Tuning . 35
6.2.2 Domain-Specific Fine-Tuning . 35

6.3 Parameter-Efficient Fine-Tuning (PEFT) Techniques . 37
6.3.1 Adapters . 37
6.3.2 Low-Rank Adaptation (LoRA) . 38
6.3.3 QLoRA . 40
6.3.4 Weight-Decomposed Low-Rank Adaptation (DoRA) 41
6.3.5 Fine-Tuning with Multiple Adapters . 43

6.4 Half Fine Tuning . 45
6.4.1 Benefits of using Half Fine tuning . 45
6.4.2 Comparison between HFT and LoRA . 46

6.5 Lamini Memory Tuning . 47
6.5.1 Lamini-1 - A model architecture based on Lamini 47

6.6 Mixture of Experts . 48
6.6.1 Mixtral 8x7B Architecture and Performance . 48

6.7 Mixture of Agents . 49
6.7.1 Methodology . 49
6.7.2 Analogy with MoE . 50
6.7.3 What makes MoA works well? . 50

6.8 Proximal Policy Optimisation (PPO) . 50
6.8.1 Benefits of PPO . 51
6.8.2 Limitations of PPO . 52
6.8.3 Tutorial for training models using PPO technique 52

6.9 Direct Preference Optimisation (DPO) . 52

2

6.9.1 Benefits of DPO . 53
6.9.2 Best Practices for DPO . 53
6.9.3 Tutorial for training models using DPO technique 53
6.9.4 Is DPO Superior to PPO for LLM Alignment? . 53

6.10 Optimised Routing and Pruning Operations (ORPO) . 54
6.10.1 When to Prune AI Models? . 54
6.10.2 Benefits of Pruning . 55
6.10.3 Challenges of Pruning . 55

7 Stage 5: Evaluation and Validation 56
7.1 Steps Involved in Evaluating and Validating Fine-Tuned Models 56
7.2 Setting Up Evaluation Metrics . 56

7.2.1 Importance of Cross-Entropy for LLM Training and Evaluation 56
7.2.2 Beyond Cross-Entropy: Advanced LLM Evaluation Metrics 56

7.3 Understanding the Training Loss Curve . 57
7.3.1 Interpreting Loss Curves . 58
7.3.2 Avoiding Overfitting . 58
7.3.3 Sources of Noisy Gradients . 59

7.4 Running Validation Loops . 59
7.5 Monitoring and Interpreting Results . 59
7.6 Hyperparameter Tuning and Other Adjustments . 59

7.6.1 Data Size and Quality . 59
7.7 Benchmarking Fine-Tuned LLMs . 60
7.8 Evaluating Fine-Tuned LLMs on Safety Benchmark . 61
7.9 Evaluating Safety of Fine-Tuned LLM using AI Models 61

7.9.1 Llama Guard . 61
7.9.2 Shield Gemma . 62
7.9.3 WILDGUARD . 62

8 Stage 6: Deployment 64
8.1 Steps Involved in Deploying the Fine-Tuned Model . 64
8.2 Cloud-Based Providers for LLM Deployment . 64
8.3 Techniques for Optimising Model Performance During Inference 65

8.3.1 Traditional On-Premises GPU-Based Deployments 65
8.3.2 Distributed LLM: Torrent-Style Deployment and Parallel Forward Passes 66
8.3.3 WebGPU-Based Deployment of LLM . 67
8.3.4 LLM on WebGPU using WebLLM . 67
8.3.5 Quantised LLMs . 69
8.3.6 vLLMs . 69

8.4 Key Considerations for Deployment of LLMs . 69

9 Stage 7: Monitoring and Maintenance 71
9.1 Steps Involved in Monitoring and Maintenance of Deployed Fine-Tuned LLMs 71
9.2 Continuous Monitoring of Model Performance . 72

9.2.1 Functional Monitoring . 72
9.2.2 Prompt Monitoring . 72
9.2.3 Response Monitoring . 72
9.2.4 Alerting Mechanisms and Thresholds . 72
9.2.5 Monitoring User Interface (UI) . 73

9.3 Updating LLM Knowledge . 73
9.3.1 Retraining Methods . 73
9.3.2 Additional Methods . 73
9.3.3 Key Considerations . 73

9.4 The Future of LLM Updates . 74

3

10 Industrial Fine-Tuning Platforms and Frameworks for LLMs 75
10.1 Autotrain . 77

10.1.1 Steps Involved in Fine-Tuning Using Autotrain . 77
10.1.2 Best Practices of Using Autotrain . 79
10.1.3 Challenges of Using Autotrain . 79
10.1.4 When to Use Autotrain . 79
10.1.5 Tutorials . 79

10.2 Transformers Library and Trainer API . 79
10.2.1 Limitations of the Transformers Library and Trainer API 80

10.3 Optimum: Enhancing LLM Deployment Efficiency . 80
10.3.1 Best Practices of Using Optimum . 81
10.3.2 Tutorials . 81

10.4 Amazon SageMaker JumpStart . 81
10.4.1 Steps Involved in Using JumpStart . 81
10.4.2 Best Practices for Using JumpStart . 82
10.4.3 Limitations of Using JumpStart . 83
10.4.4 Tutorials . 83

10.5 Amazon Bedrock . 83
10.5.1 Steps Involved in Using Amazon Bedrock . 83
10.5.2 Limitations of Using Amazon Bedrock . 84
10.5.3 Tutorials . 84

10.6 OpenAI’s Fine-Tuning API . 84
10.6.1 Steps Involved in Using OpenAI’s Fine-Tuning API 84
10.6.2 Limitations of OpenAI’s Fine-Tuning API . 85
10.6.3 Tutorials . 85

10.7 NVIDIA NeMo Customizer . 85
10.7.1 Key Features of NVIDIA NeMo . 86
10.7.2 Components of NVIDIA NeMo . 86
10.7.3 Customising Large Language Models (LLMs) . 86
10.7.4 Tutorials . 87

11 Multimodal LLMs and their Fine-tuning 88
11.1 Vision Language Model (VLMs) . 89

11.1.1 Architecture . 89
11.1.2 Contrastive Learning . 89

11.2 Fine-tuning of multimodal models . 90
11.2.1 Full-parameter Fine-Tuning . 90
11.2.2 Case study of fine-tuning MLLMs for Medical domain 91

11.3 Applications of Multimodal models . 92
11.4 Audio or Speech LLMs Or Large Audio Models . 92

11.4.1 Tokenization and Preprocessing . 94
11.4.2 Fine-Tuning Techniques . 94
11.4.3 Fine-Tuning Whisper for Automatic Speech Recognition (ASR) 94
11.4.4 Case Studies and Applications . 95

12 Open Challenges and Research Directions 96
12.1 Scalability Issues . 96

12.1.1 Challenges in Scaling Fine-Tuning Processes . 96
12.1.2 Research Directions for Scalable Solutions . 97
12.1.3 Hardware and Algorithm Co-Design . 98

12.2 Ethical Considerations in Fine-Tuning LLMs . 98
12.2.1 Bias and Fairness . 98
12.2.2 Privacy Concerns . 99
12.2.3 Security Risks . 99

12.3 Accountability and Transparency . 100
12.3.1 The Need for Accountability and Transparency . 100
12.3.2 Recent Research and Industry Practices . 100
12.3.3 Promoting Accountability and Transparency . 100

4

12.3.4 Proposed frameworks/techniques for Ethical Fine-Tuning 100
12.4 Integration with Emerging Technologies . 101

12.4.1 Opportunities . 101
12.4.2 Challenges . 102

12.5 Future Research Areas . 102

Glossary 103

5

Chapter 1

Introduction

1.1 Background of Large Language Models (LLMs)

Large Language Models (LLMs) represent a significant leap in computational systems capable of under-
standing and generating human language. Building on traditional language models (LMs) like N-gram
models [1], LLMs address limitations such as rare word handling, overfitting, and capturing complex
linguistic patterns. Notable examples, such as GPT-3 and GPT-4 [2], leverage the self-attention mecha-
nism within Transformer architectures to efficiently manage sequential data and understand long-range
dependencies. Key advancements include in-context learning for generating coherent text from prompts
and Reinforcement Learning from Human Feedback (RLHF) [3] for refining models using human re-
sponses. Techniques like prompt engineering, question-answering, and conversational interactions have
significantly advanced the field of natural language processing (NLP) [4].

1.2 Historical Development and Key Milestones

Language models are fundamental to natural language processing (NLP), leveraging mathematical tech-
niques to generalise linguistic rules and knowledge for tasks involving prediction and generation. Over
several decades, language modelling has evolved from early statistical language models (SLMs) to to-
day’s advanced large language models (LLMs). This rapid advancement has enabled LLMs to process,
comprehend, and generate text at a level comparable to human capabilities [5, 6].
Figure 1.1 shows the evolution of large language models from early statistical approaches to current
advanced models.

1.3 Evolution from Traditional NLP Models to State-of-the-Art
LLMs

Understanding LLMs requires tracing the development of language models through stages such as Statis-
tical Language Models (SLMs), Neural Language Models (NLMs), Pre-trained Language Models (PLMs),
and LLMs.

1.3.1 Statistical Language Models (SLMs)

Emerging in the 1990s, SLMs analyse natural language using probabilistic methods to determine the
likelihood of sentences within texts. For instance, the probability P (S) of the sentence “I am very
happy” is given by:

P (S) = P (ω1, ω2, ω3, ω4) = P (I, am, very,happy) (1.1)

This probability can be calculated using conditional probabilities:

P (I, am, very,happy) = P (I) · P (am | I) · P (very | I, am) · P (happy | I, am, very) (1.2)

Conditional probabilities are estimated using Maximum Likelihood Estimation (MLE):

6

Figure 1.1: A chronological timeline showcasing the evolution of Large Language Models (LLMs) from
1990 to 2023. This progression begins with early statistical models such as N-grams, transitions through
neural language models like Word2Vec and RNN/LSTM, and advances into the era of pre-trained mod-
els with the introduction of transformers and attention mechanisms. The figure highlights significant
milestones, including the development of BERT, GPT series, and recent innovations such as GPT-4 and
ChatGPT, demonstrating the rapid advancements in LLM technology over time. (adapted from [6])

P (ωi | ω1ω2 · · ·ωi−1) =
C(ω1ω2 · · ·ωi)

C(ω1ω2 · · ·ωi−1)
(1.3)

1.3.2 Neural Language Models (NLMs)

NLMs leverage neural networks to predict word sequences, overcoming SLM limitations. Word vectors
enable computers to understand word meanings. Tools like Word2Vec [7] represent words in a vector
space where semantic relationships are reflected in vector angles. NLMs consist of interconnected neurons
organised into layers, resembling the human brain’s structure. The input layer concatenates word vectors,
the hidden layer applies a non-linear activation function, and the output layer predicts subsequent words
using the Softmax function to transform values into a probability distribution.
Figure 1.2 illustrates the structure of Neural Language Models, highlighting the layers and connections
used to predict subsequent words.

1.3.3 Pre-trained Language Models (PLMs)

PLMs are initially trained on extensive volumes of unlabelled text to understand fundamental language
structures (pre-training). They are then fine-tuned on a smaller, task-specific dataset. This ”pre-training
and fine-tuning” paradigm, exemplified by GPT-2 [8] and BERT [9], has led to diverse and effective model
architectures.

1.3.4 Large Language Models (LLMs)

LLMs like GPT-3, GPT-4, PaLM [10], and LLaMA [11] are trained on massive text corpora with tens of
billions of parameters. LLMs undergo a two-stage process: initial pre-training on a vast corpus followed

7

Figure 1.2: A schematic representation of Neural Language Models, showcasing the layered architecture
where the input layer processes sequential data, the hidden layer captures dependencies, and the output
layer generates predictions. The figure emphasises the flow of information through concatenation and
matrix multiplications, culminating in a probability distribution via the softmax function. (adopted from
[6])

by alignment with human values. This approach enables LLMs to understand human commands and
values better.

1.4 Overview of Current Leading LLMs

LLMs are powerful tools in NLP, capable of performing tasks such as translation, summarisation, and
conversational interaction. Advances in transformer architectures, computational power, and extensive
datasets have driven their success. These models approximate human-level performance, making them
invaluable for research and practical implementations. LLMs’ rapid development has spurred research
into architectural innovations, training strategies, extending context lengths, fine-tuning techniques, and
integrating multi-modal data. Their applications extend beyond NLP, aiding in human-robot interactions
and creating intuitive AI systems. This highlights the importance of comprehensive reviews consolidating
the latest developments [12].
Figure 1.3 provides an overview of current leading LLMs, highlighting their capabilities and applications.

1.5 What is Fine-Tuning?

Fine-tuning uses a pre-trained model, such as OpenAI’s GPT series, as a foundation. The process
involves further training on a smaller, domain-specific dataset. This approach builds upon the model’s
pre-existing knowledge, enhancing performance on specific tasks with reduced data and computational
requirements.
Fine-tuning transfers the pre-trained model’s learned patterns and features to new tasks, improving
performance and reducing training data needs. It has become popular in NLP for tasks like text classi-
fication, sentiment analysis, and question-answering.

8

Figure 1.3: Mind map depicting various dimensions of Large Language Models (LLMs), covering aspects
from pre-training and fine-tuning methodologies to efficiency, evaluation, inference, and application do-
mains. Each dimension is linked to specific techniques, challenges, and examples of models that exemplify
the discussed characteristics. This diagram serves as an overview of the multifaceted considerations in
the development and deployment of LLMs. (adapted from [13])

1.6 Types of LLM Fine-Tuning

1.6.1 Unsupervised Fine-Tuning

This method does not require labelled data. Instead, the LLM is exposed to a large corpus of unla-
belled text from the target domain, refining its understanding of language. This approach is useful for
new domains like legal or medical fields but is less precise for specific tasks such as classification or
summarisation.

1.6.2 Supervised Fine-Tuning (SFT)

SFT involves providing the LLM with labelled data tailored to the target task. For example, fine-tuning
an LLM for text classification in a business context uses a dataset of text snippets with class labels.
While effective, this method requires substantial labelled data, which can be costly and time-consuming
to obtain.

9

1.6.3 Instruction Fine-Tuning via Prompt Engineering

This method relies on providing the LLM with natural language instructions, useful for creating spe-
cialised assistants. It reduces the need for vast amounts of labelled data but depends heavily on the
quality of the prompts.

1.7 Pre-training vs Fine-tuning

Table 1.1 provides a comparison between pre-training and fine-tuning, highlighting their respective char-
acteristics and processes.

Aspect Pre-training Fine-tuning
Definition Training on a vast amount of

unlabelled text data
Adapting a pre-trained model to
specific tasks

Data Requirement Extensive and diverse unla-
belled text data

Smaller, task-specific labelled
data

Objective Build general linguistic knowl-
edge

Specialise model for specific
tasks

Process Data collection, training on
large dataset, predict next
word/sequence

Task-specific data collection,
modify last layer for task, train
on new dataset, generate output
based on tasks

Model Modification Entire model trained Last layers adapted for new task
Computational Cost High (large dataset, complex

model)
Lower (smaller dataset, fine-
tuning layers)

Training Duration Weeks to months Days to weeks
Purpose General language understand-

ing
Task-specific performance im-
provement

Examples GPT, LLaMA 3 Fine-tuning LLaMA 3 for sum-
marisation

Table 1.1: A Comparative Overview of Pre-training and Fine-tuning in Large Language Models (LLMs).
The table outlines key differences between the pre-training and fine-tuning phases across various aspects
such as definition, data requirements, objectives, processes, model modification, computational costs,
training duration, and their respective purposes, with examples highlighting specific models and tasks.
Pre-training involves extensive training on vast amounts of unlabelled data to build general linguistic
knowledge, while fine-tuning adapts the pre-trained models to specialised tasks using smaller, labelled
datasets, focusing on task-specific performance improvements.

1.8 Importance of Fine-Tuning LLMs

1. Transfer Learning: Fine-tuning leverages the knowledge acquired during pre-training, adapting
it to specific tasks with reduced computation time and resources.

2. Reduced Data Requirements: Fine-tuning requires less labelled data, focusing on tailoring
pre-trained features to the target task.

3. Improved Generalisation: Fine-tuning enhances the model’s ability to generalise to specific
tasks or domains, capturing general language features and customising them.

4. Efficient Model Deployment: Fine-tuned models are more efficient for real-world applications,
being computationally efficient and well-suited for specific tasks.

5. Adaptability to Various Tasks: Fine-tuned LLMs can adapt to a broad range of tasks, per-
forming well across various applications without task-specific architectures.

6. Domain-Specific Performance: Fine-tuning allows models to excel in domain-specific tasks by
adjusting to the nuances and vocabulary of the target domain.

10

7. Faster Convergence: Fine-tuning usually achieves faster convergence, starting with weights that
already capture general language features.

1.9 Retrieval Augmented Generation (RAG)

A popular method to utilise your own data is by incorporating it into the prompt when querying the LLM
model. This approach, known as Retrieval-Augmented Generation (RAG), involves retrieving relevant
data and using it as additional context for the LLM. Instead of depending solely on knowledge from the
training data, a RAG workflow pulls pertinent information, connecting static LLMs with real-time data
retrieval. With RAG architecture, organisations can deploy any LLM model and enhance it to return
relevant results by providing a small amount of their own data (see Figure1.4 for visual workflow). This
process avoids the costs and time associated with fine-tuning or pre-training the model.

Figure 1.4: An illustration of the Traditional Retrieval-Augmented Generation (RAG) pipeline steps,
depicting the sequential process from client query to response generation. The pipeline starts with
the client’s question, followed by semantic search in a vector database, contextually enriching the data
before generating a prompt for the large language model (LLM). The final response is post-processed
and returned to the client.

1.9.1 Traditional RAG Pipeline and Steps

1. Data Indexing: Organise data efficiently for quick retrieval. This involves processing, chunking,
and storing data in a vector database using indexing strategies like search indexing, vector indexing,
and hybrid indexing.

2. Input Query Processing: Refine user queries to improve compatibility with indexed data. This
can include simplification or vector transformation of queries for enhanced search efficiency.

3. Searching and Ranking: Retrieve and rank data based on relevance using search algorithms
such as TF-IDF, BM25, and deep learning models like BERT to interpret the query’s intent and
context.

4. Prompt Augmentation: Incorporate relevant information from the search results into the origi-
nal query to provide the LLM with additional context, enhancing response accuracy and relevance.

11

5. Response Generation: Use the augmented prompt to generate responses that combine the LLM’s
knowledge with current, specific data, ensuring high-quality, contextually grounded answers.

1.9.2 Benefits of Using RAG

• Up-to-Date and Accurate Responses: Enhances the LLM’s responses with current external
data, improving accuracy and relevance.

• Reducing Inaccurate Responses: Grounds the LLM’s output in relevant knowledge, reducing
the risk of generating incorrect information.

• Domain-Specific Responses: Delivers contextually relevant responses tailored to an organisa-
tion’s proprietary data.

• Efficiency and Cost-Effectiveness: Offers a cost-effective method for customising LLMs without
extensive model fine-tuning.

1.9.3 Challenges and Considerations in Serving RAG

1. User Experience: Ensuring rapid response times suitable for real-time applications.

2. Cost Efficiency: Managing the costs associated with serving millions of responses.

3. Accuracy: Ensuring outputs are accurate to avoid misinformation.

4. Recency and Relevance: Keeping responses and content current with the latest data.

5. Business Context Awareness: Aligning LLM responses with specific business contexts.

6. Service Scalability: Managing increased capacity while controlling costs.

7. Security and Governance: Implementing protocols for data security, privacy, and governance.

1.9.4 Use Cases and Examples

1. Question and Answer Chatbots: Integrate LLMs with chatbots to generate accurate answers
from company documents, enhancing customer support.

2. Search Augmentation: Enhance search engines with LLM-generated answers for more accurate
informational queries.

3. Knowledge Engine: Use LLMs to answer questions related to internal functions, such as HR
and compliance, using company data.

1.9.5 Considerations for Choosing Between RAG and Fine-Tuning

When considering external data access, RAG is likely a superior option for applications needing to access
external data sources. Fine-tuning, on the other hand, is more suitable if you require the model to ad-
just its behaviour, and writing style, or incorporate domain-specific knowledge. In terms of suppressing
hallucinations and ensuring accuracy, RAG systems tend to perform better as they are less prone to gen-
erating incorrect information. If you have ample domain-specific, labelled training data, fine-tuning can
result in a more tailored model behaviour, whereas RAG systems are robust alternatives when such data
is scarce. RAG systems provide an advantage with dynamic data retrieval capabilities for environments
where data frequently updates or changes. Additionally, it is crucial to ensure the transparency and
interpret ability of the model’s decision-making process. In that case, RAG systems offer insight that is
typically not available in models that are solely fine-tuned. Figure1.5 illustrates the visual representation
alongside example use cases.

12

Figure 1.5: Graph comparing the model adaptation required versus the level of external knowledge needed
across different scenarios, highlighting the roles of Retrieval-Augmented Generation (RAG), Fine-Tuning,
and their hybrid applications in various contexts such as Q&A systems, customer support automation,
and summarisation tasks. (adapted from [14])

1.10 Objectives of the Report

1.10.1 Goals and Scope

The primary goal of this report is to conduct a comprehensive analysis of fine-tuning techniques for LLMs.
This involves exploring theoretical foundations, practical implementation strategies, and challenges. The
report examines various fine-tuning methodologies, their applications, and recent advancements.

1.10.2 Key Questions and Issues Addressed

This report addresses critical questions surrounding fine-tuning LLMs, starting with foundational in-
sights into LLMs, their evolution, and significance in NLP. It defines fine-tuning, distinguishes it from
pre-training, and emphasises its role in adapting models for specific tasks. Key objectives include en-
hancing model performance for targeted applications and domains.

The report outlines a structured fine-tuning process, featuring a high-level pipeline with visual rep-
resentations and detailed stage explanations. It covers practical implementation strategies, including
model initialisation, hyperparameter definition, and fine-tuning techniques such as Parameter-Efficient
Fine-Tuning (PEFT) and Retrieval-Augmented Generation (RAG). Industry applications, evaluation
methods, deployment challenges, and recent advancements are also explored.

1.10.3 Overview of the Report Structure

The rest of the report provides a comprehensive understanding of fine-tuning LLMs. The main chapters
include an in-depth look at the fine-tuning pipeline, practical applications, model alignment, evaluation
metrics, and challenges. The concluding sections discuss the evolution of fine-tuning techniques, highlight
ongoing research challenges, and provide insights for researchers and practitioners.

13

Chapter 2

Seven Stage Fine-Tuning Pipeline
for LLM

Fine-tuning a Large Language Model (LLM) is a comprehensive process divided into seven distinct
stages, each essential for adapting the pre-trained model to specific tasks and ensuring optimal per-
formance. These stages encompass everything from initial dataset preparation to the final deployment
and maintenance of the fine-tuned model. By following these stages systematically, the model is refined
and tailored to meet precise requirements, ultimately enhancing its ability to generate accurate and
contextually appropriate responses. The seven stages include Dataset Preparation, Model Initialisation,
Training Environment Setup, Fine-Tuning, Evaluation and Validation, Deployment, and Monitoring and
Maintenance.
Figure 2.1 illustrates the comprehensive pipeline for fine-tuning LLMs, encompassing all necessary stages
from dataset preparation to monitoring and maintenance.

2.1 Stage 1: Dataset Preparation

Fine-tuning a Large Language Model (LLM) starts with adapting the pre-trained model for specific tasks
by updating its parameters using a new dataset. This involves cleaning and formatting the dataset to
match the target task, such as instruction tuning, sentiment analysis, or topic mapping. The dataset is
composed of < input, output > pairs, demonstrating the desired behaviour for the model.
For example, in instruction tuning, the dataset may look like:

###Human: $<Input Query>$

###Assistant: $<Generated Output>$

Here, the ’Input Query’ is what the user asks, and the ’Generated Output’ is the model’s response. The
structure and style of these pairs can be adjusted based on the specific needs of the task.

2.2 Stage 2: Model Initialisation

Model initialisation is the process of setting up the initial parameters and configurations of the LLM
before training or deploying it. This step is crucial for ensuring the model performs optimally, trains
efficiently, and avoids issues such as vanishing or exploding gradients.

2.3 Stage 3: Training Environment Setup

Setting up the training environment for LLM fine-tuning involves configuring the necessary infrastructure
to adapt a pre-existing model for specific tasks. This includes selecting relevant training data, defining the
model’s architecture and hyperparameters, and running training iterations to adjust the model’s weights
and biases. The aim is to enhance the LLM’s performance in generating accurate and contextually
appropriate outputs tailored to specific applications, like content creation, translation, or sentiment
analysis. Successful fine-tuning relies on careful preparation and rigorous experimentation.

14

Figure 2.1: A comprehensive pipeline for fine-tuning Large Language Models (LLMs), illustrating the
seven essential stages: Dataset Preparation, Model Initialisation, Training Environment Setup, Fine-
Tuning, Evaluation and Validation, Deployment, and Monitoring and Maintenance. Each stage plays
a crucial role in adapting the pre-trained model to specific tasks and ensuring optimal performance
throughout its lifecycle.

2.4 Stage 4: Partial or Full Fine-Tuning

This stage involves updating the parameters of the LLM using a task-specific dataset. Full fine-tuning up-
dates all parameters of the model, ensuring comprehensive adaptation to the new task. Alternatively, Half
fine-tuning (HFT) [15] or Parameter-Efficient Fine-Tuning (PEFT) approaches, such as using adapter
layers, can be employed to partially fine-tune the model. This method attaches additional layers to the
pre-trained model, allowing for efficient fine-tuning with fewer parameters, which can address challenges
related to computational efficiency, overfitting, and optimisation.

2.5 Stage 5: Evaluation and Validation

Evaluation and validation involve assessing the fine-tuned LLM’s performance on unseen data to ensure
it generalises well and meets the desired objectives. Evaluation metrics, such as cross-entropy, measure
prediction errors, while validation monitors loss curves and other performance indicators to detect issues
like overfitting or underfitting. This stage helps guide further fine-tuning to achieve optimal model
performance.

15

2.6 Stage 6: Deployment

Deploying an LLM means making it operational and accessible for specific applications. This involves
configuring the model to run efficiently on designated hardware or software platforms, ensuring it can
handle tasks like natural language processing, text generation, or user query understanding. Deployment
also includes setting up integration, security measures, and monitoring systems to ensure reliable and
secure performance in real-world applications.

2.7 Stage 7: Monitoring and Maintenance

Monitoring and maintaining an LLM after deployment is crucial to ensure ongoing performance and
reliability. This involves continuously tracking the model’s performance, addressing any issues that
arise, and updating the model as needed to adapt to new data or changing requirements. Effective
monitoring and maintenance help sustain the model’s accuracy and effectiveness over time.

16

Chapter 3

Stage 1: Data Preparation

3.1 Steps Involved in Data Preparation

3.1.1 Data Collection

The first step in data preparation is to collect data from various sources. These sources can be in any
format such as CSV, web pages, SQL databases, S3 storage, etc. Python provides several libraries to
gather the data efficiently and accurately. Table 3.1 presents a selection of commonly used data formats
along with the corresponding Python libraries used for data collection.

3.1.2 Data Preprocessing and Formatting

Data preprocessing and formatting are crucial for ensuring high-quality data for fine-tuning. This step
involves tasks such as cleaning the data, handling missing values, and formatting the data to match the
specific requirements of the task. Several libraries assist with text data processing and Table 3.2 contains
some of the most commonly used data preprocessing libraries in python.

3.1.3 Handling Data Imbalance

Handling imbalanced datasets is crucial for ensuring balanced performance across all classes. Several
techniques and strategies are employed:

1. Over-sampling and Under-sampling: Techniques like SMOTE (Synthetic Minority Over-
sampling Technique) generate synthetic examples to achieve balance.
Python Library: imbalanced-learn
Description: imbalanced-learn provides various methods to deal with imbalanced datasets, in-
cluding oversampling techniques like SMOTE.

2. Adjusting Loss Function: Modify the loss function to give more weight to the minority class,
setting class weights inversely proportional to the class frequencies.

3. Focal Loss: A variant of cross-entropy loss that adds a factor to down-weight easy examples and
focus training on hard negatives.
Python Library: focal loss
Description: The focal loss package provides robust implementations of various focal loss func-
tions, including BinaryFocalLoss and SparseCategoricalFocalLoss.

4. Cost-sensitive Learning: Incorporating the cost of misclassifications directly into the learning
algorithm, assigning a higher cost to misclassifying minority class samples.

5. Ensemble Methods: Using techniques like bagging and boosting to combine multiple models
and handle class imbalance.
Python Library: sklearn.ensemble
Description: scikit-learn provides robust implementations of various ensemble methods, including
bagging and boosting.

17

https://imbalanced-learn.org/stable/references/index.html
https://pypi.org/project/focal-loss/
https://scikit-learn.org/stable/modules/ensemble.html

Data Format Python Li-
brary

Description Library Link

CSV Files pandas pandas is a powerful library for data ma-
nipulation and analysis. It provides the
read csv function for easy and efficient
reading of CSV files into DataFrame ob-
jects. It also supports reading data in
Excel, JSON, and more.

pandas documenta-
tion

Web Pages BeautifulSoup
and requests

BeautifulSoup is a library for parsing
HTML and XML documents. Combined
with requests for sending HTTP re-
quests, it enables data extraction from
web pages, essential for web scraping
tasks.

BeautifulSoup
documentation,
requests documen-
tation

SQL Databases SQLAlchemy SQLAlchemy is a SQL toolkit and
Object-Relational Mapping (ORM) li-
brary for Python, providing a full suite
of enterprise-level persistence patterns.

SQLAlchemy docu-
mentation

S3 Storage boto3 boto3 is the Amazon Web Services
(AWS) SDK for Python, allowing devel-
opers to use services like Amazon S3 and
EC2. It enables interaction with AWS
services, including uploading, download-
ing, and managing S3 bucket files.

boto3 documenta-
tion

Data Integra-
tion

RapidMiner RapidMiner is a comprehensive envi-
ronment for data preparation, machine
learning, and predictive analytics, allow-
ing efficient processing and transforma-
tion of raw data into actionable insights.

RapidMiner docu-
mentation

Data Cleaning Trifacta Wran-
gler

Trifacta Wrangler focuses on simplify-
ing and automating data wrangling pro-
cesses, transforming raw data into clean
and structured formats.

Trifacta Wrangler
documentation

Table 3.1: Python libraries and tools for data collection and integration in various formats, providing
an overview of commonly used libraries, their functions, and links to their official documentation for
efficient data management and processing.

6. Stratified Sampling: Ensuring that each mini-batch during training contains an equal or pro-
portional representation of each class.
Python Library: sklearn.model selection.StratifiedShuffleSplit
Description: scikit-learn offers tools for stratified sampling, ensuring balanced representation
across classes.

7. Data Cleaning: Removing noisy and mislabelled data, which can disproportionately affect the
minority class.
Python Library: pandas.DataFrame.sample
Description: pandas provides methods for sampling data from DataFrames, useful for data clean-
ing and preprocessing.

8. Using Appropriate Metrics: Metrics like Precision-Recall AUC, F1-score, and Cohen’s Kappa
are more informative than accuracy when dealing with imbalanced datasets.
Python Library: sklearn.metrics
Description: scikit-learn offers a comprehensive set of tools for evaluating the performance of
classification models, particularly with imbalanced datasets.

18

https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://rapidminer.com/
https://rapidminer.com/
https://www.trifacta.com/
https://www.trifacta.com/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html
https://scikit-learn.org/stable/modules/model_evaluation.html

Library Name Data Preprocessing Options Link
spaCy spaCy provides robust capabilities for text prepro-

cessing, including tokenization, lemmatization, and
efficient sentence boundary detection.

spaCy documentation

NLTK NLTK offers a comprehensive set of tools for data
preprocessing, such as tokenization, stemming, and
stop word removal.

NLTK documentation

HuggingFace HuggingFace provides extensive capabilities for
text preprocessing through its transformers library,
including functionalities for tokenization and sup-
port for various pre-trained models.

HuggingFace documentation

KNIME KNIME Analytics Platform allows visual workflow
design for data integration, preprocessing, and ad-
vanced manipulations like text mining and image
analysis.

KNIME documentation

Table 3.2: Outline of Python libraries commonly used for text data preprocessing, including spaCy,
NLTK, HuggingFace, and KNIME. It details the specific preprocessing options offered by each library
and provides links to their official documentation for users seeking more in-depth guidance on their use.

3.1.4 Splitting Dataset

Splitting the dataset for fine-tuning involves dividing it into training and validation sets, typically using
an 80:20 ratio. Different techniques include:

1. Random Sampling: Selecting a subset of data randomly to create a representative sample.
Python Library: sklearn.model selection.train test split

2. Stratified Sampling: Dividing the dataset into subgroups and sampling from each to maintain
class balance.
Python Library: sklearn.model selection.StratifiedShuffleSplit

3. K-Fold Cross Validation: Splitting the dataset into K folds and performing training and vali-
dation K times.
Python Library: sklearn.model selection.KFold

4. Leave-One-Out Cross Validation: Using a single data point as the validation set and the rest
for training, repeated for each data point.
Python Library: sklearn.model selection.LeaveOneOut

Further details can be found in scikit-learn’s documentation on model selection.

3.2 Existing and Potential Research Methodologies

3.2.1 Data Annotation

Data annotation involves labelling or tagging textual data with specific attributes relevant to the model’s
training objectives. This process is crucial for supervised learning tasks and greatly influences the
performance of the fine-tuned model. Recent research highlights various approaches to data annotation:

• Human Annotation: Manual annotation by human experts remains a gold standard due to its
accuracy and context understanding. However, it is time-consuming and costly for large datasets
[16]. Tools like Excel, Prodigy1, and Innodata2 facilitate this process.

• Semi-automatic Annotation: Combining machine learning algorithms with human review to
create labelled datasets more efficiently. This approach balances efficiency and accuracy. Tools
like Snorkel3 use weak supervision to generate initial labels, which are then refined by human
annotators [17].

1https://prodi.gy
2https://innodata.com/
3https://snorkel.ai/

19

https://spacy.io/
https://www.nltk.org/
https://huggingface.co/
https://www.knime.com/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneOut.html
https://scikit-learn.org/stable/api/sklearn.model_selection.html
https://prodi.gy
https://innodata.com/
https://snorkel.ai/

• Automatic Annotation: Fully automated annotation leverages machine learning algorithms to
label data without human intervention, offering scalability and cost-effectiveness. Services like
Amazon SageMaker Ground Truth4 utilise machine learning to automate data labelling, al-
though the accuracy may vary depending on the complexity of the task [18].

3.2.2 Data Augmentation

Data Augmentation (DA) techniques expand training datasets artificially to address data scarcity and
improve model performance. Advanced techniques often used in NLP include:

• Word Embeddings: Using word embeddings like Word2Vec and GloVe to replace words with
their semantic equivalents, thereby generating new data instances [19, 20].

• Back Translation: Translating text to another language and then back to the original language
to create paraphrased data. This technique helps in generating diverse training samples [21]. Tools
like Google Translate API5 are commonly used for this purpose.

• Adversarial Attacks: Generating augmented data through adversarial examples that slightly
modify the original text to create new training samples while preserving the original meaning [22].
Libraries like TextAttack6 provide frameworks for such augmentations.

• NLP-AUG7: This library offers a variety of augmenters for character, word, sentence, audio, and
spectrogram augmentation, enhancing dataset diversity.

3.2.3 Synthetic Data Generation using LLMs

Large Language Models (LLMs) can generate synthetic data through innovative techniques such as:

• Prompt Engineering: Crafting specific prompts to guide LLMs like GPT-3 in generating relevant
and high-quality synthetic data [23].

• Multi-Step Generation: Employing iterative generation processes where LLMs generate initial
data that is refined through subsequent steps [24]. This method can produce high-quality synthetic
data for various tasks, including summarising and bias detection.

It is crucial to verify the accuracy and relevance of synthetic data generated by LLMs before using
them for fine-tuning processes [25].

3.3 Challenges in Data Preparation for Fine-Tuning LLMs

Key challenges in data preparation include:

1. Domain Relevance: Ensuring that the data is relevant to the specific domain for accurate model
performance. Mismatched domain data can lead to poor generalisation and inaccurate outputs
[26].

2. Data Diversity: Including diverse and well-balanced data to prevent model biases and improve
generalisation. A lack of diversity can cause the model to perform poorly on underrepresented
scenarios [27].

3. Data Size: Managing and processing large datasets, with at least 1000 samples recommended for
effective fine-tuning. However, large datasets pose challenges in terms of storage, computational
requirements, and processing time.

4. Data Cleaning and Preprocessing: Removing noise, errors, and inconsistencies are critical for
providing clean inputs to the model. Poorly preprocessed data can degrade model performance
significantly.

4https://aws.amazon.com/sagemaker/groundtruth/
5https://translate.google.com/?sl=auto&tl=en&op=translate
6https://github.com/QData/TextAttack
7https://github.com/makcedward/nlpaug

20

https://aws.amazon.com/sagemaker/groundtruth/
https://translate.google.com/?sl=auto&tl=en&op=translate
https://github.com/QData/TextAttack
https://github.com/makcedward/nlpaug

5. Data Annotation: Ensuring precise and consistent labelling is essential for tasks requiring la-
belled data. Inconsistent annotation can lead to unreliable model predictions.

6. Handling Rare Cases: Adequately representing rare but important instances in the dataset to
ensure the model can generalise to less frequent but critical scenarios.

7. Ethical Considerations: Scrutinising data for harmful or biased content to prevent unintended
consequences. Ethical data handling includes removing biases and ensuring privacy [28].

3.4 Available LLM Fine-Tuning Datasets

For a comprehensive list of datasets suitable for fine-tuning LLMs, refer to resources like LLMXplorer,
which provides domain and task-specific datasets.

3.5 Best Practices

3.5.1 High-Quality Data Collection

Ensuring high-quality, diverse, and representative data is critical. Leveraging curated sources and en-
suring comprehensive coverage across different scenarios enhances model robustness [29]. Tools like
DataRobot Paxata8 and KNIME Analytics Platform9 offer robust data profiling and transforma-
tion capabilities.

3.5.2 Effective Data Preprocessing

Proper data preprocessing is essential for model performance. Utilising libraries like spaCy, NLTK, and
HuggingFace Transformers can streamline preprocessing tasks. Platforms like Trifacta Wrangler
and RapidMiner automate data cleaning tasks, improving efficiency and ensuring consistency [30].

3.5.3 Managing Data Imbalance

Addressing data imbalance is crucial. Techniques like over-sampling, under-sampling, and SMOTE
help balance datasets. Libraries like imbalanced-learn and ensemble methods in scikit-learn provide
robust tools for managing imbalanced datasets [31].

3.5.4 Augmenting and Annotating Data

Data augmentation and annotation improve model robustness. Tools like NLP-AUG, TextAttack,
and Snorkel offer sophisticated capabilities for creating diverse and well-labelled datasets [32, 33].

3.5.5 Ethical Data Handling

Ensuring ethical data handling involves thorough scrutiny for biases and privacy concerns. Implement-
ing privacy-preserving techniques and filtering harmful content is critical. Services like Amazon Sage-
Maker Ground Truth ensure scalable and secure data annotation [34].

3.5.6 Regular Evaluation and Iteration

Continuous evaluation and iteration of the data preparation pipeline help maintain data quality and
relevance. Leveraging feedback loops and performance metrics ensures ongoing improvements and adap-
tation to new data requirements.
By integrating these best practices, researchers and practitioners can enhance the effectiveness of LLM
fine-tuning, ensuring robust and reliable model performance.

8https://www.datarobot.com/platform/preparation/
9https://www.knime.com/

21

https://forms.gle/TNUbqHiCBsinD4Bu8
https://www.datarobot.com/platform/preparation/
https://www.knime.com/

Chapter 4

Stage 2: Model Initialisation

4.1 Steps Involved in Model Initialisation

Figure 4.1: Sequential steps involved in Initialising a Large Language Model (LLM), illustrating the
process from setting up the environment to executing tasks. Each step is critical for ensuring that the
LLM is correctly configured and ready for operation. This includes installing necessary dependencies,
importing libraries, selecting and downloading the appropriate language model from a repository, and
finally, loading the model to perform specific tasks.

1. Set Up the Environment: Configure your environment, such as setting up GPU/TPU usage if
available, which can significantly speed up model loading and inference.

2. Install the Dependencies: Ensure that all necessary software and libraries are installed. This
typically includes package managers like pip and frameworks like PyTorch or TensorFlow.

22

3. Import the Libraries: Import the required libraries in your script or notebook. Common libraries
include transformers from Hugging Face, torch for PyTorch, and other utility libraries.

4. Choose the Language Model: Select the appropriate pre-trained language model based on your
task requirements. This could be models like BERT, GPT-3, or others available on platforms like
Hugging Face’s Model Hub.

5. Download the Model from the Repository: Use the chosen framework’s functions to download
the pre-trained model from an online repository. For instance, using transformers, you might use
AutoModel.from pretrained(’model name’).

6. Load the Model in the Memory: Load the model into memory, ready for inference or further
fine-tuning. This step ensures the model weights are initialised and ready for use.

7. Execute Tasks: Perform the desired tasks using the loaded model. This could involve making
predictions, generating text, or fine-tuning the model on a new dataset.

4.2 Tools and Libraries for Model Initialisation

Python offers a wide range of libraries for Initialising large language models, providing access to both
open and closed-source models. Here are some notable libraries:

1. Python Library: HuggingFace

Description: HuggingFace is renowned for its support of numerous pre-trained large language
models, ranging from Phi-3 mini to Llama-3 70B. The transformers library, part of HuggingFace,
enables users to access these models via classes such as AutoModelForCausalLM. This library
supports loading fine-tuned models as well as 4-bit quantised models. Additionally, the transformers
library includes the ”pipeline” feature, making it easy to use pre-trained models for various tasks
[35].

2. Python Framework: PyTorch

Description: PyTorch offers comprehensive tools and libraries for Initialising and fine-tuning
large language models. It provides a flexible and efficient platform for building and deploying deep
learning models. HuggingFace’s transformers library bridges the gap between PyTorch and other
frameworks, enhancing its usability for state-of-the-art language models [36].

3. Python Framework: TensorFlow

Description: TensorFlow also provides extensive tools and libraries for Initialising and fine-tuning
large language models. Similar to PyTorch, it benefits from the HuggingFace transformers library,
which provides a versatile and user-friendly API and interface for working with the latest advance-
ments in large language models [37].

23

https://huggingface.co/docs/transformers/en/index
https://pytorch.org/docs/stable/index.html
https://www.tensorflow.org/tutorials

4.3 Challenges in Model Initialisation

Challenge Description
Alignment with the
Target Task

It’s essential that the pre-trained model closely aligns with your specific
task or domain. This initial alignment serves as a solid foundation for
further fine-tuning efforts, leading to improved efficiency and results [38].

Understanding the
Pre-trained Model

Before making a selection, it’s crucial to thoroughly comprehend the
architecture, capabilities, limitations, and the tasks the model was orig-
inally trained on. Without this understanding, fine-tuning efforts may
not yield the desired outcomes [23].

Availability and
Compatibility

Careful consideration of a model’s documentation, license, maintenance,
and update frequency is necessary to avoid potential issues and ensure
smooth integration into your application.

Model Architecture Not all models excel at every task. Each model architecture has its
strengths and weaknesses, so selecting one aligned with your specific
task is essential for favourable outcomes [39].

Resource Constraints Loading pre-trained LLMs is resource-heavy and requires more compu-
tation. These models need high-performance CPUs and GPUs and a
significant amount of disk space. For instance, the Llama 3 8B model
requires a minimum of 16GB of memory to load and run the inference.

Privacy Privacy and confidentiality are crucial factors when selecting a large lan-
guage model (LLM). Many businesses prefer not to share their data
with external LLM providers. In such instances, hosting an LLM on
local servers or using pre-trained LLMs available through private cloud
providers can be viable solutions. These approaches ensure that data
remains within the company’s premises, thereby preserving privacy and
confidentiality.

Cost and Maintenance Hosting LLMs on local servers entails significant time and expense for
setup and ongoing maintenance. Conversely, utilising cloud vendors al-
leviates concerns about resource maintenance but incurs monthly billing
costs. These charges are typically based on factors such as model size
and the volume of requests per minute.

Model Size and
Quantisation

utilising a pre-trained model with high memory consumption can still be
viable by employing its quantised version. Through quantisation, pre-
trained weights can be loaded with reduced precision, typically 4-bit or
8-bit floating point, substantially diminishing parameter volume while
maintaining considerable accuracy [40].

Pre-training Datasets Examine the datasets used for pre-training to gauge the model’s under-
standing of language. These are important as there are models available
specifically for performing code generation, and we do not want to use
those models for finance text classification [41].

Bias Awareness Be vigilant regarding potential biases in pre-trained models, especially if
unbiased predictions are required. The bias awareness can be evaluated
by testing different models and backtracking the datasets used for pre-
training [42].

Table 4.1: Comprehensive Overview of Challenges in Initialising a Large Language Model (LLM). This
table highlights critical considerations, such as the importance of aligning pre-trained models with specific
tasks, understanding model architecture and compatibility, managing resource constraints, and ensuring
data privacy. Additionally, it discusses the challenges related to cost, maintenance, and the complexities
of model size, quantisation, and bias awareness. Each challenge is associated with specific references to
ensure thorough understanding and proper model deployment.

4.4 Tutorials

1. Summarisation using Llama 3

24

https://medium.com/@manuelescobar-dev/implementing-and-running-llama-3-with-hugging-faces-transformers-library-40e9754d8c80

2. HuggingFace tutorial for getting started with LLMs

3. PyTorch tutorial for fine-tuning models

4. TensorFlow tutorial for transformer models

25

https://huggingface.co/docs/transformers/en/llm_tutorial
https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
https://www.tensorflow.org/tutorials/text/transformer

Chapter 5

Stage 3: Training Setup

5.1 Steps Involved in Training Setup

1. Setting up the training environment: When setting up the environment for training an LLM,
it is crucial to configure high-performance hardware, such as GPUs or TPUs, and ensure proper
installation of necessary software components like CUDA, cuDNN, and deep learning frameworks
such as PyTorch or TensorFlow. Verify hardware recognition and compatibility with the software to
leverage computational power effectively, reducing training time and improving model performance.

2. Defining the Hyper-parameters: When defining hyperparameters for fine-tuning an LLM, it is
essential to carefully tune key parameters such as learning rate, batch size, and epochs to optimise
the model’s performance.

3. Initialising Optimisers and Loss Functions: When initialising optimisers and loss functions
for fine-tuning an LLM, it is crucial to select the appropriate optimiser to efficiently update the
model’s weights and the correct loss function to measure model performance [43].

5.2 Setting up Training Environment

When fine-tuning a large language model (LLM), the computational environment plays a crucial role in
ensuring efficient training. To achieve optimal performance, it’s essential to configure the environment
with high-performance hardware such as GPUs (Graphics Processing Units) or TPUs (Tensor Processing
Units). GPUs, such as the NVIDIA A100 or V100, are widely used for training deep learning models
due to their parallel processing capabilities. For larger-scale operations, TPUs offered by Google Cloud
can provide even greater acceleration [44].

First, ensure that your system or cloud environment has the necessary hardware installed. For GPUs,
this involves setting up CUDA1 (Compute Unified Device Architecture) and cuDNN2 (CUDA Deep Neu-
ral Network library) from NVIDIA, which are essential for enabling GPU acceleration. For TPU usage,
you would typically set up a Google Cloud environment with TPU instances, which includes configuring
the TPU runtime in your training scripts.

Verify that your hardware is correctly recognised and utilised by your deep learning frameworks. In
PyTorch, for instance, you can check GPU availability with torch.cuda.is available(). Properly setting
up and testing the hardware ensures that the training process can leverage the computational power
effectively, reducing training time and improving model performance [36].

When fine-tuning an LLM, both software and hardware considerations are paramount to ensure a smooth
and efficient training process. On the software side, you need a compatible deep learning framework like
PyTorch or TensorFlow. These frameworks have extensive support for LLMs and provide utilities for
efficient model training and evaluation. Installing the latest versions of these frameworks, along with
any necessary dependencies, is crucial for leveraging the latest features and performance improvements

1https://developer.nvidia.com/cuda-toolkit
2https://developer.nvidia.com/cudnn

26

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn

[45].

Additionally, use libraries like Hugging Face’s transformers to simplify the process of loading pre-trained
models and tokenizers. This library is particularly well-suited for working with various LLMs and offers
a user-friendly interface for model fine-tuning. Ensure that all software components, including libraries
and dependencies, are compatible with your chosen framework and hardware setup [35].

On the hardware side, consider the memory requirements of the model and your dataset. LLMs typ-
ically require substantial GPU memory, so opting for GPUs with higher VRAM (e.g., 16GB or more)
can be beneficial. If your model is exceptionally large or if you are training with very large datasets,
distributed training across multiple GPUs or TPUs might be necessary. This requires a careful setup of
data parallelism or model parallelism techniques to efficiently utilise the available hardware [46].

Lastly, ensure robust cooling and power supply for your hardware, as training LLMs can be resource-
intensive, generating significant heat and requiring consistent power. Proper hardware setup not only
enhances training performance but also prolongs the lifespan of your equipment [47].

5.3 Defining Hyperparameters

Key hyperparameters like learning rate, batch size, epochs are crucial for enhancing the model’s perfor-
mance and obtaining superior outcomes. This process entails adjusting hyperparameters and training
settings to align with your particular use case. Below are the key hyperparameters:

1. Learning Rate: Fine-tuning an LLM involves using optimisation algorithms like stochastic gradi-
ent descent (SGD). This technique estimates the error gradient for the model’s current state using
samples from the training dataset and subsequently updates the model’s weights via the backprop-
agation of errors algorithm. The learning rate dictates the speed at which the model adapts to the
problem. Smaller learning rates necessitate more training due to the minimal weight adjustments
per update, while larger learning rates lead to quicker changes to weights [48].

2. Batch Size: A batch refers to a subset of the training data used to update a model’s weights
during the training process. Batch training involves dividing the entire training set into smaller
groups, updating the model after processing each batch. The batch size is a hyperparameter that
determines the number of samples processed before the model parameters are updated.

3. Epochs: Epoch refers to a full pass through the entire training dataset. This involves a complete
forward and backward pass through the dataset. The dataset can be processed as a single batch
or divided into multiple smaller batches. An epoch is considered complete once the model has
processed all batches and updated its parameters based on the calculated loss.

5.3.1 Methods for Hyperparameter Tuning

LLM hyperparameter tuning involves adjusting various hyperparameters during the training process
to identify the optimal combination that yields the best output. This process often entails significant
trial and error, meticulously tracking each hyperparameter adjustment, and recording the resulting
performance. Conducting this manually can be highly time-consuming. To address this, automated
hyperparameter tuning methods have been developed to streamline the process. The three most common
methods of automated hyperparameter tuning are random search, grid search, and Bayesian optimisation:

1. Random Search: This method randomly selects and evaluates combinations of hyperparameters
from a specified range. It is a straightforward and efficient approach capable of exploring a large
parameter space. However, it may not always find the optimal combination of hyperparameters
and can be computationally expensive [49].

2. Grid Search: Unlike random search, grid search exhaustively evaluates every possible combination
of hyperparameters from a given range. Although resource-intensive, this systematic approach
ensures that the optimal set of hyperparameters is found [50].

27

3. Bayesian Optimisation: This method uses a probabilistic model to predict the performance of
different hyperparameters and selects the best ones accordingly. It is an efficient method that can
handle large parameter spaces better and is less resource-intensive than grid search. However, it is
more complex to set up and may be less reliable in identifying the optimal set of hyperparameters
compared to grid search.

4. Automated hyperparameter tuning: This facilitates the development of multiple language
models, each with a unique combination of hyperparameters. By training these models on the same
dataset, it becomes possible to compare their outputs and determine which configuration is best
suited for the desired use case. Additionally, models tuned with different sets of hyperparameters
can be tailored to various specific applications.

5.4 Initialising Optimisers and Loss Functions

Choosing the right optimiser and loss function is crucial for training and fine-tuning LLMs. Below
are descriptions of some commonly used optimisation algorithms, their advantages, disadvantages, and
appropriate use cases:

5.4.1 Gradient Descent

Gradient Descent is a fundamental optimisation algorithm used to minimise cost functions in machine
learning models. It aims to find the optimal parameters for a neural network.

How it Works: Gradient Descent iteratively updates model parameters in the direction of the
negative gradient of the cost function. It calculates gradients for each parameter and applies updates
across all data points until convergence. This method utilises the entire dataset to calculate gradients,
often requiring a fixed learning rate and being sensitive to the scale of data and learning rate choice.

Pros:

• Simple and easy to implement.

• Intuitive and easy to understand.

• Converges to the global minimum for convex functions.

• Suitable for small-scale problems.

Cons:

• Computationally expensive on large datasets.

• May get stuck in local minima.

• Requires a large number of iterations.

• Sensitive to the choice of learning rate.

When to Use: Gradient Descent is best used for small datasets where gradient computation is
cheap and simplicity and clarity are preferred.

5.4.2 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a variant of Gradient Descent that focuses on reducing computation
per iteration.

How it Works: SGD updates parameters using a single or few data points at each iteration, intro-
ducing randomness in updates. It reduces the computational burden per iteration and often converges
faster than batch Gradient Descent. However, it requires a smaller learning rate due to higher variance
and benefits from momentum to stabilise updates.

Pros:

• Fast and handles large datasets well.

• Efficient memory usage.

28

• Simple and easy to implement.

• Can escape local minima due to noise.

Cons:

• High variance in updates can lead to instability.

• Can overshoot the minimum.

• Sensitive to the choice of learning rate.

• Can be slower to converge compared to batch methods.

When to Use: SGD is ideal for large datasets, incremental learning scenarios, and real-time learning
environments where computational resources are limited.

5.4.3 Mini-batch Gradient Descent

Mini-batch Gradient Descent combines the efficiency of SGD and the stability of batch Gradient Descent,
offering a compromise between batch and stochastic approaches.

How it Works: It splits data into small batches and updates parameters using gradients averaged
over each mini-batch. This reduces variance compared to SGD and is more efficient than batch Gradient
Descent, helping in generalising the updates.

Pros:

• Balances between efficiency and stability.

• More generalisable updates.

• Reduces the variance of parameter updates.

• Provides a compromise between SGD and batch.

Cons:

• Requires tuning of batch size.

• Can still be computationally expensive for very large datasets.

• More complex implementation.

• Can require more iterations than full-batch Gradient Descent.

When to Use: Mini-batch Gradient Descent is suitable for most deep learning tasks, especially
when working with moderate to large datasets.

5.4.4 AdaGrad

Adaptive Gradient Algorithm (AdaGrad) is designed for sparse data and high-dimensional models, ad-
justing learning rates to improve performance on sparse data.

How it Works: AdaGrad adapts the learning rate for each parameter based on historical gradi-
ent information, accumulating squared gradients. This approach prevents large updates for frequent
parameters and helps in dealing with sparse features.

Pros:

• Adapts learning rate for each parameter.

• Good for sparse data.

• No need to manually tune learning rates.

• Works well with high-dimensional data.

Cons:

• Learning rate can diminish to zero, stopping learning.

29

• May require more tuning for convergence.

• Accumulation of squared gradients can lead to overly small learning rates.

• Can slow down significantly.

When to Use: AdaGrad is useful for sparse datasets like text and images where learning rates need
to adapt to feature frequency.

5.4.5 RMSprop

Root Mean Square Propagation (RMSprop) is an adaptive learning rate method designed to perform
better on non-stationary and online problems.

How it Works: RMSprop modifies AdaGrad by using a moving average of squared gradients to
adapt learning rates based on recent gradient magnitudes. It maintains a running average of squared
gradients to help in maintaining steady learning rates.

Pros:

• Addresses the diminishing learning rate problem of AdaGrad.

• Adapts learning rate based on recent gradients.

• Effective for recurrent neural networks.

• More robust against non-stationary targets.

Cons:

• Can still get stuck in local minima on non-convex problems.

• Requires hyperparameter tuning.

• Requires careful tuning of the decay rate.

• Can be sensitive to the initial learning rate.

When to Use: RMSprop is best for non-convex optimisation problems, training RNNs and LSTMs,
and dealing with noisy or non-stationary objectives.

5.4.6 AdaDelta

Adaptive Delta (AdaDelta) improves on AdaGrad and RMSprop, focusing on adaptive learning rates
without diminishing too quickly.

How it Works: AdaDelta eliminates the need for a default learning rate by using a moving window
of gradient updates. It adapts learning rates based on recent gradient magnitudes to ensure consistent
updates even with sparse gradients.

Pros:

• Eliminates the need to set a default learning rate.

• Addresses the diminishing learning rate issue.

• Does not require manual tuning of the learning rate.

• Handles gradient sparsity well.

Cons:

• More complex than RMSprop and AdaGrad.

• Can have slower convergence initially.

• Can require more iterations to converge.

• Implementation can be more complex.

When to Use: AdaDelta is suitable for scenarios similar to RMSprop but is preferred when avoiding
manual learning rate setting.

30

5.4.7 Adam

Adaptive Moment Estimation (Adam) combines the advantages of AdaGrad and RMSprop, making it
suitable for problems with large datasets and high-dimensional spaces.

How it Works: Adam uses running averages of both gradients and their squared values to com-
pute adaptive learning rates for each parameter. It includes bias correction and often achieves faster
convergence than other methods.

Pros:

• Combines advantages of AdaGrad and RMSprop.

• Adaptive learning rates.

• Includes bias correction.

• Fast convergence.

• Works well with large datasets and high-dimensional spaces.

Cons:

• Requires tuning of hyperparameters (though it often works well with defaults).

• Computationally intensive.

• Can lead to overfitting if not regularised properly.

• Requires more memory.

When to Use: Adam is widely used in most deep learning applications due to its efficiency and
effectiveness, particularly in complex neural network architectures.

5.4.8 AdamW

AdamW is an extension of Adam that includes weight decay regularisation to address overfitting issues
present in Adam.

How it Works: AdamW integrates L2 regularisation directly into the parameter updates, decoupling
weight decay from the learning rate. This improves generalisation and is suitable for fine-tuning large
models.

Pros:

• Includes weight decay for better regularisation.

• Combines Adam’s adaptive learning rate with L2 regularisation.

• Improves generalisation.

• Reduces overfitting compared to Adam.

Cons:

• Slightly more complex than Adam.

• Requires careful tuning of the weight decay parameter.

• Slightly slower than Adam due to additional computations.

• Requires more memory.

When to Use: AdamW is ideal for scenarios where regularisation is needed, such as preventing
overfitting in large models and fine-tuning pre-trained models.

A comprehensive collection of optimisation algorithms implemented within the PyTorch library can be
found in here. The Hugging Face Transformers package also offers a variety of optimisers for initialising
and fine-tuning language models, available here.

31

https://pytorch.org/docs/stable/optim.html
https://huggingface.co/docs/transformers/en/main_classes/optimiser_schedules

5.5 Challenges in Training Setup

1. Ensuring compatibility and proper configuration of high-performance hardware like GPUs or TPUs
can be complex and time-consuming.

2. Managing dependencies and versions of deep learning frameworks and libraries to avoid conflicts
and leverage the latest features.

3. Selecting an appropriate learning rate is critical, as too high a rate can cause suboptimal conver-
gence, while too low a rate can make the training process excessively slow.

4. Determining the optimal batch size that balances memory constraints and training efficiency, es-
pecially given the large memory requirements of LLMs.

5. Choosing the right number of epochs to avoid underfitting or overfitting the model, requiring careful
monitoring and validation.

6. Selecting the most suitable optimiser for the specific training task to efficiently update the model’s
weights.

7. Choosing the correct loss function to accurately measure model performance and guide the opti-
misation process.

5.6 Best Practices

• Optimal Learning Rate: Use a lower learning rate, typically between 1e-4 to 2e-4, to ensure
stable convergence. A learning rate schedule, such as learning rate warm-up followed by a linear
decay, can also be beneficial. This helps in initially stabilising the training and then allowing the
model to converge more accurately.

• Batch Size Considerations: Opt for a batch size that balances memory constraints and training
efficiency. Smaller batch sizes can help in achieving faster convergence but may require more
frequent updates. Conversely, larger batch sizes can be more memory-intensive but may lead to
more stable updates. Experiment with different batch sizes to find the optimal balance for your
specific use case.

• Save Checkpoints Regularly: Regularly save model weights at various intervals across 5-8
epochs to capture optimal performance without overfitting. Implement early stopping mechanisms
to halt training once the model performance starts to degrade on the validation set, thereby pre-
venting overfitting [51].

• Hyperparameter Tuning: Utilise hyperparameter tuning methods like grid search, random
search, and Bayesian optimisation to find the optimal set of hyperparameters. Tools such as
Optuna, Hyperopt, and Ray Tune can automate this process and help in efficiently exploring the
hyperparameter space [49].

• Data Parallelism and Model Parallelism: For large-scale training, consider using data paral-
lelism or model parallelism techniques to distribute the training workload across multiple GPUs or
TPUs. Libraries like Horovod and DeepSpeed can facilitate efficient distributed training, helping
to reduce training time and manage memory usage effectively [52, 53].

• Regular Monitoring and Logging: Implement robust monitoring and logging to track training
metrics, resource usage, and potential bottlenecks. Tools like TensorBoard, Weights & Biases, and
MLflow can provide real-time insights into the training process, allowing for timely interventions
and adjustments.

• Handling Overfitting and Underfitting: Ensure that your model generalises well by imple-
menting techniques to handle overfitting and underfitting. regularisation techniques such as L2
regularisation, dropout, and data augmentation can help prevent overfitting. Conversely, if your
model is underfitting, consider increasing the model complexity or training for more epochs.

32

• Use Mixed Precision Training: Mixed precision training involves using both 16-bit and 32-bit
floating-point types to reduce memory usage and increase computational efficiency. This technique
can significantly speed up training and reduce the required memory footprint, especially when
using large models. NVIDIA’s Apex and TensorFlow’s mixed precision API provide support for
implementing mixed precision training [54].

• Evaluate and Iterate: Continuously evaluate the model performance using a separate validation
set and iterate on the training process based on the results. Regularly update your training data
and retrain the model to keep it current with new data trends and patterns.

• Documentation and Reproducibility: Maintain thorough documentation of your training
setup, including the hardware configuration, software environment, and hyperparameters used.
Ensure reproducibility by setting random seeds and providing detailed records of the training
process. This practice not only aids in debugging and further development but also facilitates
collaboration and sharing of results with the broader research community.

33

Chapter 6

Stage 4: Selection of Fine-Tuning
Techniques and Appropriate Model
Configurations

This chapter focuses on selecting appropriate fine-tuning techniques and model configurations that suit
the specific requirements of various tasks. Fine-tuning is a crucial stage where pre-trained models are
adapted to specific tasks or domains.

6.1 Steps Involved in Fine-Tuning

The following steps outline the fine-tuning process, integrating advanced techniques and best practices.

1. Initialise the Pre-Trained Tokenizer and Model: Begin by loading the pre-trained tokenizer
and model. The tokenizer ensures that the input text is converted into a format the model can
process, while the pre-trained model serves as the foundation for further adaptation. Depending
on the task, select a model that has been pre-trained on relevant data to provide a strong starting
point.

2. Modify the Model’s Output Layer: Adjust the model’s output layer to align with the specific
requirements of the target task. This may involve modifying existing layers or adding new layers.
For instance, tasks like classification may require a softmax layer with the appropriate number of
classes, while text generation tasks might involve changes in the decoding mechanism.

3. Choose an Appropriate Fine-Tuning Strategy: Select the fine-tuning strategy that best fits
the task and the model architecture. Some Options include:

• Task-Specific Fine-Tuning: For tasks such as text summarisation, code generation, classi-
fication, and question answering, adapt the model using relevant datasets.

• Domain-Specific Fine-Tuning: Tailor the model to comprehend and generate text relevant
to specific domains, such as medical, financial, or legal fields.

• Parameter-Efficient Fine-Tuning (PEFT): Techniques like LoRA, QLoRA, and adapters
allow for fine-tuning with reduced computational costs by updating a small subset of model
parameters.

• Half Fine-Tuning (HFT): Balance between retaining pre-trained knowledge and learning
new tasks by updating only half of the model’s parameters during each fine-tuning round.

4. Set Up the Training Loop: Establish the training loop, incorporating the selected fine-tuning
strategy. The loop should include data loading, loss computation, backpropagation, and parameter
updates. When using PEFT methods, ensure that only the relevant parameters are updated
to maximise efficiency. Implement techniques like dynamic learning rates and early stopping to
enhance the training process.

34

5. Incorporate Techniques for Handling Multiple Tasks: If fine-tuning for multiple tasks,
consider strategies like fine-tuning with multiple adapters or leveraging Mixture of Experts (MoE)
architectures. These methods allow a single model to handle various tasks by utilising specialised
sub-networks or adapters for each task.

6. Monitor Performance on a Validation Set: Regularly evaluate the model’s performance on
a validation set to ensure it generalises well to unseen data. Adjust hyperparameters such as
learning rate, batch size, and dropout rates based on the validation performance. Utilise advanced
monitoring tools to track metrics like accuracy, loss, and overfitting.

7. Optimise Model Using Advanced Techniques: Employ techniques such as Proximal Policy
Optimisation (PPO) for reinforcement learning scenarios, or Direct Preference Optimisation (DPO)
for aligning model outputs with human preferences. These techniques are particularly useful in
fine-tuning models for tasks requiring nuanced decision-making or human-like responses.

8. Prune and optimise the Model (if necessary): To deploy the model in resource-constrained
environments, consider pruning techniques to reduce its size and complexity. This involves removing
unnecessary parameters or components without significantly affecting performance. Utilise dynamic
pruning methods during inference to optimise the model on-the-fly for different scenarios.

9. Continuous Evaluation and Iteration: Continuously evaluate the model’s performance across
various tasks using appropriate benchmarks. Iterate on the fine-tuning process, making adjustments
based on performance metrics and real-world testing. This iterative approach helps in refining the
model to meet specific performance criteria.

6.2 Fine-Tuning Strategies for LLMs

6.2.1 Task-Specific Fine-Tuning

Task-specific fine-tuning adapts large language models (LLMs) for particular downstream tasks using
appropriately formatted and cleaned data. Below is a summary of key tasks suitable for fine-tuning
LLMs, including examples of LLMs tailored to these tasks.

Task Description Key Models
Text Summarisation Condensing long texts into coherent sum-

maries while retaining key information. Ap-
proaches include Extractive (selecting key
sentences) and Abstractive summarisation
(generating new sentences).

BERTSUM, GPT-3, T5

Code Generation Automatically generating programming code
based on natural language descriptions, par-
tial code snippets, or structured data inputs.

Codex, GPT-3, CodeBERT

Classification Categorising text into predefined labels such
as Sentiment Analysis, Topic Classification,
and Entity Classification.

BERT, RoBERTa, GPT-4

Q&A Understanding and generating accurate, con-
textually relevant answers to natural lan-
guage questions.

BERT, GPT-3, T5

Table 6.1: Overview of tasks such as text summarisation, code generation, classification, and Q&A, along
with their key LLMs and descriptions.

6.2.2 Domain-Specific Fine-Tuning

Domain-specific fine-tuning focuses on tailoring the model to comprehend and produce text relevant to
a specific domain or industry. By fine-tuning the model on a dataset derived from the target domain,
it enhances the model’s contextual understanding and expertise in domain-specific tasks. Below are
examples of domain-specific LLMs.

35

Medical Domain

Model Description: Med-PaLM 2 is trained on meticulously curated medical datasets and is capable
of accurately answering medical questions, achieving performance comparable to that of medical profes-
sionals [55].
Base Model: PaLM 2
Fine-tuned Model Parameters: Not Known
Fine-Tuning Techniques Used: Instruction fine-tuning
Datasets Used:

• MedQA

• MedMCQA

• LiveQA

• MedicationQA

• HealthSearchQA

Results: Med-PaLM 2 outperformed GPT-4 in several key medical benchmarks, demonstrating superior
performance in handling complex medical knowledge and reasoning tasks.

Finance Domain

Model Description: FinGPT, an open-source LLM tailored for the financial sector, enhances financial
research and cooperation by promoting data accessibility and handling finance-specific issues like data
acquisition and quality [56].
Base Model: LlaMA, ChatGLM, and other Transformer Models
Fine-tuned Model Parameters: Not Known
Fine-Tuning Techniques Used: LoRA, Reinforcement Learning on Stock Prices (RLSP)
Datasets Used:

• Financial News (Reuters, CNBC, Yahoo Finance)

• Social Media (Twitter, Facebook, Reddit, Weibo)

• Regulatory Filings (e.g., SEC filings)

• Trends (Seeking Alpha, Google Trends)

• Academic Datasets

Results: Not Applicable

Legal Domain

Model Description: LAWGPT, the first open-source model specifically designed for Chinese legal
applications, demonstrates superior capability in handling Chinese legal tasks [57].
Base Model: Chinese Alpaca Plus 7B base model
Fine-tuned Model Parameters: Not Known
Fine-Tuning Techniques Used: LoRA with Alpaca template
Datasets Used:

• Open-source dataset: 200,000 examples containing crime type prediction and crime consultation
tasks.

• JEC-QA dataset: 20,000 examples containing legal question answering tasks.

• Constructed legal dataset: 80,000 examples, refined from open-source and JEC-QA datasets using
ChatGPT.

Results: LAWGPT demonstrates notable performance improvements over the LLaMA 7B model in
various legal tasks, but still trails behind proprietary models like GPT-3.5 Turbo and GPT-4.

36

Pharmaceutical Domain

Model Description: PharmaGPT, a suite of domain-specific large language models tailored to the
biopharmaceutical and chemical industries, sets a new benchmark for precision in these fields [58].
Base Model: LlaMA series
Fine-tuned Model Parameters: 13B and 70B
Fine-Tuning Techniques Used: Instruction fine-tuning and RLHF
Datasets Used:

• Specific-domain data from academic papers and clinical reports

• Text data from NLP dataset formats (e.g., question answering, summarisation, dialogue)

• Instruction fine-tuning dataset for multitask learning

• RLHF dataset with human preference expert-annotated instructions

Results: PharmaGPT models demonstrated impressive performance on various pharmaceutical bench-
marks, consistently outperforming GPT-3.5 Turbo.

Finance Domain

Model Description: Palmyra-Fin-70B-32K, developed by Writer, is a leading large language model
specifically designed for the financial sector. [59]
Base Model: LlaMA
Fine-tuned Model Parameters: 70B
Fine-Tuning Techniques Used: Not Known
Datasets Used: Not Known
Results: Palmyra-Fin-70B-32K exhibits state-of-the-art performance, achieving leading results across
various financial datasets and excelling in financial document analysis, market trend prediction, and risk
assessment.

6.3 Parameter-Efficient Fine-Tuning (PEFT) Techniques

Parameter Efficient Fine Tuning (PEFT) is an impactful NLP technique that adeptly adapts pre-trained
language models to various applications with remarkable efficiency. PEFT methods fine-tune only a
small subset of (additional) model parameters while keeping most of the pre-trained LLM parameters
frozen, thereby significantly reducing computational and storage costs. This approach mitigates the issue
of catastrophic forgetting, a phenomenon where neural networks lose previously acquired knowledge and
experience a significant performance decline on previously learned tasks when trained on new datasets.
PEFT methods have demonstrated superior performance compared to full fine-tuning, particularly in
low-data scenarios, and exhibit better generalisation to out-of-domain contexts. This technique is appli-
cable to various modalities, such as financial sentiment classification and machine translation of medical
terminologies. A taxonomy of PEFT-based fine-tuning approaches is provided in Figure6.1. We will
further discuss a few key PEFT-based approaches in the following sections.

6.3.1 Adapters

Adapter-based methods introduce additional trainable parameters after the attention and fully connected
layers of a frozen pre-trained model, aiming to reduce memory usage and accelerate training. The specific
approach varies depending on the adapter; it might involve adding an extra layer or representing the
weight updates delta (W) as a low-rank decomposition of the weight matrix. Regardless of the method,
adapters are generally small yet achieve performance comparable to fully fine-tuned models, allowing for
the training of larger models with fewer resources.

HuggingFace supports adapter configurations through the PEFT library. During fine-tuning, new adapters
are integrated into the model using LoraConfig 1. HuggingFace uses PeftConfig to load existing pre-
trained models and apply PEFT techniques. Additionally, HuggingFace provides built-in support to

1https://huggingface.co/docs/peft/en/package_reference/lora

37

https://github.com/huggingface/peft
https://huggingface.co/docs/peft/en/package_reference/lora

Figure 6.1: Comprehensive Taxonomy of Parameter-Efficient Fine-Tuning (PEFT) Methods for Large
Language Models (LLMs). This figure categorises various PEFT techniques, highlighting their distinct
approaches, from additive and selective fine-tuning to reparameterised and hybrid methods. It details
specific strategies within each category, such as Adapter-Based Fine-Tuning, Soft Prompt-Based Fine-
Tuning, and their respective sub-techniques like LoRA and its derivatives, showcasing the diverse and
evolving landscape of LLM fine-tuning. (adapted from [60])

run the fine-tuning process across any distributed configuration using Accelerate2, making large-scale
training and inference simple, efficient, and adaptable.

6.3.2 Low-Rank Adaptation (LoRA)

Low-Rank Adaptation (LoRA)[62] is a technique designed for fine-tuning large language models, which
modifies the fine-tuning process by freezing the original model weights and applying changes to a separate
set of weights, added to the original parameters. LoRA transforms the model parameters into a lower-
rank dimension, reducing the number of trainable parameters, speeding up the process, and lowering
costs. This method is particularly useful in scenarios where multiple clients require fine-tuned models
for different applications, allowing for the creation of specific weights for each use case without the
need for separate models. By employing low-rank approximation methods, LoRA effectively reduces
computational and resource requirements while preserving the pre-trained model’s adaptability to specific
tasks or domains.

Benefits of Using LoRA

1. Parameter Efficiency: LoRA significantly reduces the number of parameters that need to be
trained by focusing only on the low-rank matrices, resulting in lower memory and storage require-
ments compared to full fine-tuning.

2. Efficient Storage: The storage of the trained model is more efficient as it only requires storing
the low-rank matrices instead of the full model weights.

2https://huggingface.co/docs/accelerate/en/index

38

https://huggingface.co/docs/accelerate/en/index

Figure 6.2: Schematic representation of the Adapter Architecture used in LLMs. The diagram showcases
the integration of adapters within the Transformer architecture, including the feed-forward up and down
layers and their role in enabling efficient model adaptation by inserting additional parameters while
maintaining the model’s core structure (adapted from [61])

3. Reduced Computational Load: Training with low-rank matrices requires fewer computational
resources, making it faster and more scalable.

4. Lower Memory Footprint: Since fewer parameters are being updated, the memory footprint
during training is reduced, enabling the use of larger batch sizes or more complex models within
the same hardware constraints.

5. Flexibility: LoRA can be easily integrated with existing pre-trained models without extensive
modifications to the model architecture.

6. Compatibility: It can be used alongside other fine-tuning techniques, such as adapter layers or
prompt-tuning, to further enhance performance.

7. Comparable Results: Despite the reduction in the number of trainable parameters, LoRA has
been shown to achieve performance comparable to full fine-tuning in many tasks.

8. Task-Specific Adaptation: It effectively adapts the pre-trained model to specific tasks, leverag-
ing the knowledge already embedded in the original model.

9. Avoiding Overfitting: By focusing on low-rank updates, LoRA can help in mitigating overfitting,
especially when dealing with smaller task-specific datasets.

Limitations

While LoRA demonstrates considerable power, it also presents challenges:

• Fine-tuning Scope: LoRA may face difficulties when applied to tasks demanding substantial
alterations to the pre-trained model’s internal representations.

• Hyperparameter Optimisation: Tuning the rank parameter ‘r’ requires meticulous adjustment
for optimal performance.

• Ongoing Research: Despite its promise, LoRA is still in active research stages, and its long-term
implications remain to be fully explored.

39

Figure 6.3: A comparison between weight updates in regular fine-tuning and LoRA fine-tuning. In
regular fine-tuning, the entire weight update matrix (∆W) is applied to the pre-trained weights. In
contrast, LoRA fine-tuning introduces two low-rank matrices (A and B) that approximate the weight
update matrix (∆W), significantly reducing the number of trainable parameters by leveraging the inner
dimension (r), which is a hyperparameter. This method is more efficient in terms of memory and
computation, making it ideal for fine-tuning large models. (adapted from [63])

Despite these challenges, LoRA stands as a pioneering technique with vast potential to democratise access
to the capabilities of LLMs. Continued research and development offer the prospect of overcoming current
limitations and unlocking even greater efficiency and adaptability.

Tutorial for Fine-Tuning LLM Using LoRA

An open-source template for fine-tuning LLMs using the LoRA method with the Hugging Face library
can be found here. This template is designed specifically for adapting LLMs for instruction fine-tuning
processes.

6.3.3 QLoRA

QLoRA[64] is an extended version of LoRA designed for greater memory efficiency in large language mod-
els (LLMs) by quantising weight parameters to 4-bit precision. Typically, LLM parameters are stored
in a 32-bit format, but QLoRA compresses them to 4-bit, significantly reducing the memory footprint.
This allows fine-tuning on less powerful hardware, including consumer GPUs. QLoRA also quantises the
weights of the LoRA adapters from 8-bit to 4-bit, further decreasing memory and storage requirements
(see Figure 6.4). Despite the reduction in bit precision, QLoRA maintains performance levels comparable
to traditional 16-bit fine-tuning.

It achieves this by backpropagating gradients through a frozen, 4-bit quantised pre-trained language
model into Low-Rank Adapters, making the fine-tuning process efficient while preserving model effective-
ness. The QLoRA configuration is supported by HuggingFace via the PEFT library, utilising LoraConfig
and BitsAndBytesConfig for quantisation. Innovations such as an optimal 4-bit data type, double quan-
tisation of constants, and memory spike management enable QLoRA to reduce memory usage from 96
bits per parameter in traditional fine-tuning to 5.2 bits per parameter, an 18-fold reduction.
Performance-wise, QLoRA outperforms naive 4-bit quantisation and matches 16-bit quantised models
on benchmarks. Additionally, QLoRA enabled the fine-tuning of a high-quality 4-bit chatbot using a
single GPU in 24 hours, achieving quality comparable to ChatGPT.

This tutorial explains the end-to-end steps of fine-tuning QLoRA on a custom dataset for the Phi-2
model.

40

https://gitlab.com/CeADARIreland_Public/llm-resources
https://dassum.medium.com/fine-tune-large-language-model-llm-on-a-custom-dataset-with-qlora-fb60abdeba07

Figure 6.4: Quantised Low-Rank Adaptation (QLoRA) Optimisation Workflow. This figure illustrates
the QLoRA optimisation process, showing how the optimisation states, adapters, and the model interact
during fine-tuning. It demonstrates the use of different bit-widths (32-bit, 16-bit, and 4-bit) to optimise
the memory and computational efficiency during the fine-tuning of large language models (adapted from
[65]).

6.3.4 Weight-Decomposed Low-Rank Adaptation (DoRA)

In the context of optimising model fine-tuning, the pattern analysis of LoRA and Full Fine-Tuning
(FT) reveals significant differences in learning behaviours and updates. LoRA, employing a strategy of
incrementally updating pre-trained weights using the product of two low-rank matrices, maintains the
original weights largely static during the fine-tuning process, which allows for efficient inference. Despite
its computational efficiency, previous studies have suggested that LoRA’s limited number of trainable
parameters might contribute to its performance discrepancies when compared to FT.
Weight-Decomposed Low-Rank Adaptation (DoRA) [66] is a novel fine-tuning methodology designed to
optimise pre-trained models by decomposing their weights into magnitude and directional components.
This approach leverages the efficiency of Low-Rank Adaptation (LoRA) for directional updates, facili-
tating substantial parameter updates without altering the entire model architecture. DoRA addresses
the computational challenges associated with traditional full fine-tuning (FT) by maintaining model
simplicity and inference efficiency, while simultaneously bridging the performance gap typically observed
between LoRA and FT. Empirical and theoretical evaluations demonstrate that DoRA not only achieves
learning outcomes comparable to FT across diverse tasks—including natural language processing and
vision-language applications—but also consistently surpasses LoRA in performance, providing a robust
solution for enhancing the adaptability and efficiency of large-scale models.

Python Library - DoRA is facilitated via the HuggingFace LoraConfig package. To incorporate DoRA
into the fine-tuning process, it is essential to specify the ’use dora = True’ parameter during the Lora
configuration. Further information on initialisation can be found here.

Benefits of DoRA

1. Enhanced Learning Capacity: DoRA achieves a learning capacity closely resembling full fine-
tuning (FT) by decomposing pre-trained weights into magnitude and directional components, al-
lowing for more nuanced updates.

2. Efficient Fine-Tuning: By utilising the structural advantages of Low-Rank Adaptation (LoRA)
for directional updates, DoRA enables efficient fine-tuning without altering the entire model archi-
tecture.

3. No Additional Inference Latency: Despite its improved learning capabilities, DoRA does not
introduce any additional inference latency over LoRA, maintaining model simplicity and efficiency.

4. Superior Performance: Experimental results demonstrate that DoRA consistently outperforms
LoRA across a wide range of tasks, including natural language processing (NLP), visual instruction
tuning, and image/video-text understanding. For example, it shows significant improvements in
commonsense reasoning and visual instruction tuning benchmarks.

5. Versatility Across Backbones: DoRA has been validated across various model backbones,
including large language models (LLM) and vision-language models (LVLM), indicating its broad

41

https://huggingface.co/docs/peft/v0.8.2/en/package_reference/lora

Figure 6.5: An overview of DoRA (Decomposed Representations for Adaptation), which is a method for
weight decomposed low-rank adaptation. The figure illustrates how pre-trained weights are decomposed
and adapted for fine-tuning. In the left section, pre-trained weights are decomposed into a magnitude and
direction. The right section shows how these decomposed weights are merged with trainable parameters
during fine-tuning, resulting in updated weights that combine both frozen (blue) and trainable (green)
components. The process emphasises efficient adaptation by focusing on the most significant directions
in the parameter space, facilitating effective fine-tuning while maintaining the integrity of the original
model (adapted from [66]).

applicability and robustness in different domains.

6. Innovative Analysis: The introduction of a novel weight decomposition analysis helps uncover
fundamental differences in the learning patterns of FT and various parameter-efficient fine-tuning
(PEFT) methods, contributing to a deeper understanding of model fine-tuning dynamics.

Comparison between LoRA and DoRA

Low-Rank Adaptation (LoRA) and Weight-Decomposed Low-Rank Adaptation (DoRA) are both ad-
vanced techniques designed to improve the efficiency and effectiveness of fine-tuning large pre-trained
models. While they share the common goal of reducing computational overhead, they employ different
strategies to achieve this (see Table6.2).

42

Criteria LoRA (Low-Rank Adapta-
tion)

DoRA (Weight-Decomposed
Low-Rank Adaptation)

Objective Provide an efficient method for
fine-tuning pre-trained models by
using low-rank matrix products
to update weights incrementally
without increasing inference la-
tency.

Improves learning capacity by
closely mimicking the learning pat-
terns of full fine-tuning, optimis-
ing magnitude and direction sep-
arately.

Approach Implements a low-rank decompo-
sition where the weight update is
modelled as the product of two
low-rank matrices (B and A), keep-
ing the original weights static.

Uses weight decomposition anal-
ysis to reparameterise the weight
matrix into separate magnitude
and direction components for dis-
tinct updates.

Model Architecture Keeps the pre-trained weight ma-
trix (W0) unchanged and applies
updates using low-rank matrices
(B and A). Matrix A is initialised
with a uniform Kaiming distribu-
tion, while B is set to zero initially.

Restructures the weight matrix
into magnitude and directional
components, ensuring directional
vectors are unit vectors for more
detailed adjustments.

Table 6.2: A detailed comparison between LoRA (Low-Rank Adaptation) and DoRA (Weight-
Decomposed Low-Rank Adaptation), highlighting their objectives, approaches, and the specific architec-
tural strategies they employ for fine-tuning large language models.

Tutorial for Fine-Tuning LLM using DoRA

This tutorial offers an in-depth guide and detailed explanation of the steps involved in implementing
DoRA from scratch, as well as insights into the fine-tuning process essential for optimising performance.

6.3.5 Fine-Tuning with Multiple Adapters

During fine-tuning, we have explored the method of freezing the parameters of the LLM and focusing
solely on fine-tuning a few million trainable parameters using LoRA. For example, fine-tuning an LLM
for translation involves training a translation adapter with relevant data. This approach allows us to
fine-tune separate adapters for each specific task we want the LLM to perform. However, a key question
arises: can we consolidate multiple adapters into a unified multi-task adapter? For instance, if we have
separate adapters for translation and summarisation tasks, can we merge them so that the LLM can
proficiently handle both tasks? (Illustrated via Figure6.6).

The PEFT library simplifies the process of merging adapters with its add weighted adapter function 3,
which offers three distinct methods:

1. Concatenation: This straightforward method concatenates the parameters of the adapters. For
instance, if two adapters each have a rank of 16, the resulting adapter will have a rank of 32. This
method is highly efficient.

2. Linear Combination: Although less documented, this method appears to perform a weighted
sum of the adapters’ parameters.

3. SVD: The default method employs singular value decomposition through torch.linalg.svd. While
versatile, it is notably slower than the other methods, particularly for adapters with high ranks
(greater than 100), which can take several hours.

Each method allows for customising the combination by adjusting weights. For instance, when merging
two adapters, X and Y, assigning more weight to X ensures that the resulting adapter prioritises behaviour
similar to X over Y.
This approach is particularly suited for consolidating a single LLM to handle multiple tasks rather than
creating separate models for each task domain. By adopting this method, there is no longer a need to

3https://huggingface.co/docs/peft/main/en/package_reference/lora#peft.LoraModel.add_weighted_adapter

43

https://www.kaggle.com/code/aisuko/dora-from-scratch
https://huggingface.co/docs/peft/main/en/package_reference/lora#peft.LoraModel.add_weighted_adapter

individually fine-tune a model for each task. Instead, a single adapter layer can be fine-tuned for each
task, allowing queries to yield the desired responses efficiently.

Figure 6.6: Overview of how multiple adapters can be used with a pre-trained LLM to fine-tune it for
various specific tasks, such as summarisation, proofreading, sentiment analysis, and more. (adapted from
[67])

Steps for Fine-Tuning LLM with LoRA for Multiple Tasks and Adapters

1. Adapter Creation: Create multiple adapters, each fine-tuned for specific tasks using different
prompt formats or task-identifying tags (e.g., [translate fren], [chat]).

2. LoRA Integration: Implement LoRA to efficiently integrate these adapters into the pre-trained
LLM. Utilise LoRA’s methods such as concatenation, linear combination, or singular value decom-
position (SVD) to combine adapters while minimising computational overhead and maintaining
performance.

3. Task-Specific Adaptation: Fine-tune each adapter with task-specific data to enhance perfor-
mance for individual tasks. Ensure adapters are trained with data relevant to their respective
tasks, optimising their ability to generate accurate responses.

4. Behaviour Adjustment: Monitor the behaviour of combined adapters to identify any undesired
inherited behaviours from individual adapters (e.g., short response generation from a translation

44

adapter). Adjust the combination weights or types to modify adapter behaviour as needed, ensuring
each adapter performs optimally for its intended task.

5. Evaluation and Iteration: Evaluate the performance of the combined model across multiple
tasks using validation datasets. Iterate on the fine-tuning process, making adjustments to adapter
combinations and training parameters based on performance metrics and user feedback.

Therefore, for optimal performance, it is advisable to combine adapters that have been fine-tuned with
distinctly varied prompt formats. However, even when using adapters with different prompt formats, the
resulting adapter may not exhibit desired behaviour. For example, a newly combined adapter designed for
chatting may only generate short responses, inheriting this tendency from an adapter that was originally
trained to halt after producing a single sentence. To adjust the behaviour of the combined adapter,
one can prioritise the influence of a specific adapter during the combination process and/or modify the
method of combination used.
An illustrative tutorial demonstrating the fine-tuning of large language models (LLMs) using multiple
adapter layers for various tasks can be found here.

6.4 Half Fine Tuning

Half Fine-Tuning (HFT)[68] is a technique designed to balance the retention of foundational knowledge
with the acquisition of new skills in large language models (LLMs). HFT involves freezing half of the
model’s parameters during each fine-tuning round while updating the other half, allowing the model to
retain pre-trained knowledge and enhance new task performance without altering the model architecture.
Each repetitive transformer layer is divided into three blocks: self-attention, feed-forward, and layernorm,
with half of the parameters in each block updated and the other half frozen, varying with each round.
This strategic parameter update helps maintain knowledge parity across training rounds and enhances
scalability in successive training sessions.
Research on models like LLAMA 2-7B demonstrated that HFT could significantly restore forgotten basic
knowledge while preserving high general ability performance. This method’s robustness and efficiency
make it applicable to various fine-tuning scenarios, including supervised fine-tuning, direct preference
optimisation, and continual learning. Additionally, HFT’s ability to maintain the model architecture
simplifies its implementation and ensures compatibility with existing systems, further promoting its
practical adoption.

6.4.1 Benefits of using Half Fine tuning

1. Recovery of Pre-Trained Knowledge: By rolling back half of the fine-tuned parameters to their
pre-trained state, HFT effectively recovers a portion of the original knowledge, thereby mitigating
catastrophic forgetting of previously acquired capabilities.

2. Enhanced Performance: Research experiments shows that HFT maintains or even surpasses
the performance of full fine-tuning (FFT) on downstream tasks, demonstrating its effectiveness in
balancing knowledge retention with task-specific learning.

3. Robustness: The method is robust to different selection strategies and the number of parameters
chosen for updating, ensuring consistent performance across various configurations.

4. Simplicity and Scalability: HFT does not alter the model architecture, which simplifies im-
plementation and allows for scalable applications, particularly beneficial in successive fine-tuning
scenarios.

5. Versatility: The technique has proven effective across diverse fine-tuning scenarios, including
supervised fine-tuning, direct preference optimisation, and continual learning.

45

https://kaitchup.substack.com/p/combine-multiple-lora-adapters-for

Figure 6.7: Schematic illustration of the Half Fine-Tuning (HFT) method as applied to LLAMA 2’s
architecture. The diagram shows multiple stages of fine-tuning, where specific model parameters are
selectively activated (orange) while others remain frozen (blue). This approach optimises training by
reducing computational requirements while still effectively adapting the model to new tasks or data.
(adapted from [68])

6.4.2 Comparison between HFT and LoRA

Criteria HFT LoRA
Objective The goal is to retain the foun-

dational knowledge acquired dur-
ing pre-training while learning new
task-specific skills, thus balancing
between maintaining existing ca-
pabilities and acquiring new ones.

LoRA aims to reduce computa-
tional and memory requirements
during fine-tuning, making it more
efficient and feasible to train large
models on limited hardware re-
sources.

Approach HFT involves freezing half of the
model’s parameters during each
fine-tuning round and updating
only the other half.

LoRA reduces the number of train-
able parameters by introducing
low-rank decomposition into the
weight matrices of the neural net-
work. This involves injecting low-
rank matrices into the model’s lay-
ers during fine-tuning.

Model Architecture HFT does not alter the model’s ar-
chitecture or introduce new param-
eters, making it straightforward
to apply without additional struc-
tural changes.

LoRA modifies the model by
adding low-rank matrices, which
changes the training dynamics and
requires additional computations
for the low-rank updates.

Performance Research has shown that HFT
can restore forgotten basic knowl-
edge while maintaining high per-
formance in general abilities.

LoRA is designed to achieve com-
petitive performance with full fine-
tuning but with significantly fewer
trainable parameters and lower
computational costs.

Table 6.3: Comparative Analysis of Half Fine-Tuning (HFT) and Low-Rank Adaptation (LoRA).

46

6.5 Lamini Memory Tuning

Lamini [69] was introduced as a specialised approach to fine-tuning Large Language Models (LLMs),
targeting the reduction of hallucinations. This development was motivated by the need to enhance the
reliability and precision of LLMs in domains requiring accurate information retrieval. Traditional training
methods typically consist of running stochastic gradient descent on vast datasets, which, despite fitting
the training data well, often produce models that fail to generalise effectively and are prone to such errors.

Foundation models often follow a training regimen similar to the Chinchilla recipe, which prescribes
training for a single epoch on a massive corpus, such as training Llama 2 7B on about one trillion
tokens. This approach results in substantial loss and is geared more towards enhancing generalisation
and creativity where a degree of randomness in token selection is permissible. However, it falls short for
tasks demanding high factual precision. In contrast, Lamini Memory Tuning delves deeper by analysing
the loss of individual facts, significantly improving the accuracy of factual recall. By augmenting a
model with additional parameters specifically for memory (e.g., an 8B parameter model with an extra 2B
parameters for weights), Lamini enables the model to memorise and accurately recall a significant number
of facts, closely aligning performance with LLM scaling laws without compromising on generalisation.

6.5.1 Lamini-1 - A model architecture based on Lamini

Departing from traditional transformer-based designs, the Lamini-1 model architecture (Figure 6.8) em-
ploys a massive mixture of memory experts (MoME). This system features a pre-trained transformer
backbone augmented by adapters that are dynamically selected from an index using cross-attention
mechanisms. These adapters function similarly to experts in MoE architectures, and the network is
trained end-to-end while freezing the backbone. This setup allows for specific facts to be stored exactly
in the selected experts.

Figure 6.8: Diagram of the Lamini-1 Model Architecture, featuring a Massive Array of Memory Experts
(MoME). This architecture integrates a pre-trained transformer backbone with dynamically selected
adapters via cross-attention mechanisms. Each adapter, functioning as a memory expert, is capable of
storing specific factual data. (adopted from [69])

At inference time, only the relevant experts are retrieved from the index, enabling the LLM to store a
large number of facts while maintaining low inference latency. Specialised GPU kernels written in Triton
are used to accelerate the lookup of experts, optimising the system for quick access to stored knowledge.

Systems Optimisations for Banishing Hallucinations

The MoME architecture is designed to minimise the computational demand required to memorise facts.
During training, a subset of experts, such as 32 out of a million, is selected for each fact. The weights of
the backbone network and the cross attention used to select the expert are frozen, and gradient descent
steps are taken until the loss is sufficiently reduced to memorise the fact. This approach prevents the
same expert from being selected multiple times for different facts by first training the cross attention

47

selection mechanism during a generalisation training phase, then freezing its weights.

This method ensures that computation scales with the number of training examples, not the total
number of parameters, thereby significantly reducing the computation required for memory tuning.
This optimised approach allows Lamini-1 to achieve near-zero loss in memory tuning on real and random
answers efficiently, demonstrating its efficacy in eliminating hallucinations while improving factual recall.

6.6 Mixture of Experts

A mixture of experts (MoE) is an architectural design for neural networks that divides the computation
of a layer or operation (e.g., linear layers, MLPs, or attention projection) into several specialised subnet-
works, referred to as ”experts”. Each expert independently carries out its computation, and the results
are aggregated to produce the final output of the MoE layer. MoE architectures can be categorised as
either dense, where every expert is engaged for each input, or sparse, where only a subset of experts is
utilised for each input.

6.6.1 Mixtral 8x7B Architecture and Performance

Mixtral [70] 8x7B employs a Sparse Mixture of Experts (SMoE) architecture (Figure 6.9), mirroring the
structure of Mistral 7B but incorporating eight feedforward blocks (experts) in each layer. For every
token at each layer, a router network selects two experts to process the current state and combine their
outputs. Although each token interacts with only two experts at a time, the selected experts can vary at
each timestep. Consequently, each token has access to 47 billion parameters but utilises only 13 billion
active parameters during inference. Mixtral 8x7B not only matches but often surpasses Llama 2 70B
and GPT-3.5 across all evaluated benchmarks. Its performance is notably superior to Llama 2 70B in
mathematics, code generation, and multilingual tasks.

Figure 6.9: Diagram of the Mixtral 8x7B Mixture of Experts (MoE) model architecture. The model is
composed of a router network that dynamically selects the most relevant experts from a pool of eight
transformer-based experts, each with 7 billion parameters. The experts are organised into transformer
blocks, where the router directs data to the appropriate expert based on the input, optimising com-
putational efficiency and model performance. This architecture allows for scalability and specialised
processing within large language models. (adapted from [71])

48

6.7 Mixture of Agents

Despite the numerous LLMs and their notable accomplishments, they continue to encounter fundamental
limitations regarding model size and training data. Scaling these models further is prohibitively expen-
sive, often necessitating extensive retraining on multiple trillion tokens. Simultaneously, different LLMs
exhibit distinct strengths and specialise in various aspects of tasks. A recent study has investigated
leveraging the collective expertise of multiple LLMs to develop a more capable and robust model, a
method known as Mixture of Agents (MoA) [72].
MoA functions using a layered architecture, where each layer comprises multiple LLM agents (Figure
6.10). This structure reveals a phenomenon known as the “collaborativeness of LLMs.” The innova-
tive MoA framework utilises the combined capabilities of several LLMs to enhance both reasoning and
language generation proficiency. Research indicates that LLMs naturally collaborate, demonstrating im-
proved response quality when incorporating outputs from other models, even if those outputs are not
ideal.

Figure 6.10: Illustration for Mixture of Agents (MoA) LLM configuration. The model consists of multiple
layers, each incorporating several agents that process the input independently before concatenating their
outputs to form an intermediate result. The process continues across layers, refining the output at each
stage to generate the final output based on the given prompt (adapted from [72]).

6.7.1 Methodology

To enhance collaboration among multiple LLMs, it is essential to understand their individual strengths
and classify them accordingly. The classification includes:

1. Proposers: These models excel at generating valuable reference responses for other models. While
they may not perform exceptionally on their own, they provide useful context and varied perspec-
tives that improve the final output when utilised by an aggregator.

49

2. Aggregators: These models are adept at merging responses from various models into a single
high-quality result. An effective aggregator should maintain or even enhance the quality of the
final response, regardless of the quality of the individual inputs.

The careful selection of LLMs for each MoA layer is crucial Performance metrics, such as average win
rates in a given layer, help assess the suitability of models for subsequent layers, ensuring the production
of higher-quality outputs. Diversity in model outputs is vital, as varied responses from different models
contribute significantly more than homogeneous outputs from a single model. In MoA, given an input
prompt, the output of the ith MoA layer yi is calculated as follows:

yi =

n⊕
j=1

[Ai,j(xi)] + x1, xi+1 = yi (6.1)

6.7.2 Analogy with MoE

Mixture-of-Experts (MoE) is a well-established machine learning technique where multiple expert net-
works, each with specialised skills, collaborate to address complex problems. This approach has demon-
strated significant success across various applications and serves as the inspiration for the Mixture-of-
Agents (MoA) method. In a typical MoE design, a stack of layers, known as MoE layers, consists of
multiple expert networks, a gating network, and residual connections to improve gradient flow. The
output for layer yi is calculated as follows:

yi =

n∑
j=1

Gi,j(xi)Ei,j(xi) + xi (6.2)

The MoA framework advances the MoE concept by operating at the model level through prompt-based
interactions rather than altering internal activations or weights. Instead of relying on specialised sub-
networks within a single model, MoA utilises multiple full-fledged LLMs across different layers. In this
approach, the gating and expert networks’ functions are integrated within an LLM, leveraging its ability
to interpret prompts and generate coherent outputs without additional coordination mechanisms.

6.7.3 What makes MoA works well?

1. MoA’s Superior Performance: MoA significantly outperforms LLM-based rankers, which select
one answer from the proposals rather than generating new responses. This suggests that MoA’s
approach of aggregating all generated responses provides more effective results than simply choosing
from pre-existing options.

2. Effective Incorporation of Proposals: The aggregator in MoA demonstrates a tendency to
integrate the best proposed answers. This is supported by positive correlations between aggregator
responses and various similarity metrics, such as BLEU scores, which measure n-gram overlaps. The
use of alternative similarity measures also shows a consistent positive correlation with preference
scores, indicating that the aggregator effectively utilises the proposed responses.

3. Influence of Model Diversity and Proposer Count: Increasing the number of proposers
improves output quality, highlighting the benefits of additional auxiliary information. Additionally,
using a diverse set of LLMs as proposers consistently yields better results compared to using a single
LLM. This suggests that both the number and diversity of LLM agents in each MoA layer contribute
to enhanced performance, with potential for further improvement through scaling.

4. Model Specialisation: Analysis of model roles within the MoA ecosystem reveals that GPT-4o,
Qwen, and LLaMA-3 are effective in both assisting and aggregating tasks. In contrast, WizardLM
excels as a proposer but struggles with aggregating responses from other models.

6.8 Proximal Policy Optimisation (PPO)

PPO [73] is a widely recognised reinforcement learning algorithm used for training agents to perform tasks
in diverse environments. This algorithm leverages policy gradient methods, where policies—represented

50

by neural networks—determine the actions taken by the agent based on the current state. PPO ef-
fectively handles the dynamic nature of training data generated through continuous agent-environment
interactions, a feature that differentiates it from static datasets used in supervised learning.
The innovation of PPO lies in its ”surrogate” objective function, optimised via stochastic gradient ascent.
This approach allows for multiple updates from the same batch of data, enhancing both training efficiency
and stability over traditional policy gradient methods. Developed by OpenAI, PPO was designed to
balance ease of implementation with the robust performance characteristics of more complex algorithms
like Trust Region Policy Optimisation (TRPO), but without the associated computational complexity.
PPO operates by maximising expected cumulative rewards through iterative policy adjustments that
increase the likelihood of actions leading to higher rewards. A key feature of PPO is its use of a clipping
mechanism in the objective function, which limits the extent of policy updates, thus preventing drastic
changes and maintaining stability during training.

Figure 6.11: Schematic of Proximal Policy Optimisation (PPO) applied in the context of Reinforcement
Learning from Human Feedback (RLHF) for fine-tuning a Large Language Model (LLM). The process
involves using a prompt dataset to train the LLM. The PPO algorithm adjusts the LLM’s policy based
on rewards provided by the reward model, which is fine-tuned through human feedback. (adapted from
[73])

Python Library - HuggingFace Transformer Reinforcement Learning (TRL4) package supports the
PPO Trainer5 for training language models from the preference data.

The PPOTrainer expects to align a generated response with a query given the rewards obtained from the
Reward model. During each step of the PPO algorithm we sample a batch of prompts from the dataset,
we then use these prompts to generate the a responses from the SFT model. Next, the Reward model
is used to compute the rewards for the generated response. Finally, these rewards are used to optimise
the SFT model using the PPO algorithm. Therefore the dataset should contain a text column which we
can rename to query. Each of the other data-points required to optimise the SFT model are obtained
during the training loop.

6.8.1 Benefits of PPO

1. Stability: Proximal Policy Optimisation (PPO) is designed to ensure stable and reliable policy
updates. The clipped surrogate objective function is central to this stability, as it limits policy
updates to prevent large, potentially destabilising changes. This results in smoother and more
consistent learning.

2. Ease of Implementation: Compared to advanced algorithms TRPO, PPO is relatively straight-
forward to implement. It avoids the need for second-order optimisation techniques, making it more

4https://huggingface.co/docs/trl/en/index
5https://huggingface.co/docs/trl/main/en/ppo_trainer

51

https://huggingface.co/docs/trl/en/index
https://huggingface.co/docs/trl/main/en/ppo_trainer

accessible to less experienced practitioners.

3. Sample Efficiency: PPO achieves data efficiency through its use of the clipped surrogate objec-
tive. This mechanism regulates policy updates, ensuring stability while effectively reusing training
data. Consequently, PPO tends to be more sample-efficient than other reinforcement learning
algorithms, performing well with fewer samples, which is advantageous in scenarios where data
collection is costly or time-consuming.

6.8.2 Limitations of PPO

1. Complexity and Computational Cost: Proximal Policy Optimisation (PPO) involves intricate
policy and value networks, necessitating substantial computational resources for training. This
complexity often results in extended training durations and increased operational expenses.

2. Hyperparameter Sensitivity: PPO’s performance is highly dependent on several hyperparame-
ters, such as the clipping range, learning rate, and discount factor. Achieving optimal performance
requires meticulous tuning of these parameters. Incorrect settings can lead to suboptimal policy
outcomes or instability during the learning process.

3. Stability and Convergence Issues: Although PPO is designed to enhance stability compared
to earlier methods, it can still encounter convergence issues, particularly in highly dynamic or
complex environments. Maintaining stable policy updates remains a significant challenge.

4. Reward Signal Dependence: PPO’s effectiveness is heavily reliant on a well-defined reward
signal to guide the learning process. In scenarios where designing an appropriate reward function
is challenging or impractical, PPO may struggle to attain the desired results.

6.8.3 Tutorial for training models using PPO technique

The tutorial for tuning GPT2 to generate positive movie reviews based on the IMDB dataset using PPO
technique can be found here.

6.9 Direct Preference Optimisation (DPO)

Direct Preference Optimisation (DPO) [74] offers a streamlined approach to aligning language models
(LMs) with human preferences, bypassing the complexity of reinforcement learning from human feedback
(RLHF). Large-scale unsupervised LMs typically lack precise behavioural control, necessitating meth-
ods like RLHF that fine-tune models using human feedback. However, RLHF is intricate, involving the
creation of reward models and the fine-tuning of LMs to maximise estimated rewards, which can be
unstable and computationally demanding. DPO addresses these challenges by directly optimising LMs
with a simple classification objective that aligns responses with human preferences. This approach elim-
inates the need for explicit reward modelling and extensive hyperparameter tuning, enhancing stability
and efficiency. DPO optimises the desired behaviours by increasing the relative likelihood of preferred
responses while incorporating dynamic importance weights to prevent model degeneration. Thus, DPO
simplifies the preference learning pipeline, making it an effective method for training LMs to adhere to
human preferences.

Python Library - HuggingFace TRL package supports the DPO Trainer6 for training language models
from the preference data. The DPO training process requires a dataset formatted in a very specific
manner. If you are utilising the default DPODataCollatorWithPadding data collator, your final dataset
object must include three specific entries, which should be labelled as follows:

• Prompt

• Chosen

• Rejected

HuggingFace offers datasets compatible with DPO and can be accessed here.

6https://huggingface.co/docs/trl/main/en/dpo_trainer

52

https://github.com/huggingface/trl/blob/main/examples/notebooks/gpt2-sentiment.ipynb
https://huggingface.co/datasets?other=dpo
https://huggingface.co/docs/trl/main/en/dpo_trainer

Figure 6.12: Direct Preference Optimisation (DPO) Process Flow. This figure illustrates the Direct
Preference Optimisation (DPO) technique used in fine-tuning large language models. The process begins
with preference data (Yw > Yl), where Yw represents preferred outputs, and Yl represents less preferred
outputs. Through a maximum likelihood estimation process, this preference data is used to optimise
the model’s parameters, resulting in the final large language model (LLM). The method is designed to
improve the alignment of model outputs with desired user preferences, enhancing the model’s effectiveness
in specific tasks. (adapted from [74])

6.9.1 Benefits of DPO

1. Direct Alignment with Human Preferences: DPO directly optimises models to generate
responses that align with human preferences, thereby producing more favourable outputs.

2. Minimised Dependence on Proxy Objectives: In contrast to methods that rely on next-
word prediction, DPO leverages explicit human preferences, resulting in responses that are more
reflective of human behaviour.

3. Enhanced Performance on Subjective Tasks: For tasks requiring subjective judgement, such
as dialogue generation or creative writing, DPO excels in aligning the model with human prefer-
ences.

6.9.2 Best Practices for DPO

1. High-Quality Preference Data: The performance of the model is heavily influenced by the
quality of preference data. Ensure the dataset includes clear and consistent human preferences.

2. Optimal Beta Value: Experiment with various beta values to manage the influence of the
reference model. Higher beta values prioritise the reference model’s preferences more strongly.

3. Hyperparameter Tuning: optimise hyperparameters such as learning rate, batch size, and LoRA
configuration to determine the best settings for your dataset and task.

4. Evaluation on Target Tasks: Continuously assess the model’s performance on the target task
using appropriate metrics to monitor progress and ensure the achievement of desired results.

5. Ethical Considerations: Pay attention to potential biases in the preference data and take steps
to mitigate them, preventing the model from adopting and amplifying these biases.

6.9.3 Tutorial for training models using DPO technique

The tutorial for DPO training, including the full source code of the training scripts for SFT and DPO,
is available here.

6.9.4 Is DPO Superior to PPO for LLM Alignment?

The recent study on DPO superior to PPO for LLM Alignment[75] investigates the efficacy of reward-
based and reward-free methods within RLHF. Reward-based methods, such as those developed by Ope-
nAI, utilise a reward model constructed from preference data and apply actor-critic algorithms like
Proximal Policy Optimisation (PPO) to optimise the reward signal. Conversely, reward-free methods,
including Direct Preference Optimisation (DPO), RRHF, and PRO, forego an explicit reward function,

53

https://github.com/huggingface/blog/blob/main/dpo-trl.md

with DPO focusing exclusively on policy optimisation through a logarithmic representation of the reward
function.

One of the objectives of this study is to determine whether DPO is genuinely superior to PPO in the
RLHF domain. The study combines theoretical and empirical analyses to uncover the inherent limita-
tions of DPO and identify critical factors that enhance PPO’s practical performance in RLHF.

Theoretical findings suggest that DPO may yield biased solutions by exploiting out-of-distribution re-
sponses. Empirical results indicate that DPO’s performance is notably affected by shifts in the distri-
bution between model outputs and the preference dataset. Furthermore, the study highlights that while
iterative DPO may offer improvements over static data training, it still fails to enhance performance
in challenging tasks such as code generation. Ablation studies on PPO reveal essential components for
optimal performance, including advantage normalisation, large batch sizes, and exponential moving av-
erage updates for the reference model’s parameters. These findings form the basis of practical tuning
guidelines, demonstrating PPO’s robust effectiveness across diverse tasks and its ability to achieve state-
of-the-art results in challenging code competition tasks. Specifically, on the CodeContest dataset, the
PPO model with 34 billion parameters surpasses AlphaCode-41B, showing a significant improvement in
performance metrics.

6.10 Optimised Routing and Pruning Operations (ORPO)

Pruning LLMs involves eliminating unnecessary or redundant components from a neural network to
reduce its size and complexity, thereby enhancing its efficiency and performance. This process assists AI
developers and engineers in addressing the challenges associated with deploying AI models in resource-
limited environments, such as mobile devices, edge computing, or embedded systems. Pruning AI models
can be achieved through various techniques, each suited to the type and structure of the neural network,
the pruning objective, and the pruning criterion. The following are common approaches:

1. Weight Pruning: Involves removing weights or connections with minimal magnitude or impact on
the output. This method reduces the number of parameters and operations in the model, although
it may not necessarily decrease memory footprint or latency.

2. Unit Pruning: Eliminates entire units or neurons with the lowest activation or contribution to
the output. This technique can reduce the model’s memory footprint and latency but may require
retraining or fine-tuning to maintain performance.

3. Filter Pruning: Involves removing entire filters or channels in convolutional neural networks that
have the least importance or relevance to the output. This strategy also reduces memory footprint
and latency, though it may necessitate retraining or fine-tuning to preserve performance [76].

6.10.1 When to Prune AI Models?

Pruning AI models can be conducted at various stages of the model development and deployment cycle,
contingent on the chosen technique and objective.

1. Pre-Training Pruning: Leverages prior knowledge or heuristics to determine the optimal network
structure before training begins. This approach can save time and resources during training but
may necessitate careful design and experimentation to identify the best configuration.

2. Post-Training Pruning: Involves using metrics or criteria to assess the importance or impact of
each network component after training. This method helps maintain model performance but may
require additional validation and testing to ensure quality and robustness.

3. Dynamic Pruning: Adjusts the network structure during inference or runtime based on feedback
or signals. This approach can optimise the model for different scenarios or tasks but may involve
higher computational overhead and complexity to implement and execute.

54

6.10.2 Benefits of Pruning

1. Reduced Size and Complexity: Pruning decreases the size and complexity of AI models, making
them easier to store, transmit, and update.

2. Improved Efficiency and Performance: Pruned models are faster, more energy-efficient, and
more reliable.

3. Enhanced generalisation and Accuracy: Pruning can make models more robust, less prone
to overfitting, and more adaptable to new data or tasks.

6.10.3 Challenges of Pruning

1. Balance Between Size Reduction and Performance: Achieving the optimal balance between
reducing size and complexity and maintaining performance is challenging; excessive or insufficient
pruning can degrade model quality and functionality.

2. Choosing Appropriate Techniques: Selecting the right pruning technique, criterion, and objec-
tive for the specific neural network type and structure is crucial, as different methods can produce
varying effects and outcomes.

3. Evaluation and Validation: Pruned models need thorough evaluation and validation to ensure
pruning has not introduced errors, biases, or vulnerabilities that could impact performance and
robustness.

55

Chapter 7

Stage 5: Evaluation and Validation

7.1 Steps Involved in Evaluating and Validating Fine-Tuned
Models

1. Set Up Evaluation Metrics: Choose appropriate evaluation metrics, such as cross-entropy, to
measure the difference between the predicted and actual distributions of the data.

2. Interpret Training Loss Curve: Monitor and analyse the training loss curve to ensure the
model is learning effectively, avoiding patterns of underfitting or overfitting.

3. Run Validation Loops: After each training epoch, evaluate the model on the validation set to
compute relevant performance metrics and track the model’s generalisation ability.

4. Monitor and Interpret Results: Consistently observe the relationship between training and
validation metrics to ensure stable and effective model performance.

5. Hyperparameter Tuning and Adjustments: Adjust key hyperparameters such as learning
rate, batch size, and number of training epochs to optimise model performance and prevent over-
fitting.

7.2 Setting Up Evaluation Metrics

Cross-entropy is a key metric for evaluating LLMs during training or fine-tuning. Originating from
information theory, it quantifies the difference between two probability distributions.

7.2.1 Importance of Cross-Entropy for LLM Training and Evaluation

Cross-entropy is crucial for training and fine-tuning LLMs. It serves as a loss function, guiding the model
to produce high-quality predictions by minimising discrepancies between the predicted and actual data.
In LLMs, each potential word functions as a separate class, and the model’s task is to predict the next
word given the context. This task is inherently complex, requiring the model to understand syntax,
semantics, and context deeply.

7.2.2 Beyond Cross-Entropy: Advanced LLM Evaluation Metrics

While cross-entropy remains fundamental, evaluating LLMs effectively necessitates additional metrics
tailored to various aspects of model performance. Here are some advanced metrics employed in LLM
evaluation:

Perplexity

Perplexity measures how well a probability distribution or model predicts a sample. In the context of
LLMs, it evaluates the model’s uncertainty about the next word in a sequence. Lower perplexity indicates
better performance, as the model is more confident in its predictions.

56

Factuality

Factuality assesses the accuracy of the information produced by the LLM. It is particularly important for
applications where misinformation could have serious consequences. Higher factuality scores correlate
with higher output quality.

LLM Uncertainty

LLM uncertainty is measured using log probability, helping to identify low-quality generations. Lower
uncertainty indicates higher output quality. This metric leverages the log probability of each generated
token, providing insights into the model’s confidence in its responses.

Prompt Perplexity

This metric evaluates how well the model understands the input prompt. Lower prompt perplexity
indicates a clear and comprehensible prompt, which is likely to yield better model performance.

Context Relevance

In retrieval-augmented generation (RAG) systems, context relevance measures how pertinent the re-
trieved context is to the user query. Higher context relevance improves the quality of generated responses
by ensuring that the model utilises the most relevant information.

Completeness

Completeness assesses whether the model’s response fully addresses the query based on the provided
context. High completeness ensures that all relevant information is included in the response, enhancing
its utility and accuracy.

Chunk Attribution and Utilisation

These metrics evaluate how effectively the retrieved chunks of information contribute to the final response.
Higher chunk attribution and utilisation scores indicate that the model is efficiently using the available
context to generate accurate and relevant answers.

Data Error Potential

This metric quantifies the difficulty the model faces in learning from the training data. Higher data
quality results in lower error potential, leading to better model performance.

Safety Metrics

Safety metrics ensure that the LLM’s outputs are appropriate and non-harmful. These are included in
the final sections of the chapter.
Integrating these advanced metrics provides a holistic view of LLM performance, enabling developers to
fine-tune and optimise models more effectively. By employing a metrics-first approach, it is possible to
ensure that LLMs not only produce accurate and high-quality outputs but also do so consistently and
reliably across diverse applications1.

7.3 Understanding the Training Loss Curve

The training loss curve plots the loss value against training epochs and is essential for monitoring model
performance.

1https://www.rungalileo.io/blog/metrics-first-approach-to-llm-evaluation

57

https://www.rungalileo.io/blog/metrics-first-approach-to-llm-evaluation

7.3.1 Interpreting Loss Curves

An ideal training loss curve shows a rapid decrease in loss during initial stages, followed by a gradual
decline and eventual plateau. Specific patterns to look for include:

1. Underfitting: High loss value that does not decrease significantly over time, suggesting the model
cannot learn the data.

2. Overfitting: Decreasing training loss with increasing validation loss, indicating the model mem-
orises the training data.

3. Fluctuations: Significant variations may indicate a high learning rate or noisy gradients.

Figure 7.1: Example training loss curve showing the decline in loss over iterations during the fine-tuning
of Llama2 13B on a financial Q/A dataset. The curve illustrates the effectiveness of the fine-tuning
process in reducing the loss and improving model performance.

7.3.2 Avoiding Overfitting

Techniques to prevent overfitting include:

1. Regularisation: Adds a penalty term to the loss function to encourage smaller weights.

2. Early Stopping: Stops training when validation performance no longer improves.

3. Dropout: Randomly deactivates neurons during training to reduce sensitivity to noise.

4. Cross-Validation: Splits data into multiple subsets for training and validation to assess model
generalisation.

5. Batch Normalisation: Normalises inputs to each layer during training to stabilise the learning
process.

6. Larger Datasets and Batch Sizes: Reduces overfitting by increasing the amount of diverse
data and batch sizes.

58

7.3.3 Sources of Noisy Gradients

Noisy gradients are common during the training of machine learning models, including LLMs. They arise
from variability in gradient estimates due to stochastic gradient descent and its variants. Strategies to
manage noisy gradients include:

1. Learning Rate Scheduling: Gradually decreasing the learning rate during training can reduce
the impact of noisy gradients.

2. Gradient Clipping: Setting a threshold for gradient values prevents large updates that can
destabilise training.

7.4 Running Validation Loops

Validation loops provide an unbiased evaluation of model performance. Typical steps include:

1. Split Data: Divide the dataset into training and validation sets.

2. Initialise Validation: Evaluate the model on the validation set at the end of each epoch.

3. Calculate Metrics: Compute relevant performance metrics, such as cross-entropy loss.

4. Record Results: Log validation metrics for each epoch.

5. Early Stopping: Optionally stop training if validation loss does not improve for a predefined
number of epochs.

7.5 Monitoring and Interpreting Results

Monitoring validation results involves analysing trends in validation metrics over epochs. Key aspects
include:

1. Consistent Improvement: Indicates good model generalisation if both training and validation
metrics improve and plateau.

2. Divergence: Suggests overfitting if training metrics improve while validation metrics deteriorate.

3. Stability: Ensure validation metrics do not fluctuate significantly, indicating stable training.

7.6 Hyperparameter Tuning and Other Adjustments

Fine-tuning involves adjusting key hyperparameters to achieve optimal performance. Important hyper-
parameters include:

1. Learning Rate: Determines the step size for updating model weights. A good starting point is
2e-4, but this can vary.

2. Batch Size: Larger batch sizes lead to more stable updates but require more memory.

3. Number of Training Epochs: Balancing the number of epochs ensures the model learns suffi-
ciently without overfitting or underfitting.

4. Optimiser: Optimisers like Paged ADAM optimise memory usage, advantageous for large models.

Other tunable parameters include dropout rate, weight decay, and warmup steps.

7.6.1 Data Size and Quality

The efficacy of LLMs is directly impacted by the quality of their training data. Ensuring that datasets
are clean, relevant, and adequate is crucial. Data cleanliness refers to the absence of noise, errors, and
inconsistencies within the labelled data. For example, having a phrase like “This article suggests. . . ”
multiple times in the training data can corrupt the response of LLMs and add a bias towards using this
specific phrase more often and in inappropriate situations.

59

7.7 Benchmarking Fine-Tuned LLMs

Modern LLMs are assessed using standardised benchmarks such as GLUE, SuperGLUE, HellaSwag,
TruthfulQA, and MMLU (See Table 7.1). These benchmarks evaluate various capabilities and provide
an overall view of LLM performance.

Benchmark Description Reference URL
GLUE Provides a standardised set of diverse NLP tasks to

evaluate the effectiveness of different language mod-
els

Source

SuperGLUE Compares more challenging and diverse tasks with
GLUE, with comprehensive human baselines

Source

HellaSwag Evaluates how well an LLM can complete a sentence Source
TruthfulQA Measures truthfulness of model responses Source
MMLU Evaluates how well the LLM can multitask Source
IFEval Tests a model’s ability to follow explicit instructions,

focusing on formatting adherence
Source

BBH (Big Bench Hard) 23 challenging tasks from the BigBench dataset to
evaluate LLMs using objective metrics

Source

MATH Compilation of high-school level competition prob-
lems formatted using LaTeX and Asymptote

Source

GPQA Challenging knowledge dataset with questions
crafted by PhD-level domain experts

Source

MuSR Dataset with complex problems requiring models to
integrate reasoning with long-range context parsing

Source

MMLU-PRO Refined version of MMLU with higher quality and
more challenging multiple-choice questions

Source

ARC Measures machine reasoning with a dataset of grade-
school science questions

Source

COQA A dataset for building conversational question-
answering systems

Source

DROP Evaluates the ability to perform discrete reasoning
over paragraphs of text

Source

SQuAD A reading comprehension dataset for evaluating
models’ ability to answer questions based on pas-
sages of text

Source

TREC A benchmark for evaluating text retrieval method-
ologies

Source

WMT A dataset and benchmark for evaluating machine
translation models

Source

XNLI A dataset for evaluating cross-lingual language un-
derstanding

Source

PiQA A dataset for evaluating models’ understanding of
physical interactions

Source

Winogrande A large-scale dataset for evaluating commonsense
reasoning

Source

Table 7.1: Detailed Overview of Benchmark Datasets Used for Evaluating Language Model Performance.

As LLMs evolve, so do benchmarks, with new standards such as BigCodeBench challenging current
benchmarks and setting new standards in the domain. Given the diverse nature of LLMs and the tasks
they can perform, the choice of benchmarks depends on the specific tasks the LLM is expected to handle.
For generic applicability, various benchmarks for different downstream applications and reasoning should
be utilised. For domain/task-specific LLMs, benchmarking can be limited to relevant benchmarks like
BigCodeBench for coding.

60

https://gluebenchmark.com/
https://super.gluebenchmark.com/
https://rowanzellers.com/hellaswag/
https://github.com/sylinrl/TruthfulQA
https://github.com/hendrycks/test
https://github.com/google-research/google-research/tree/master/instruction_following_eval
https://github.com/suzgunmirac/BIG-Bench-Hard
https://github.com/hendrycks/apps
https://github.com/idavidrein/gpqa
https://github.com/Zayne-Sprague/MuSR
https://github.com/TIGER-AI-Lab/MMLU-Pro
https://allenai.org/data/arc
https://stanfordnlp.github.io/coqa/
https://allennlp.org/drop
https://rajpurkar.github.io/SQuAD-explorer/
https://trec.nist.gov/
http://www.statmt.org/wmt20/
https://cims.nyu.edu/~sbowman/xnli/
https://yonatanbisk.com/piqa/
https://mosaic.allenai.org/projects/winogrande

7.8 Evaluating Fine-Tuned LLMs on Safety Benchmark

The safety aspects of Large Language Models (LLMs) are increasingly scrutinised due to their ability
to generate harmful content when influenced by jailbreaking prompts. These prompts can bypass the
embedded safety and ethical guidelines within the models, similar to code injection techniques used in
traditional computer security to circumvent safety protocols. Notably, models like ChatGPT, GPT-
3, and InstructGPT are vulnerable to such manipulations that remove content generation restrictions,
potentially violating OpenAI’s guidelines. This underscores the necessity for robust safeguards to ensure
LLM outputs adhere to ethical and safety standards.
DecodingTrust [77] provides a comprehensive evaluation of the trustworthiness of LLMs, notably com-
paring GPT-4 with GPT-3.5 (ChatGPT). This evaluation spans several critical areas:

1. Toxicity: Optimisation algorithms and generative models are employed to create challenging
prompts that test the model’s ability to avoid generating harmful content.

2. Stereotype Bias: An array of demographic groups and stereotype topics are utilised to assess
model bias, helping to understand and mitigate prejudiced responses.

3. Adversarial Robustness: The resilience of models against adversarial attacks is tested by chal-
lenging them with sophisticated algorithms intended to deceive or mislead.

4. Out-of-Distribution (OOD) Robustness: Models are evaluated on their ability to handle
inputs that differ significantly from their training data, such as poetic or Shakespearean styles.

5. Robustness to Adversarial Demonstrations: Demonstrations that contain misleading infor-
mation are used to test the model’s robustness across various tasks.

6. Privacy: Various levels of privacy evaluation assess how well models safeguard sensitive informa-
tion during interactions and understand privacy-related contexts.

7. Hallucination Detection: Identifies instances where the model generates information not grounded
in the provided context or factual data. Lower hallucination rates improve the reliability and trust-
worthiness of the LLM’s outputs.

8. Tone Appropriateness: Assesses whether the model’s output maintains an appropriate tone for
the given context. This is particularly important for applications in customer service, healthcare,
and other sensitive areas.

9. Machine Ethics: Ethical assessments involve testing models with scenarios that require moral
judgments, using datasets like ETHICS and Jiminy Cricket.

10. Fairness: The fairness of models is evaluated by generating tasks that vary protected attributes,
ensuring equitable responses across different demographic groups.

The dataset employed for evaluating the aforementioned eight safety dimensions can be found here.
In partnership with HuggingFace, the LLM Safety Leaderboard utilises DecodingTrust’s framework to
provide a unified evaluation platform for LLM safety. This allows researchers and practitioners to
better understand the capabilities, limitations, and risks associated with LLMs. Users are encouraged to
submit their models to HuggingFace for evaluation, ensuring they meet the evolving standards of safety
and reliability in the field.

7.9 Evaluating Safety of Fine-Tuned LLM using AI Models

7.9.1 Llama Guard

Llama Guard 2[78] is a safeguard model built on LLMs for managing risks in conversational AI applica-
tions. It effectively categorises both input prompts and responses from AI agents using a detailed safety
risk taxonomy tailored to identify potential legal and policy risks in AI interactions. It utilises a detailed
safety risk taxonomy designed to identify and manage potential legal and policy risks in interactions
involving conversational AI. This taxonomy enables effective classification in areas such as:

• Violence & Hate, addressing content that could incite violent acts or discrimination.

61

https://github.com/AI-secure/DecodingTrust/tree/main/data
https://huggingface.co/blog/leaderboard-decodingtrust

• Sexual Content, targeting sexually explicit material or behaviour, especially involving minors.

• Guns & Illegal Weapons, concerning the promotion or instruction of illegal armaments.

• Regulated or Controlled Substances, covering illegal drugs and other controlled substances.

• Suicide & Self-Harm, aimed at content that could encourage self-destructive behaviour.

• Criminal Planning, for content that could assist in planning or executing criminal activities.

The core of Llama Guard 2 is its robust framework that allows for both prompt and response classifica-
tion, supported by a high-quality dataset that enhances its ability to monitor conversational exchanges.
Operating on a Llama2-7b model, Llama Guard 2 has been instruction-tuned to deliver strong perfor-
mance on benchmarks like the OpenAI Moderation Evaluation dataset and ToxicChat, where it matches
or surpasses the capabilities of existing content moderation tools.
The model supports multi-class classification and generates binary decision scores. Its instruction fine-
tuning allows for extensive customisation of tasks and adaptation of output formats. This feature enables
users to modify taxonomy categories to align with specific use cases and supports flexible prompting
capabilities, including zero-shot and few-shot applications. The adaptability and effectiveness of Llama
Guard make it a vital resource for developers and researchers. By making its model weights publicly
available, Llama Guard 2 encourages ongoing development and customisation to meet the evolving needs
of AI safety within the community.
Llama Guard 3 represents the latest advancement over Llama Guard 2, having been fine-tuned on the
Llama 3 8b model. The key difference between the two versions is that Llama Guard 3 expands upon
the capabilities of Llama Guard 2 by introducing three new categories: Defamation, Elections, and
Code Interpreter Abuse.
Python Library: Llama Guard 3 is accessible via HuggingFace’s AutoModelForCausalLM.2 A detailed
tutorial is available at this link. Please note that access to the model requires submitting a request to
Hugging Face with the user details. Additionally, the model weights can be downloaded from the Meta
platform by providing user details, and the link can be found here.
The prompt formats for these two models also differ, with the specific formats for Llama Guard 2 available
here and Llama Guard 3 is accessible here.

7.9.2 Shield Gemma

ShieldGemma [79] is an advanced content moderation model built on the Gemma2 platform, designed
to enhance the safety and reliability of interactions between LLMs and users. It effectively filters both
user inputs and model outputs to mitigate key harm types, including offensive language, hate speech,
misinformation, and explicit content. The model’s scalability, with options ranging from 2B to 27B
parameters, allows for tailored applications that meet specific needs, such as reducing latency in online
safety applications or enhancing performance in complex decision-making tasks.
A distinguishing feature of ShieldGemma is its novel approach to data curation. It leverages synthetic
data generation techniques to create high-quality datasets that are robust against adversarial prompts
and fair across diverse identity groups. This reduces the need for extensive human annotation, streamlin-
ing the data preparation process while ensuring the model’s effectiveness. Compared to existing content
moderation tools like LlamaGuard and WildGuard, which typically offer fixed-size models and limited
customisation, ShieldGemma’s flexible architecture and advanced data handling capabilities provide a
more adaptable and efficient solution. These innovations position ShieldGemma as a significant ad-
vancement in LLM-based content moderation, offering developers and researchers a versatile tool that
promotes safer and more reliable AI interactions across various platforms.
Python Library: The ShieldGemma series is available on HuggingFace via AutoModelForCausalLM.
The models can be accessed here. A tutorial for running ShieldGemma 2B on Google Colab can be found
here. Similar to Llama Guard series, ShieldGemma series also has guidelines for prompting and it can
be found here.

7.9.3 WILDGUARD

WILDGUARD [80] is an innovative open-source tool developed to enhance the safety of interactions
with large language models (LLMs). This tool addresses three critical moderation tasks: detecting

2https://huggingface.co/docs/transformers/en/model_doc/auto#transformers.AutoModelForCausalLM

62

https://huggingface.co/meta-llama/Llama-Guard-3-8B
https://llama.meta.com/llama-downloads
https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-guard-2
https://llama.meta.com/docs/model-cards-and-prompt-formats/llama-guard-3
https://huggingface.co/google
https://colab.research.google.com/github/google/generative-ai-docs/blob/main/site/en/responsible/docs/safeguards/shieldgemma_on_keras.ipynb
https://ai.google.dev/gemma/docs/shieldgemma/model_card
https://huggingface.co/docs/transformers/en/model_doc/auto#transformers.AutoModelForCausalLM

harmful intent in user prompts, identifying safety risks in model responses, and determining when a
model appropriately refuses unsafe requests. Central to its development is WILDGUARD MIX3, a
meticulously curated dataset comprising 92,000 labelled examples that include both benign prompts and
adversarial attempts to bypass safety measures. The dataset is divided into WILDGUARD TRAIN, used
for training the model, and WILDGUARD TEST, consisting of high-quality human-annotated examples
for evaluation.
The WILDGUARD model itself is fine-tuned on the Mistral-7B language model using the WILDGUARD
TRAIN dataset, enabling it to perform all three moderation tasks in a unified, multi-task manner. Results
show that WILDGUARD surpasses existing open-source moderation tools in effectiveness, particularly
excelling in handling adversarial prompts and accurately detecting model refusals. On many benchmarks,
WILDGUARD’s performance is on par with or exceeds that of GPT-4, a much larger, closed-source
model.
The quick start guide and additional information on WILDGUARD are available in GitHub and it can
be accessed here.

3https://huggingface.co/datasets/allenai/wildguardmix

63

https://github.com/allenai/wildguard
https://huggingface.co/datasets/allenai/wildguardmix

Chapter 8

Stage 6: Deployment

8.1 Steps Involved in Deploying the Fine-Tuned Model

1. Model Export: Save the fine-tuned model in a suitable format (e.g., ONNX, TensorFlow Saved-
Model, PyTorch) for deployment.

2. Infrastructure Setup: Prepare the deployment environment, including necessary hardware, cloud
services, and containerisation tools.

3. API Development: Create APIs to allow applications to interact with the model, facilitating
prediction requests and responses.

4. Deployment: Deploy the model to the production environment, making it accessible to end-users
or applications.

8.2 Cloud-Based Providers for LLM Deployment

Cloud-based large language model (LLM) inferencing frequently employs a pricing model based on the
number of tokens processed. Users are charged according to the volume of text analysed or generated
by the model. While this pricing structure can be cost-effective for sporadic or small-scale usage, it may
not always be economical for larger or continuous workloads.
In some scenarios, hosting an LLM solution in-house may offer better long-term cost savings, especially if
there is consistent or high-volume usage. Managing your own infrastructure provides greater control over
resource allocation and allows for cost optimisation based on specific needs. Additionally, self-hosting
offers advantages in terms of data privacy and security, as sensitive information remains within your own
environment.

However, it is crucial to carefully evaluate the total cost of ownership when comparing cloud-based
solutions with self-hosted alternatives. This evaluation should consider factors such as hardware expenses,
maintenance, and operational overheads. Ultimately, the decision should be informed by a comprehensive
cost-benefit analysis, considering both short-term affordability and long-term sustainability.
Several companies offer deployment services for large language models (LLMs), providing a range of
tools and platforms to efficiently implement and manage these models. Here’s a detailed list of some
prominent providers and their services:

• Amazon Web Services (AWS)

– Amazon Bedrock: This service offers a suite of foundation models including Amazon Ti-
tan, which supports various NLP tasks such as summarisation and text generation. Bedrock
integrates seamlessly with other AWS services for scalable and secure deployment.

– Amazon SageMaker: Provides an end-to-end machine learning service that includes tools
for building, training, and deploying LLMs. SageMaker JumpStart offers pre-trained models
and step-by-step guides to simplify the deployment process.

64

– Tutorial: This tutorial explains the deployment of LLM Agents on Amazon Bedrock. An-
other tutorial explains end-to-end fine-tuning and deployment of LLMs with Sagemaker Can-
vas and Amazon Bedrock. General guidelines of Amazon Bedrock for LLM users can be found
here.

• Microsoft Azure

– Azure OpenAI Service: This service offers access to OpenAI’s powerful models like GPT-
3.5 and Codex. It provides capabilities for embedding, image generation with DALL-E, and
speech-to-text with Whisper. Azure’s integration with OpenAI models ensures robust deploy-
ment options for various applications.

– Azure Machine Learning: Supports the deployment of custom and pre-trained models,
offering tools for model management, deployment, and monitoring. It integrates with Azure’s
broader ecosystem for scalable and secure ML operations.

– Tutorial: Here is the tutorial for creating and deploying an Azure OpenAI Service in Mi-
crosoft Azure platform.

• Google Cloud Platform (GCP)

– Vertex AI: This platform allows the deployment of large language models with tools for
training, tuning, and serving models. Vertex AI supports models like BERT and GPT-3,
providing extensive MLOps capabilities for end-to-end management.

– Cloud AI API: Offers APIs for NLP tasks such as translation, sentiment analysis, and
entity recognition. These APIs are backed by Google’s powerful infrastructure, ensuring high
performance and reliability.

– Tutorial: This document contains a tutorial for training and deploying an LLM in GCP.

• Hugging Face

– Inference API: This service allows users to deploy and manage LLMs hosted on Hugging
Face’s infrastructure. It supports various models from the Transformers library and provides
an easy-to-use API for integrating these models into applications.

– Spaces: A collaborative environment where users can deploy and share models using Hugging
Face’s hosting platform. It supports deploying custom models and interactive demos.

– Tutorial: This document contains a tutorial for training and deploying an LLM using Hug-
gingFace Inference API.

• Other Platforms

– OpenLLM: Provides deployment solutions here.

– Deepseed: Offers deployment solutions here.

8.3 Techniques for Optimising Model Performance During In-
ference

Optimising model performance during inference is crucial for the efficient deployment of large language
models (LLMs). The following advanced techniques offer various strategies to enhance performance,
reduce latency, and manage computational resources effectively.

8.3.1 Traditional On-Premises GPU-Based Deployments

This conventional approach to deploying large language models (LLMs) involves using Graphics Process-
ing Units (GPUs) due to their parallel processing capabilities, which enable fast and efficient inference.
However, this method requires upfront hardware investment and may not be suitable for applications
with fluctuating demand or limited budgets. GPU-based deployments face several challenges:

1. Resource utilisation may suffer during periods of low demand due to idle servers.

2. Scaling up or down often requires physical hardware modifications, which can be time-consuming.

65

https://docs.aws.amazon.com/bedrock/latest/userguide/agents-deploy.html
https://aws.amazon.com/blogs/machine-learning/fine-tune-and-deploy-language-models-with-amazon-sagemaker-canvas-and-amazon-bedrock/
https://docs.aws.amazon.com/bedrock/latest/userguide/general-guidelines-for-bedrock-users.html
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/create-resource?pivots=web-portal
https://cloud.google.com/vertex-ai/docs/tutorials/tabular-bq-prediction/train-and-deploy-model
https://huggingface.co/blog/inference-endpoints-llm
https://github.com/bentoml/OpenLLM?ref=content.whylabs.ai
https://github.com/microsoft/DeepSpeed?ref=content.whylabs.ai

3. Centralised servers can introduce single points of failure and scalability limitations.

To mitigate these issues, strategies such as load balancing between multiple GPUs, fallback routing, model
parallelism, and data parallelism can be employed to achieve better results. Optimisation techniques like
distributed inference using PartialState from accelerate can further enhance efficiency.

Example use case: Large-Scale NLP Application

For instance, a large e-commerce platform implemented traditional on-premises GPU-based deployment
to handle millions of customer queries daily. By utilising load balancing and model parallelism, they
were able to achieve a significant reduction in latency and improved customer satisfaction.

8.3.2 Distributed LLM: Torrent-Style Deployment and Parallel Forward Passes

An innovative deployment strategy for large language models (LLMs) involves distributing them across
multiple GPUs in a decentralised, torrent-style manner. Libraries like Petals1 can perform this task.
Petals functions as a decentralised pipeline designed for rapid neural network inference by partitioning
the model into distinct blocks or layers, which are distributed across multiple geographically dispersed
servers. Users can connect their own GPUs to this network, acting as both contributors and clients who
can access and apply the model to their data.

When a client request is received, the network routes it through a series of servers optimised to minimise
the total forward pass time. Each server dynamically selects the most optimal set of blocks, adapting to
the current bottlenecks in the pipeline. This framework leverages decentralisation principles to distribute
computational load across diverse regions, sharing computational resources and GPUs in a way that
reduces the financial burden on individual organisations. This collaborative approach not only optimises
resource utilisation but also fosters a global community dedicated to shared AI goals.

Figure 8.1: Conceptual Representation of Distributed LLM Deployment Using a Torrent-Style Approach.
This figure illustrates the distributed deployment of a Large Language Model (LLM) using a torrent-style
approach, where multiple GPT model layers (stacks) are distributed across different nodes (represented
by chefs) and perform parallel forward passes. The process mimics the flow of orders from customers
(input data) through restaurants (intermediate processing layers) to chefs (model layers), highlighting
the efficiency of parallel processing and distributed computing in handling large-scale language models.
This approach is essential for reducing inference latency and improving the scalability of LLMs across
diverse computational environments. (adapted from [81])

1https://github.com/bigscience-workshop/petals

66

https://github.com/bigscience-workshop/petals

Example use case: Global Research Collaboration

A consortium of research institutions implemented a distributed LLM using the Petals framework to
analyse large datasets across different continents. By leveraging the decentralised nature of Petals, they
achieved high efficiency in processing and collaborative model development.

8.3.3 WebGPU-Based Deployment of LLM

This deployment option for large language models (LLMs) involves utilising WebGPU, a web standard
that provides a low-level interface for graphics and compute applications on the web platform. With
WebGPU, organisations can harness the power of GPUs directly within web browsers, enabling effi-
cient inference for LLMs in web-based applications. WebGPU enables high-performance computing and
graphics rendering directly within the client’s web browser. It allows developers to utilise the client’s
GPU for tasks such as rendering graphics, accelerating computational workloads, and performing par-
allel processing, all without the need for plugins or additional software installations. This capability
permits complex computations to be executed efficiently on the client’s device, leading to faster and
more responsive web applications.

8.3.4 LLM on WebGPU using WebLLM

Clients can access powerful large language models and chatbots directly in their browser, leveraging
WebGPU acceleration. This approach eliminates server dependencies, providing users with exceptional
performance and enhanced privacy. WebLLM facilitates the use of large language models directly in the
client’s browser to perform tasks such as filtering out personally identifiable information (PII) or named
entity recognition (NER) on data without transmitting it over the network. This ensures enhanced
privacy and security by retaining sensitive information on the client side.

67

Figure 8.2: WebGPU-Based Deployment of LLM: This diagram illustrates the architecture of deploying
a large language model (LLM) using WebGPU technology. The CPU manages the distribution of prompt
inferencing tasks to multiple GPUs, which then process these prompts in parallel, enhancing efficiency
and scalability in LLM deployment across web-based platforms. (adapted from [81])

Additional Use Cases for WebLLM

1. Language Translation: Enable real-time translation of text directly in the browser, allowing
users to communicate across language barriers without transmitting their messages over the net-
work.

2. Code Autocompletion: Develop code editors that provide intelligent autocompletion suggestions
based on context, leveraging WebLLM to understand and predict code snippets.

3. Customer Support Chatbots: Implement chatbots on websites to provide instant customer
support and answer frequently asked questions without relying on external servers.

4. Data Analysis and Visualisation: Create browser-based tools for analysing and visualising
data, with WebLLM assisting in data processing, interpretation, and generating insights.

5. Personalised Recommendations: Develop recommendation engines that offer personalised
product recommendations, content suggestions, or movie/music recommendations based on user
preferences and behaviour.

6. Privacy-Preserving Analytics: Develop analytics platforms that perform data analysis directly
in the browser, ensuring that sensitive information remains on the client side and reducing the risk
of data breaches.

68

Example use case: Privacy-Focused Web Application

A healthcare startup deployed an LLM using WebLLM to process patient information directly within the
browser, ensuring data privacy and compliance with healthcare regulations. This approach significantly
reduced the risk of data breaches and improved user trust.

8.3.5 Quantised LLMs

Model quantisation is a technique utilised to reduce the size of an AI model by representing its parameters
with fewer bits. In traditional machine learning models, each parameter (e.g., weights and biases in neural
networks) is typically stored as a 32-bit floating-point number, necessitating significant memory and
computational resources, particularly for large models. Quantisation aims to alleviate this by reducing
the precision of these parameters. For instance, instead of storing each parameter as a 32-bit floating-
point number, they may be represented using fewer bits, such as 8-bit integers. This compression
reduces the memory footprint of the model, making it more efficient to deploy and execute, especially in
resource-constrained environments like mobile devices or edge devices. QLoRA is a popular example of
this quantisation for LLMs and can be used to deploy LLMs locally or host them on external servers.

Example use case: Edge Device Deployment

A tech company used quantised LLMs to deploy advanced NLP models on mobile devices, enabling offline
functionality for applications such as voice recognition and translation. This deployment significantly
improved app performance and user experience by reducing latency and reliance on internet connectivity.

8.3.6 vLLMs

The vLLM2 system efficiently handles requests by employing a block-level memory management method
and preemptive request scheduling. It utilises the PagedAttention[82] algorithm to manage the key-
value (KV) cache, thereby reducing memory waste and fragmentation. By batching requests and sharing
physical blocks across multiple samples, vLLM optimises memory usage and enhances throughput. Per-
formance tests indicate that vLLM surpasses other systems in various decoding scenarios. Consider a
transformer-based model tasked with summarising a lengthy book. Traditional transformers process the
entire book simultaneously, which can be both computationally and memory-intensive, especially for ex-
tended texts. With PagedAttention, the book is divided into smaller segments or pages. The model then
focuses on summarising one page at a time, rather than the entire book simultaneously. This approach
reduces computational complexity and memory requirements, making it more feasible to process and
summarise lengthy texts efficiently.

Example use case: High-Volume Content Generation

A content marketing agency implemented vLLMs for generating large volumes of SEO-optimised content.
By leveraging the efficient memory management of vLLMs, they were able to handle multiple concurrent
requests, significantly increasing their content production rate while maintaining high quality.

8.4 Key Considerations for Deployment of LLMs

Deploying large language models (LLMs) effectively requires careful planning and consideration of various
factors to ensure optimal performance, cost-efficiency, and security. Key considerations include:

• Infrastructure Requirements:

– Compute Resources: Ensure adequate CPU/GPU resources to handle the model’s compu-
tational demands. High-performance GPUs are typically required for efficient inference and
training.

– Memory: LLMs, especially those with billions of parameters, require substantial memory.
Memory management techniques such as quantisation and model parallelism can be employed
to optimise usage.

2https://docs.vllm.ai/en/stable/

69

https://docs.vllm.ai/en/stable/

• Scalability:

– Horizontal Scaling: Plan for horizontal scaling to distribute the load across multiple servers,
which can improve performance and handle increased demand.

– Load Balancing: Implement load balancing strategies to ensure even distribution of requests
and prevent any single point of failure.

• Cost Management:

– Token-based Pricing: Understand the cost implications of token-based pricing models of-
fered by cloud providers. This model charges based on the number of tokens processed, which
can become expensive with high usage.

– Self-Hosting: Evaluate the costs and benefits of self-hosting versus cloud hosting. Self-
hosting might offer long-term savings for consistent, high-volume usage but requires significant
upfront investment in hardware and ongoing maintenance.

• Performance Optimisation:

– Latency: Minimise latency to ensure real-time performance, particularly for applications
requiring instant responses like chatbots and virtual assistants.

– Throughput: Maximise throughput to handle a high volume of requests efficiently. Tech-
niques like batching and efficient memory management (e.g., PagedAttention) can help.

• Security and Privacy:

– Data Security: Implement robust security measures to protect sensitive data, including
encryption and secure access controls.

– Privacy: Ensure compliance with data privacy regulations by keeping sensitive data within
your environment if self-hosting, or ensuring cloud providers comply with relevant privacy
standards.

• Maintenance and Updates:

– Model Updates: Regularly update the model to incorporate new data and improve perfor-
mance. Automate this process if possible to reduce manual effort.

– System Maintenance: Plan for regular maintenance of the infrastructure to prevent down-
time and ensure smooth operation.

• Flexibility and Customisation:

– Fine-Tuning: Allow for model fine-tuning to adapt the LLM to specific use cases and
datasets. Fine-tuning can improve accuracy and relevance in responses.

– API Integration: Ensure the deployment platform supports easy integration with existing
systems and workflows through APIs and SDKs.

• User Management:

– Access Control: Implement role-based access control to manage who can deploy, use, and
maintain the LLM.

– Monitoring and Logging: Set up comprehensive monitoring and logging to track usage,
performance, and potential issues. This helps in proactive troubleshooting and optimisation.

• Compliance:

– Regulatory Compliance: Ensure that the deployment adheres to all relevant regulatory
and legal requirements, including data protection laws like GDPR, HIPAA, etc.

– Ethical Considerations: Implement ethical guidelines to avoid biases and ensure the re-
sponsible use of LLMs.

• Support and Documentation:

– Technical Support: Choose a deployment platform that offers robust technical support and
resources.

– Documentation: Provide comprehensive documentation for developers and users to facili-
tate smooth deployment and usage.

70

Chapter 9

Stage 7: Monitoring and
Maintenance

9.1 Steps Involved in Monitoring and Maintenance of Deployed
Fine-Tuned LLMs

Continuous monitoring and maintenance of fine-tuned LLMs are essential to ensure their optimal per-
formance, accuracy, and security over time. Below are the key steps involved in this process:

1. Setup Initial Baselines: Establish initial performance baselines by evaluating the model on a
comprehensive test dataset. Record metrics such as accuracy, latency, throughput, and error rates
to serve as reference points for future monitoring.

2. Performance Monitoring: Implement systems to continuously track key performance metrics
such as response time, server load, and token usage. Regularly compare these metrics against the
established baselines to detect any deviations.

3. Accuracy Monitoring: Continuously evaluate the model’s predictions against a ground truth
dataset. Use metrics like precision, recall, F1 score, and cross-entropy loss to ensure the model
maintains high accuracy levels.

4. Error Monitoring: Track and analyse errors, including runtime errors and prediction errors.
Implement logging mechanisms to capture detailed information about each error for troubleshooting
and improvement.

5. Log Analysis: Maintain comprehensive logs for each prediction request and response, including
input data, output predictions, response times, and encountered errors. Regularly review logs to
identify patterns and areas for improvement.

6. Alerting Mechanisms: Set up automated alerting systems to notify stakeholders of any anomalies
or deviations from expected performance metrics. Integrate alerts with communication tools like
Slack, PagerDuty, or email for timely responses.

7. Feedback Loop: Establish a feedback loop with end-users to gather insights on model performance
and user satisfaction. Use this feedback to continuously refine and improve the model.

8. Security Monitoring: Implement robust security measures to monitor for threats, including
unauthorised access, data breaches, and adversarial attacks. Use encryption, access control, and
regular security audits to protect the model and data.

9. Drift Detection: Continuously monitor for data and concept drift using statistical tests and
drift detectors. Regularly evaluate the model on holdout datasets to detect changes in input data
distribution or model performance.

10. Model Versioning: Maintain version control for different iterations of the model. Track perfor-
mance metrics for each version to ensure that the best-performing model is in production.

71

11. Documentation and Reporting: Keep detailed documentation of monitoring procedures, met-
rics, and findings. Generate regular reports to provide stakeholders with insights into the model’s
performance and maintenance activities.

12. Periodic Review and Update: Regularly assess and update the monitoring processes to incor-
porate new techniques, tools, and best practices, ensuring the monitoring system remains effective
and up-to-date.

9.2 Continuous Monitoring of Model Performance

While large language model (LLM) applications undergo some form of evaluation, continuous monitoring
remains inadequately implemented in most cases. This section outlines the components necessary to
establish an effective monitoring programme aimed at safeguarding users and preserving brand integrity.

9.2.1 Functional Monitoring

Initially, it is crucial to monitor fundamental metrics consistently. This includes tracking metrics such
as request volume, response times, token utilisation, costs incurred, and error rates.

9.2.2 Prompt Monitoring

Following functional metrics, attention should be directed towards monitoring user-generated prompts
or inputs. Metrics like readability can provide valuable insights. LLM evaluators should be employed to
detect potential toxicity in responses. Additionally, metrics such as embedding distances from reference
prompts prove insightful, ensuring adaptability to varying user interactions over time.
Introducing a new evaluation category involves identifying adversarial attempts or malicious prompt
injections, often overlooked in initial evaluations. Comparison against reference sets of known adversarial
prompts helps identify and flag malicious activities. Evaluative LLMs play a crucial role in classifying
prompts as benign or malicious.

9.2.3 Response Monitoring

Monitoring responses involves several critical checks to ensure alignment with expected outcomes. Pa-
rameters such as relevance, coherence (hallucination), topical alignment, sentiment, and their evolution
over time are essential. Metrics related to toxicity and harmful output require frequent monitoring due
to their critical impact. Prompt leakage represents an adversarial tactic wherein sensitive prompt in-
formation is illicitly extracted from the application’s stored data. Monitoring responses and comparing
them against the database of prompt instructions can help detect such breaches. Embedding distance
metrics are particularly effective in this regard. Regular testing against evaluation datasets provides
benchmarks for accuracy and highlights any performance drift over time. Tools capable of managing
embeddings allow exportation of underperforming output datasets for targeted improvements.

9.2.4 Alerting Mechanisms and Thresholds

Effective monitoring necessitates well-calibrated alerting thresholds to avoid excessive false alarms. Im-
plementing multivariate drift detection and alerting mechanisms can enhance accuracy. Consideration
of false alarm rates and best practices for setting thresholds is paramount for effective monitoring sys-
tem design. Alerting features should include integration with communication tools such as Slack and
PagerDuty. Some systems offer automated response blocking in case of alerts triggered by problematic
prompts. Similar mechanisms can be employed to screen responses for personal identifiable information
(PII), toxicity, and other quality metrics before delivery to users. Custom metrics tailored to specific
application nuances or innovative insights from data scientists can significantly enhance monitoring ef-
ficacy. Flexibility to incorporate such metrics is essential to adapt to evolving monitoring needs and
advancements in the field.

72

9.2.5 Monitoring User Interface (UI)

The monitoring system’s UI is pivotal, typically featuring time-series graphs of monitored metrics. Dif-
ferentiated UIs facilitate in-depth analysis of alert trends, aiding root cause analysis. Advanced UI
capabilities may include visualisations of embedding spaces through clustering and projections, provid-
ing insights into data patterns and relationships. Mature monitoring systems categorise data by users,
projects, and teams, ensuring role-based access control (RBAC) to protect sensitive information. Op-
timising alert analysis within the UI interface remains an area where improvements can significantly
reduce false alarm rates and enhance operational efficiency.

9.3 Updating LLM Knowledge

To improve the knowledge base of an LLM, continued pretraining is used to help LLM evolve with the
latest knowledge and information. The world and language are constantly evolving. New information
emerges, trends shift, and cultural references change. LLMs trained on static data can become outdated,
leading to:

• Factual Errors: Outdated information can cause LLMs to provide inaccurate responses.

• Irrelevance: Models might miss the context of current events or use outdated references.

• Bias Perpetuation: Biases present in training data can become entrenched if not addressed
through updates.

9.3.1 Retraining Methods

• Periodic Retraining: This involves refreshing the model’s knowledge base at regular intervals
(weekly, monthly, yearly) with new data. This is a straightforward method but requires a steady
stream of high-quality, unbiased data.

• Trigger-Based Retraining: This approach monitors the LLM’s performance. When metrics like
accuracy or relevance fall below a certain threshold, a retraining process is triggered. This method
is more dynamic but requires robust monitoring systems and clear performance benchmarks.

9.3.2 Additional Methods

• Fine-Tuning: LLMs can be fine-tuned for specific tasks by training them on smaller, domain-
specific datasets. This allows for specialisation without complete retraining.

• Active Learning: This approach involves selectively querying the LLM to identify areas where
it lacks knowledge. The retrieved information is then used to update the model.

9.3.3 Key Considerations

• Data Quality and Bias: New training data must be carefully curated to ensure quality and
mitigate bias. Techniques like human annotation and fairness checks are crucial.

• Computational Cost: Retraining LLMs can be computationally expensive, requiring significant
resources. Optimisations like transfer learning (using pre-trained models as a starting point) can
help reduce costs.

• Downtime: Retraining often takes time, leading to LLM downtime. Strategies like rolling updates
or deploying multiple models can minimise service disruptions.

• Version Control: Tracking different versions of the LLM and their training data is essential for
rollbacks in case of performance issues.

73

9.4 The Future of LLM Updates

Research is ongoing to develop more efficient and effective LLM update strategies. One promising area
is continuous learning, where LLMs can continuously learn and adapt from new data streams without
retraining from scratch. Continuous learning aims to reduce the need for frequent full-scale retraining by
enabling models to update incrementally with new information. This approach can significantly enhance
the model’s ability to remain current with evolving knowledge and language use, improving its long-term
performance and relevance.

Innovations in transfer learning and meta-learning are also contributing to advancements in LLM updates.
These techniques allow models to leverage pre-existing knowledge and adapt quickly to new tasks or
domains with minimal additional training. By integrating these advanced learning methods, future
LLMs can become more adaptable and efficient in processing and understanding new information.
Furthermore, ongoing improvements in hardware and computational resources will support more frequent
and efficient updates. As processing power increases and becomes more accessible, the computational
burden of updating large models will decrease, enabling more regular and comprehensive updates.

Collaboration between academia and industry is vital in driving these advancements. By sharing research
findings and best practices, the field can collectively move towards more robust and efficient LLM update
methodologies, ensuring that models remain accurate, relevant, and valuable over time.

74

Chapter 10

Industrial Fine-Tuning Platforms
and Frameworks for LLMs

The evolution of fine-tuning techniques has been propelled by leading tech companies and platforms that
have introduced innovative frameworks and services. Companies like HuggingFace, Amazon Web Services
(AWS), Microsoft Azure, and OpenAI have developed tools and platforms that simplify and democratise
the fine-tuning process. These advancements have not only lowered the barrier to entry for leveraging
state-of-the-art AI models but have also enabled a wide range of applications across various industries,
from healthcare and finance to customer service and content creation. Each of these platforms offers
unique capabilities that cater to different needs, whether it be through automated fine-tuning workflows,
scalable cloud-based training environments, or accessible API interfaces for deploying custom models.

HuggingFace, for example, has made significant strides with its Transformers library1 and tools like Au-
totrain2 and SetFit, which allow users to fine-tune models with minimal coding and data. Their platform
provides a robust infrastructure that supports both the research community and industry practitioners,
facilitating the rapid development and deployment of custom AI solutions. Similarly, AWS’s SageMaker3

and SetFit4 provides an extensive suite of services that cover the entire machine learning lifecycle, from
data preparation and training to model deployment and optimisation, making it a comprehensive solu-
tion for enterprise-level applications.

On the other hand, Microsoft Azure integrates its fine-tuning capabilities with enterprise-grade tools
and services, offering solutions like Azure Machine Learning and the Azure OpenAI Service that cater to
large organisations looking to incorporate advanced AI into their operations. Azure’s focus on MLOps
and seamless integration with other Azure services ensures that fine-tuned models can be efficiently de-
ployed and maintained in production environments. Meanwhile, OpenAI has pioneered the concept of
”fine-tuning as a service” allowing businesses to leverage their powerful models like GPT-4 through a
user-friendly API 5, enabling custom model adaptations without the need for in-house AI expertise or
infrastructure.

The collective efforts of these tech companies have not only enhanced the efficiency and scalability of
fine-tuning but also democratised access to sophisticated AI tools. By reducing the technical barriers
and providing comprehensive, user-friendly platforms, these innovations have enabled a wider range of
industries to deploy advanced AI models tailored to their specific needs. Tables 10.1 and 10.2 offer a
quick comparison of LLM fine-tuning tools and frameworks from different providers.

1https://huggingface.co/docs/transformers/en/index/
2https://huggingface.co/autotrain
3https://huggingface.co/autotrain
4https://aws.amazon.com/sagemaker/
5https://platform.openai.com/docs/guides/fine-tuning/fine-tuning-integrations

75

https://huggingface.co/docs/transformers/en/index/
https://huggingface.co/autotrain
https://huggingface.co/autotrain
https://aws.amazon.com/sagemaker/
https://platform.openai.com/docs/guides/fine-tuning/fine-tuning-integrations

Parameter NVIDIA
NeMo

Hugging Face
AutoTrain
API

Amazon
Bedrock

AWS Sage-
Maker Jump-
Start

Hugging Face
Trainer API

Primary Use
Case

Custom fine-
tuning of LLMs
with advanced
NVIDIA GPUs.

Fine-tuning
and deployment
of LLMs with
minimal code.

Fine-tuning and
deploying LLMs
on AWS infras-
tructure.

Simplified fine-
tuning and de-
ployment within
the AWS ecosys-
tem.

Manual fine-
tuning of LLMs
with detailed
control over
training pro-
cesses.

Model Support Supports a vari-
ety of large, pre-
trained models,
including Mega-
tron series.

Supports a wide
range of pre-
trained models
from the Hug-
ging Face model
hub.

Supports vari-
ous LLMs like
Amazon Titan
and third-party
models.

Pre-trained
models from
AWS and part-
ners; integration
with custom
models.

Supports a vast
array of models
from the Hug-
ging Face model
hub.

Data Handling Users provide
task-specific
data for fine-
tuning, pro-
cessed using
NVIDIA’s in-
frastructure.

Uploads
datasets via
a simple inter-
face; AutoTrain
handles pre-
processing and
model training.

Data is uploaded
and managed
within the AWS
environment;
integrates with
AWS data ser-
vices.

Uploads and
processes data
within AWS;
supports various
data formats.

Users manually
preprocess data
and manage
training steps.

Customisation
Level

High; extensive
control over
fine-tuning pro-
cess and model
parameters.

Moderate; auto-
mated process
with some
customisation
options.

High; detailed
configuration
and integration
with AWS ser-
vices.

Moderate;
pre-configured
settings with
some customisa-
tion available.

Very High;
detailed con-
trol over every
aspect of fine-
tuning.

Scalability High; leverages
NVIDIA’s GPU
capabilities for
efficient scaling.

High; scalable
via Hugging
Face’s cloud
infrastructure.

Very High;
scalable across
AWS’s extensive
cloud infrastruc-
ture.

High; scalable
within the AWS
cloud ecosys-
tem.

High; scalability
depends on the
infrastructure
used (e.g., local
vs. cloud).

Deployment
Options

On-premises
or cloud de-
ployment via
NVIDIA infras-
tructure.

Deployed via
Hugging Face’s
cloud or can be
exported for lo-
cal deployment.

Integrated into
AWS services,
easily deploy-
able across
AWS’s global
infrastructure.

AWS cloud
deployment;
integrates with
other AWS ser-
vices.

Deployable lo-
cally, in cloud,
or exported to
other platforms.

Integration with
Ecosystem

Deep integration
with NVIDIA
tools (e.g.,
TensorRT) and
GPU-based
workflows.

Integrates
well with the
Hugging Face
ecosystem and
other ML tools.

Seamless inte-
gration with
AWS ser-
vices (e.g., S3,
Lambda, Sage-
Maker).

Strong integra-
tion with AWS
services; easy
to connect with
data pipelines
and analytics.

Integrates with
Hugging Face
ecosystem and
other Python-
based ML tools.

Data Privacy Users must
ensure data
privacy compli-
ance; NVIDIA
handles data
during process-
ing.

Data handled
within Hugging
Face’s environ-
ment; privacy
depends on
data handling
practices.

Strong focus
on data privacy
within AWS
environment;
compliant with
various stan-
dards.

Strong AWS
privacy and
security mea-
sures; compliant
with industry
standards.

User-managed;
depends on
where the mod-
els and data are
hosted.

Target Users Enterprises and
developers need-
ing advanced
customisation
and perfor-
mance in LLM
fine-tuning.

Developers and
businesses look-
ing for easy,
automated LLM
fine-tuning solu-
tions.

Businesses and
developers inte-
grated into or
seeking to lever-
age AWS cloud
services.

Enterprises and
developers seek-
ing streamlined
AI/ML solutions
within AWS.

Researchers,
developers, and
ML engineers
needing detailed
control over
training.

Limitations High resource
demand and
potential costs;
dependency on
NVIDIA ecosys-
tem.

Less control
over fine-tuning
specifics; cloud-
based, may
not suit all on-
premises needs.

Dependency
on AWS; po-
tential vendor
lock-in, cost
management
complexity.

Limited to
AWS services;
pre-configured
options may
limit deep cus-
tomisation.

Requires tech-
nical expertise;
more complex
setup and man-
agement.

Table 10.1: Detailed Comparison of LLM Fine-Tuning Platforms (Part I). This table provides a compre-
hensive comparison of various fine-tuning tools for Large Language Models (LLMs), including NVIDIA
NeMo, Hugging Face AutoTrain API, Amazon Bedrock, AWS SageMaker JumpStart, and Hugging Face
Trainer API. It covers multiple aspects such as the primary use case, model support, data handling,
customisation level, scalability, deployment options, integration with the ecosystem, data privacy, target
users, and limitations for each tool.

76

Parameter OpenAI Fine-
Tuning API

Google Vertex AI
Studio

Microsoft Azure
AI Studio

LangChain

Primary Use
Case

API-based fine-
tuning for OpenAI
models with custom
datasets.

End-to-end ML
model development
and deployment
within Google Cloud.

End-to-end AI devel-
opment, fine-tuning,
and deployment on
Azure.

Building applications
using LLMs with
modular and cus-
tomisable workflows.

Model Support Limited to OpenAI
models like GPT-3
and GPT-4.

Supports Google’s
pre-trained models
and user-customised
models.

Supports Microsoft’s
models and custom
models fine-tuned
within Azure.

Supports integration
with various LLMs
and AI tools (e.g.,
OpenAI, GPT-4, Co-
here).

Data Handling Users upload datasets
via API; OpenAI
handles preprocess-
ing and fine-tuning.

Data managed within
Google Cloud; sup-
ports multiple data
formats.

Data integrated
within Azure ecosys-
tem; supports various
formats and sources.

Data handling is flex-
ible, dependent on
the specific LLM and
integration used.

Customisation
Level

Moderate; focuses on
ease of use with lim-
ited deep customisa-
tion.

High; offers custom
model training and
deployment with de-
tailed configuration.

High; extensive cus-
tomisation options
through Azure’s AI
tools.

Very High; allows de-
tailed customisation
of workflows, models,
and data processing.

Scalability High; scalable
through OpenAI’s
cloud infrastructure.

Very High; leverages
Google Cloud’s in-
frastructure for scal-
ing.

Very High; scalable
across Azure’s global
infrastructure.

High; scalability de-
pends on the specific
infrastructure and
models used.

Deployment
Options

Deployed via API, in-
tegrated into applica-
tions using OpenAI’s
cloud.

Deployed within
Google Cloud; in-
tegrates with other
GCP services.

Deployed within
Azure; integrates
with Azure’s suite of
services.

Deployed within
custom infrastruc-
ture; integrates with
various cloud and
on-premises services.

Integration with
Ecosystem

Limited to OpenAI
ecosystem; integrates
well with apps via
API.

Seamless integration
with Google Cloud
services (e.g., Big-
Query, AutoML).

Deep integration with
Azure’s services (e.g.,
Data Factory, Power
BI).

Flexible integration
with multiple tools,
APIs, and data
sources.

Data Privacy Managed by OpenAI;
users must consider
data transfer and pri-
vacy implications.

Strong privacy and
security measures
within Google Cloud
environment.

Strong privacy and
security measures
within Azure envi-
ronment.

Dependent on the in-
tegrations and infras-
tructure used; users
manage privacy.

Target Users Developers and en-
terprises looking
for straightforward,
API-based LLM
fine-tuning.

Developers and busi-
nesses integrated into
Google Cloud or seek-
ing to leverage GCP.

Enterprises and de-
velopers integrated
into Azure or seeking
to leverage Azure’s
AI tools.

Developers needing
to build complex,
modular LLM-based
applications with
custom workflows.

Limitations Limited customisa-
tion; dependency on
OpenAI’s infrastruc-
ture; potential cost.

Limited to Google
Cloud ecosystem; po-
tential cost and ven-
dor lock-in.

Limited to Azure
ecosystem; potential
cost and vendor
lock-in.

Complexity in chain-
ing multiple models
and data sources; re-
quires more setup.

Table 10.2: Detailed Comparison of LLM Fine-Tuning Platforms (Part II). This table continues the
comparison of LLM fine-tuning tools, focusing on OpenAI Fine-Tuning API, Google Vertex AI Studio,
Microsoft Azure AI Studio, and LangChain. It evaluates the tools based on the primary use case,
model support, data handling, customisation level, scalability, deployment options, integration with the
ecosystem, data privacy, target users, and limitations, offering a complete view of their capabilities and
constraints.

10.1 Autotrain

Autotrain is HuggingFace’s innovative platform that automates the fine-tuning of large language models,
making it accessible even to those with limited machine learning expertise. The complexity and resource
demands of fine-tuning LLMs can be daunting, but Autotrain simplifies the process by handling the most
challenging aspects, such as data preparation, model configuration, and hyperparameter optimisation.
This automation is particularly valuable for small teams or individual developers who need to deploy
custom LLMs quickly and efficiently.

10.1.1 Steps Involved in Fine-Tuning Using Autotrain

Following are the steps involved in fine-tuning LLMs using Autotrain. Figure 10.1 represents the visual
workflow.

• Dataset Upload and Model Selection:

77

Figure 10.1: Overview of the Autotrain Workflow. This diagram illustrates the step-by-step process
within the Autotrain system, beginning with the upload of datasets and model selection by users. The
workflow then moves to data preparation and model configuration, followed by automated hyperpa-
rameter tuning to optimise model performance. The fine-tuning phase adjusts the model based on the
provided datasets, culminating in the deployment of the fully fine-tuned model for practical use.

– Users begin by uploading their datasets to the Autotrain platform.

– They then select a pre-trained model from the extensive HuggingFace Model Hub.

• Data Preparation:

– Autotrain automatically processes the uploaded data, including tasks like tokenization to
convert text into a format the LLM can understand.

• Model Configuration:

– The platform configures the model for fine-tuning, setting up the training environment and
necessary parameters.

• Automated Hyperparameter Tuning:

– Autotrain explores various hyperparameter configurations (such as learning rate, batch size,
and sequence length) and selects the best-performing ones.

• Fine-Tuning:

– The model is fine-tuned on the prepared data with the optimised hyperparameters.

• Deployment:

– Once fine-tuning is complete, the model is ready for deployment in various NLP applications,
such as text generation, completion, and language translation.

78

10.1.2 Best Practices of Using Autotrain

• Data Quality: Ensure high-quality, well-labelled data for better model performance.

• Model Selection: Choose pre-trained models that are well-suited to your specific task to minimize
fine-tuning effort.

• Hyperparameter Optimisation: Leverage Autotrain’s automated hyperparameter tuning to
achieve optimal performance without manual intervention.

10.1.3 Challenges of Using Autotrain

• Data Privacy: Ensuring the privacy and security of sensitive data during the fine-tuning process.

• Resource Constraints: Managing computational resources effectively, especially in environments
with limited access to powerful hardware.

• Model Overfitting: Avoiding overfitting by ensuring diverse and representative training data
and using appropriate regularization techniques.

10.1.4 When to Use Autotrain

1. Lack of Deep Technical Expertise: Ideal for individuals or small teams without extensive
machine learning or LLM background who need to fine-tune models quickly and effectively.

2. Quick Prototyping and Deployment: Suitable for rapid development cycles where time is
critical, such as proof-of-concept projects or MVPs.

3. Resource-Constrained Environments: Useful for scenarios with limited computational re-
sources or where a quick turnaround is necessary.

In summary, Autotrain is an excellent tool for quick, user-friendly fine-tuning of LLMs for standard NLP
tasks, especially in environments with limited resources or expertise. However, it may not be suitable
for highly specialised applications or those requiring significant customisation and scalability.

10.1.5 Tutorials

1. How To Create HuggingFace Custom AI Models Using AutoTrain

2. Finetune models with HuggingFace AutoTrain

10.2 Transformers Library and Trainer API

The Transformers Library by HuggingFace stands out as a pivotal tool for fine-tuning large language
models (LLMs) such as BERT, GPT-3, and GPT-4. This comprehensive library offers a wide array of
pre-trained models tailored for various LLM tasks, making it easier for users to adapt these models to
specific needs with minimal effort. Whether you’re fine-tuning for tasks like sentiment analysis, text
classification, or generating customer support responses, the library simplifies the process by allowing
seamless model selection from the HuggingFace Model Hub and straightforward customisation through
its high-level APIs.

Central to the fine-tuning process within the Transformers Library is the Trainer API. This API includes
the Trainer class, which automates and manages the complexities of fine-tuning LLMs. After completing
data preprocessing, the Trainer class streamlines the setup for model training, including data handling,
optimisation, and evaluation. Users only need to configure a few parameters, such as learning rate and
batch size, and the API takes care of the rest. However, it’s crucial to note that running Trainer.train()
can be resource-intensive and slow on a CPU. For efficient training, a GPU or TPU is recommended.
Platforms like Google Colab provide free access to these resources, making it feasible for users without
high-end hardware to fine-tune models effectively.

79

https://cobusgreyling.medium.com/how-to-create-huggingface-custom-ai-models-using-autotrain-72d75484b82b
https://www.kdnuggets.com/how-to-finetune-mistral-ai-7b-llm-with-hugging-face-autotrain

The Trainer API also supports advanced features like distributed training and mixed precision, which
are essential for handling the large-scale computations required by modern LLMs. Distributed training
allows the fine-tuning process to be scaled across multiple GPUs or nodes, significantly reducing training
time. Mixed precision training, on the other hand, optimises memory usage and computation speed by
using lower precision arithmetic without compromising model performance. HuggingFace’s dedication to
accessibility is evident in the extensive documentation and community support they offer, enabling users
of all expertise levels to fine-tune LLMs. This democratisation of advanced NLP technology empowers
developers and researchers to deploy sophisticated, fine-tuned models for a wide range of applications,
from specialised language understanding to large-scale data processing.

10.2.1 Limitations of the Transformers Library and Trainer API

• Limited Customisation for Advanced Users: While the Trainer API simplifies many aspects
of training, it might not offer the deep customisation that advanced users or researchers might need
for novel or highly specialised applications.

• Learning Curve: Despite the simplified API, there is still a learning curve associated with un-
derstanding and effectively using the Transformers Library and Trainer API, particularly for those
new to NLP and LLM.

• Integration Limitations: The seamless integration and ease of use are often tied to the Hug-
gingFace ecosystem, which might not be compatible with all workflows or platforms outside their
environment.

In summary, the Transformers Library and Trainer API provide robust, scalable solutions for fine-tuning
LLMs across a range of applications, offering ease of use and efficient training capabilities. However, users
must be mindful of the resource requirements and potential limitations in customisation and complexity
management.

10.3 Optimum: Enhancing LLM Deployment Efficiency

Optimum6 is HuggingFace’s tool designed to optimise the deployment of large language models (LLMs)
by enhancing their efficiency across various hardware platforms. As LLMs grow in size and complexity,
deploying them in a cost-effective and performant manner becomes increasingly challenging. Optimum
addresses these challenges by applying a range of hardware-specific optimisations, such as quantisation,
pruning, and model distillation, which reduce the model’s size and improve inference speed without
significantly affecting accuracy. The following are the key techniques supported by Optimum:

• Quantisation: Quantisation is one of the key techniques supported by Optimum. This process in-
volves converting the model’s weights from high-precision floating-point numbers to lower-precision
formats, such as int8 or float16. This reduction in precision decreases the model’s memory foot-
print and computational requirements, enabling faster execution and lower power consumption,
especially on edge devices and mobile platforms. Optimum automates the quantisation process,
making it accessible to users who may not have expertise in low-level hardware optimisation.

• Pruning: Pruning is another critical optimisation strategy offered by Optimum. It involves iden-
tifying and removing less significant weights from the LLM, reducing its overall complexity and
size. This leads to faster inference times and lower storage needs, which are particularly beneficial
for deploying models in environments with limited computational resources. Optimum’s pruning
algorithms carefully eliminate these redundant weights while maintaining the model’s performance,
ensuring that it continues to deliver high-quality results even after optimisation.

• Model Distillation: In addition to these techniques, Optimum supports model distillation, a
process where a smaller, more efficient model is trained to replicate the behaviour of a larger, more
complex model. This distilled model retains much of the knowledge and capabilities of the original
while being significantly lighter and faster. Optimum provides tools to facilitate the distillation
process, allowing users to create compact LLMs that are well-suited for real-time applications. By
offering a comprehensive suite of optimisation tools, Optimum ensures that HuggingFace’s LLMs
can be deployed effectively across a wide range of environments, from powerful cloud servers to
resource-constrained edge devices.

6https://huggingface.co/docs/optimum/en/index

80

https://huggingface.co/docs/optimum/en/index

10.3.1 Best Practices of Using Optimum

• Understand Hardware Requirements: Assess the target deployment environment (e.g., edge
devices, cloud servers) to optimise model configuration accordingly.

• Iterative Optimisation: Experiment with different optimisation techniques (quantisation levels,
pruning thresholds) to find the optimal balance between model size, speed, and accuracy.

• Validation and Testing: Validate optimised models thoroughly to ensure they meet performance
and accuracy requirements across different use cases.

• Documentation and Support: Refer to HuggingFace’s resources for detailed guidance on using
Optimum’s tools effectively, and leverage community support for troubleshooting and best practices
sharing.

• Continuous Monitoring: Monitor deployed models post-optimisation to detect any performance
degradation and adjust optimisation strategies as needed to maintain optimal performance over
time.

10.3.2 Tutorials

1. An Introduction to Using Transformers and Hugging Face

10.4 Amazon SageMaker JumpStart

Amazon SageMaker JumpStart is a feature within the SageMaker ecosystem designed to simplify and
expedite the fine-tuning of large language models (LLMs). It provides users with a rich library of pre-
built models and solutions that can be quickly customised for various use cases. This tool is particularly
valuable for organisations looking to deploy NLP solutions efficiently without deep expertise in machine
learning or the extensive computational resources typically required for training LLMs from scratch. The
architecture depicted in Figure 10.2 outlines a comprehensive pipeline for the fine-tuning and deployment
of large language models (LLMs) Utilising AWS services.

10.4.1 Steps Involved in Using JumpStart

• Data Preparation and Preprocessing:

– Data Storage: Begin by securely storing raw datasets in Amazon S3, AWS’s scalable object
storage service.

– Preprocessing: Utilise the EMR Serverless framework with Apache Spark for efficient data
preprocessing. This step refines and prepares the raw data for subsequent model training and
evaluation.

– Data Refinement: Store the processed dataset back into Amazon S3 after preprocessing,
ensuring accessibility and readiness for the next stages.

• Model Fine-Tuning with SageMaker JumpStart:

– Model Selection: Choose from a variety of pre-built models and solutions available through
SageMaker JumpStart’s extensive library, tailored for tasks such as sentiment analysis, text
generation, or customer support automation.

– Fine-Tuning Execution: Utilise Amazon SageMaker’s capabilities, integrated with Sage-
Maker JumpStart, to fine-tune the selected model. This involves adjusting parameters and
configurations to optimise the model’s performance for specific use cases.

– Workflow Simplification: Leverage pre-built algorithms and model templates provided by
SageMaker JumpStart to streamline the fine-tuning workflow, reducing the time and effort
required for deployment.

• Model Deployment and Hosting:

81

https://www.datacamp.com/tutorial/an-introduction-to-using-transformers-and-hugging-face

Figure 10.2: A step-by-step workflow illustrating the Amazon SageMaker JumpStart process, starting
from data preprocessing using EMR Serverless Spark to the fine-tuning of LLMs, and ending with model
deployment on Amazon SageMaker Endpoints. (adapted from [83])

– Deployment Setup: Deploy the fine-tuned model using Amazon SageMaker’s endpoint
deployment capabilities. This setup ensures that the model is hosted in a scalable environment
capable of handling real-time predictions efficiently.

– Scalability: Benefit from AWS’s infrastructure scalability, allowing seamless scaling of re-
sources to accommodate varying workloads and operational demands.

– Efficiency and Accessibility: Ensure that the deployed model is accessible via SageMaker
endpoints, enabling efficient integration into production applications for real-time inference
tasks.

10.4.2 Best Practices for Using JumpStart

• Robust Data Management: Maintain secure and organised data storage practices in Amazon
S3, facilitating efficient data access and management throughout the pipeline.

• Cost-Effective Processing: Utilise serverless computing frameworks like EMR Serverless with
Apache Spark for cost-effective and scalable data preprocessing.

• Optimised Fine-Tuning: Capitalise on SageMaker JumpStart’s pre-built models and algorithms
to expedite and optimise the fine-tuning process, ensuring optimal model performance without

82

extensive manual configuration.

• Continuous Monitoring and Optimisation: Implement robust monitoring mechanisms post-
deployment to track model performance metrics. This allows for timely optimisations and adjust-
ments to maintain accuracy and efficiency over time.

• Integration with AWS Services: Leverage AWS’s comprehensive suite of services and inte-
gration capabilities to create end-to-end pipelines that ensure reliable and scalable deployment of
large-scale language models across diverse operational environments.

10.4.3 Limitations of Using JumpStart

• Limited Customisation: While JumpStart simplifies the process for common use cases, it may
offer limited flexibility for highly specialised or complex applications that require significant cus-
tomisation beyond the provided templates and workflows.

• Dependency on AWS Ecosystem: JumpStart is tightly integrated with AWS services, which
may pose challenges for users who prefer or need to operate in multi-cloud environments or those
with existing infrastructure outside of AWS.

• Resource Costs: Utilising SageMaker’s scalable resources for fine-tuning LLMs, especially large
models, can incur substantial costs, which might be a barrier for smaller organisations or those
with limited budgets.

10.4.4 Tutorials

1. Fine-Tuning LLaMA 2 with Amazon SageMaker JumpStart

2. LLM Agents Using AWS SageMaker JumpStart Foundation Models

10.5 Amazon Bedrock

Amazon Bedrock7 is a fully managed service designed to simplify access to high-performing foundation
models (FMs) from top AI innovators like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability
AI, and Amazon. It provides a unified API that integrates these models and offers extensive capabilities
for developing secure, private, and responsible generative AI applications. With Amazon Bedrock, users
can effortlessly experiment with and assess leading FMs tailored to their specific needs. The service sup-
ports private customisation of models through fine-tuning and Retrieval Augmented Generation (RAG),
enabling the creation of intelligent agents that leverage enterprise data and systems. Amazon Bedrock’s
serverless architecture allows for quick deployment, seamless integration, and secure customisation of
FMs without the burden of infrastructure management, Utilising AWS tools to deploy these models into
applications efficiently and securely.

10.5.1 Steps Involved in Using Amazon Bedrock

Amazon Bedrock offers a streamlined workflow for deploying and fine-tuning LLMs, making it an ideal
choice for businesses looking to quickly integrate advanced AI capabilities into their operations. Here’s
a high-level overview of how Bedrock operates:

• Model Selection: Users start by choosing from a curated selection of foundation models available
through Bedrock. These include models from AWS (like Amazon Titan) and third-party providers
(such as Anthropic Claude and Stability AI).

• Fine-Tuning:

– Once a model is selected, users can fine-tune it to better fit their specific needs. This involves
feeding the model with domain-specific data or task-specific instructions to tailor its outputs.

7https://aws.amazon.com/bedrock/

83

https://www.linkedin.com/pulse/fine-tuning-llama-2-amazon-sagemaker-jumpstart-elhousieny-phd%E1%B4%AC%E1%B4%AE%E1%B4%B0-8zp9c/
https://aws.amazon.com/blogs/machine-learning/learn-how-to-build-and-deploy-tool-using-llm-agents-using-aws-sagemaker-jumpstart-foundation-models/
https://aws.amazon.com/bedrock/

– The fine-tuning process is handled via simple API calls, eliminating the need for extensive
setup or detailed configuration. Users provide their custom data, and Bedrock manages the
training process in the background.

• Deployment:

– After fine-tuning, Bedrock takes care of deploying the model in a scalable and efficient manner.
This means that users can quickly integrate the fine-tuned model into their applications or
services.

– Bedrock ensures that the model scales according to demand and handles performance optimi-
sation, providing a seamless user experience.

• Integration and Monitoring:

– Bedrock integrates smoothly with other AWS services, allowing users to embed AI capabilities
directly into their existing AWS ecosystem.

– Users can monitor and manage the performance of their deployed models through AWS’s
comprehensive monitoring tools, ensuring that the models continue to perform optimally.

10.5.2 Limitations of Using Amazon Bedrock

While Amazon Bedrock offers a robust suite of tools and services for addressing certain AI challenges,
it is not a comprehensive solution for all AI needs. One key limitation is that it does not eliminate the
requirement for human expertise. Organisations still need skilled professionals who understand the in-
tricacies of AI technology to effectively develop, fine-tune, and optimise the models provided by Bedrock.

Additionally, Amazon Bedrock is not designed to function as a standalone service. It relies on integration
with other AWS services, such as Amazon S3 for data storage, AWS Lambda for serverless computing,
and AWS SageMaker for machine learning model development. Therefore, businesses leveraging Amazon
Bedrock will also need to use these complementary AWS services to fully realise its potential. This
interconnectedness means that while Amazon Bedrock enhances the AI capabilities within an AWS
ecosystem, it may present a steep learning curve and require significant infrastructure management for
those new to AWS.

10.5.3 Tutorials

1. Finetuning LLMs on Amazon Bedrock

2. Amazon Bedrock for Generative AI

10.6 OpenAI’s Fine-Tuning API

OpenAI’s Fine-Tuning API is a comprehensive platform that facilitates the customisation of OpenAI’s
pre-trained LLMs to cater to specific tasks and domains. This service is designed to be user-friendly,
enabling a broad range of users, from businesses to individual developers, to harness the power of
advanced AI without the complexities typically associated with model training and deployment.

10.6.1 Steps Involved in Using OpenAI’s Fine-Tuning API

• Model Selection:

– Choosing a Pre-Trained Model: Users begin by selecting a base model from OpenAI’s
extensive lineup. This includes powerful models like GPT-4, which offer a robust starting
point for a wide range of language processing tasks.

– Customisable Base: These models come pre-trained with vast amounts of data, providing
a solid foundation that can be further refined to suit specific requirements.

• Data Preparation and Upload:

84

https://medium.com/@abdullahiolaoye4/finetuning-llms-on-amazon-bedrock-887ebc547adc
https://cloudnature.net/blog/the-complete-guide-to-amazon-bedrock-for-generative-ai

– Curating Relevant Data: Users need to gather and prepare a dataset that reflects the
specific task or domain they wish to fine-tune the model for. This data is crucial for teaching
the model to perform the desired function more effectively.

– Uploading Data to the API: The Fine-Tuning API facilitates easy data upload. Users
can feed their curated datasets into the API through straightforward commands, making the
process accessible even to those with limited technical backgrounds.

• Initiating Fine-Tuning:

– Automated Process: Once the data is uploaded, OpenAI’s infrastructure handles the fine-
tuning process. The API adjusts the model’s parameters based on the new data to improve
performance on the specified tasks.

• Deploying the Fine-Tuned Model:

– API Integration: The fine-tuned model can be accessed and deployed via OpenAI’s API.
This allows for seamless integration into various applications, such as chatbots, automated
content creation tools, or specialised customer service systems.

10.6.2 Limitations of OpenAI’s Fine-Tuning API

• Pricing Models: Fine-tuning and using OpenAI’s models through the API can be costly, espe-
cially for large-scale deployments or continuous usage. This can be a significant consideration for
smaller organisations or budget-constrained projects.

• Data Privacy and Security: Users must upload their data to OpenAI’s servers for the fine-
tuning process. This raises potential concerns about data privacy and the security of sensitive or
proprietary information.

• Dependency on OpenAI Infrastructure: The reliance on OpenAI’s infrastructure for model
hosting and API access can lead to vendor lock-in, limiting flexibility and control over the deploy-
ment environment.

• Limited Control Over Training Process: The fine-tuning process is largely automated and
managed by OpenAI, offering limited visibility and control over the specific adjustments made to
the model.

10.6.3 Tutorials

1. Fine-Tuning GPT-3 Using the OpenAI API

10.7 NVIDIA NeMo Customizer

NVIDIA NeMo Customiser8 is part of the NeMo framework, a suite of tools and models designed by
NVIDIA to facilitate the development and fine-tuning of LLM models. The Customiser focuses specifi-
cally on making it easier to fine-tune large language models (LLMs) for specialised tasks and domains.
Like other fine-tuning tools, NeMo Customiser is geared toward users who want to adapt pre-trained
models for specific applications, such as conversational AI, translation, or domain-specific text gener-
ation. It delivers enterprise-ready models by offering accurate data curation, extensive customisation
options, retrieval-augmented generation (RAG), and improved performance features. The platform sup-
ports training and deploying generative AI models across diverse environments, including cloud, data
center, and edge locations. It provides a comprehensive package with support, security, and reliable APIs
as part of the NVIDIA AI Enterprise.

8https://developer.nvidia.com/blog/fine-tune-and-align-llms-easily-with-nvidia-nemo-customizer/

85

https://www.datacamp.com/tutorial/fine-tuning-gpt-3-using-the-open-ai-api-and-python
https://developer.nvidia.com/blog/fine-tune-and-align-llms-easily-with-nvidia-nemo-customizer/

10.7.1 Key Features of NVIDIA NeMo

NVIDIA NeMo is designed to enhance AI projects with several standout features.[84]

• State-of-the-Art Training Techniques NeMo employs GPU-accelerated tools like NeMo Cu-
rator for preparing large-scale, high-quality datasets. These tools facilitate efficient pretraining of
generative AI models by leveraging thousands of compute cores, which significantly reduces training
time and enhances the accuracy of large language models (LLMs).

• Advanced Customisation for LLMs The NeMo Customiser microservice allows for precise fine-
tuning and alignment of LLMs for specific domains. It uses model parallelism to speed up training
and supports scaling across multiple GPUs and nodes, enabling the fine-tuning of larger models.

• Optimised AI Inference with NVIDIA TritonNeMo includes NVIDIA Triton Inference Server
to streamline AI inference at scale. This integration accelerates generative AI inference, ensuring
confident deployment of AI applications both on-premises and in the cloud.

• User-Friendly Tools for Generative AI NeMo features a modular, reusable architecture that
simplifies the development of conversational AI models. It supports comprehensive workflows from
data processing to deployment and includes pre-trained models for automatic speech recognition
(ASR), natural language processing (NLP), and text-to-speech (TTS), which can be fine-tuned or
used as-is.

• Best-in-Class Pretrained Models NeMo Collections offer a variety of pre-trained models and
training scripts, facilitating rapid application development or fine-tuning for specific tasks. Cur-
rently, NeMo supports models like Llama 2, Stable Diffusion, and NVIDIA’s Nemotron-3 8B family.

• Optimised Retrieval-Augmented GenerationNeMo Retriever delivers high-performance, low-
latency information retrieval, enhancing generative AI applications with enterprise-grade retrieval-
augmented generation (RAG) capabilities. This feature supports real-time business insights and
data Utilisation.

10.7.2 Components of NVIDIA NeMo

• NeMo Core Provides essential elements like the Neural Module Factory for training and inference,
streamlining the development of conversational AI models.

• NeMo Collections Offers specialised modules and models for ASR, NLP, and TTS, including
pre-trained models and training scripts, making the platform versatile.

• Neural Modules Serve as the building blocks of NeMo, defining trainable components such as
encoders and decoders, which can be connected to create comprehensive models.

• Application Scripts Simplify the deployment of conversational AI models with ready-to-use
scripts, enabling quick training or fine-tuning on specific datasets for various AI applications.

10.7.3 Customising Large Language Models (LLMs)

While general-purpose LLMs, enhanced with prompt engineering or light fine-tuning, have enabled organ-
isations to achieve successful proof-of-concept projects, transitioning to production presents additional
challenges. Figure 10.3 illustrates NVIDIA’s detailed LLM customisation lifecycle, offering valuable
guidance for organisations that are preparing to deploy customised models in a production environment
[85].

1. Model Selection or Development
NVIDIA provides a range of pre-trained models, from 8B to 43B parameters, and supports the
integration of other open-source models of any size. Alternatively, users can develop their own
models, starting with data curation, which includes selecting, labeling, cleansing, validating, and
integrating data. This process, better termed data engineering, involves additional analysis, de-
signing storage, evaluating model training results, and incorporating reinforcement learning with
human feedback (RLHF). While building a custom foundation model is often costly, complex, and
time-consuming, most enterprises opt to start with a pre-trained model and focus on customisation.

86

Figure 10.3: Nvidia NeMo Framework for Customising and Deploying LLMs. The Nvidia NeMo frame-
work is designed for end-to-end customisation and deployment of large language models (LLMs). This
diagram illustrates the process from data curation and distributed training of foundation models, through
model customisation, to accelerated inference with guardrails. The platform enables AI developers to
integrate in-domain, secure, and cited responses into enterprise applications, ensuring that LLMs are
effectively tailored for specific tasks and industries. The NeMo framework, supported by Nvidia AI En-
terprise, also offers robust support for various pre-trained foundation models like OpenAI’s GPT family,
ensuring scalability and reliability in AI deployments. (adapted from [85])

2. Model Customisation
Model customisation involves optimising performance with task-specific datasets and adjusting
model weights. NeMo offers recipes for customisation, and enterprises can choose models already
tailored to specific tasks and then fine-tune them with proprietary data.

3. Inference
Inference refers to running models based on user queries. This phase involves considering hardware,
architecture, and performance factors that significantly impact usability and cost in production.

4. Guardrails
NVIDIA employs guardrails as intermediary services between models and applications. These
services review incoming prompts for policy compliance, execute arbitration or orchestration steps,
and ensure model responses adhere to policies. Guardrails help maintain relevance, accuracy, safety,
privacy, and security.

5. Applications
NVIDIA’s framework presents enterprise applications as LLM-ready, though this is not always
the case. Existing applications may be connected to LLMs to enable new features. However,
creating assistants for knowledge access or task execution often involves designing new applications
specifically for natural language interfaces.

10.7.4 Tutorials

1. Introduction to NVIDIA NeMo — Tutorial and Example

2. How to fine-tune a Riva NMT Bilingual model with Nvidia NeMo

87

https://medium.com/@khang.pham.exxact/introduction-to-nvidia-nemo-tutorial-example-478f6ba6b160
https://docs.nvidia.com/deeplearning/riva/user-guide/docs/tutorials/nmt-python-advanced-finetune-nmt-model-with-nemo.html

Chapter 11

Multimodal LLMs and their
Fine-tuning

A multimodal model is a machine learning model that can process information from various modalities,
such as images, videos, and text. For instance, Google’s multimodal model, Gemini[86], can analyse a
photo of a plate of cookies and produce a written recipe in response, and it can perform the reverse as well.

The difference between Generative AI and Multimodal AI is that generative AI refers to the use of
machine learning models to create new content, such as text, images, music, audio, and videos, typically
from a single type of input. Multimodal AI extends these generative capabilities by processing informa-
tion from multiple modalities, including images, videos, and text. This enables the AI to understand
and interpret different sensory modes, allowing users to input various types of data and receive a diverse
range of content types in return.

Figure 11.1: Timeline of Multimodal Model Developments — This figure illustrates the progression
of significant multimodal models, highlighting key releases from major tech companies and research
institutions from December 2023 to March 2024. The timeline showcases models like Google’s TinyGPT-
V and Gemini Nano, along with other innovations such as MoE-LLAVA, DeepSeek-VL, and LLAVA-
Gemma, indicating the rapid advancement in multimodal AI technologies (adapted from [87]).

88

11.1 Vision Language Model (VLMs)

Vision language models encompass multimodal models capable of learning from both images and text
inputs. They belong to the category of generative models that utilise image and text data to produce
textual outputs. These models, especially at larger scales, demonstrate strong zero-shot capabilities,
exhibit robust generalisation across various tasks, and effectively handle diverse types of visual data such
as documents and web pages. Typical applications include conversational interactions involving images,
image interpretation based on textual instructions, answering questions related to visual content, under-
standing documents, generating captions for images, and more. Certain advanced vision language models
can also understand spatial attributes within images. They can generate bounding boxes or segmentation
masks upon request to identify or isolate specific subjects, localise entities within images, or respond to
queries regarding their relative or absolute positions. The landscape of large vision language models is
characterised by considerable diversity in training data, image encoding techniques, and consequently,
their functional capabilities.

11.1.1 Architecture

Vision-language models adeptly integrate both visual and textual information, leveraging three funda-
mental components:

• Image Encoder: This component translates visual data (images) into a format that the model
can process.

• Text Encoder: Similar to the image encoder, this component converts textual data (words and
sentences) into a format the model can understand.

• Fusion Strategy: This component combines the information from both the image and text en-
coders, merging the two data types into a unified representation.

These elements work collaboratively, with the model’s learning process (loss functions) specifically tai-
lored to the architecture and learning strategy employed. Although the concept of vision-language mod-
els is not new, their construction has evolved significantly. Early models used manually crafted image
descriptions and pre-trained word vectors. Modern models, however, utilise transformers—an advanced
neural network architecture—for both image and text encoding. These encoders can learn features either
independently or jointly.
A crucial aspect of these models is pre-training. Before being applied to specific tasks, the models are
trained on extensive datasets using carefully selected objectives. This pre-training equips them with the
foundational knowledge required to excel in various downstream applications. Following is one of the
example architectures of VLMs.

11.1.2 Contrastive Learning

Contrastive learning is a technique that focuses on understanding the differences between data points. It
computes a similarity score between instances and aims to minimise contrastive loss, making it particu-
larly useful in semi-supervised learning where a limited number of labelled samples guide the optimisation
process to classify unseen data points.

How it works

For instance, to recognise a cat, contrastive learning compares a cat image with a similar cat image and
a dog image. The model learns to distinguish between a cat and a dog by identifying features such as
facial structure, body size, and fur. By determining which image is closer to the ”anchor” image, the
model predicts its class.
CLIP is a model that utilises contrastive learning to compute similarity between text and image embed-
dings through textual and visual encoders. It follows a three-step process for zero-shot predictions:

• Pre-training: Trains a text and image encoder to learn image-text pairs.

• Caption Conversion: Converts training dataset classes into captions.

• Zero-Shot Prediction: Estimates the best caption for a given input image based on learned
similarities.

89

Figure 11.2: Workflow of Contrastive Pre-Training for Multimodal Models. This figure illustrates the
process of contrastive pre-training where text and image encoders are trained to align representations
from both modalities. Step 1 involves contrastive pre-training by pairing text and image data, while
Step 2 showcases the creation of a dataset classifier using label text encoded by the text encoder. Step
3 demonstrates the model’s application for zero-shot prediction by leveraging the pre-trained text and
image encoders. This method enables the model to generalise across various tasks without requiring
task-specific fine-tuning (adopted from [88]).

11.2 Fine-tuning of multimodal models

For fine-tuning a Multimodal Large Language Model (MLLM), PEFT techniques such as LoRA and
QLoRA can be utilised. The process of fine-tuning for multimodal applications is analogous to that for
large language models, with the primary difference being the nature of the input data. In addition to
LoRA, which employs matrix factorisation techniques to reduce the number of parameters, other tools
such as LLM-Adapters and (IA)³[89] can be effectively used. LLM-Adapters integrate various adapter
modules into the pre-trained model’s architecture, enabling parameter-efficient fine-tuning for diverse
tasks by updating only the adapter parameters while keeping the base model parameters fixed. (IA)³,
or Infused Adapters by Inhibiting and Amplifying Inner Activations, enhances performance by learn-
ing vectors to weight model parameters through activation multiplications, supporting robust few-shot
performance and task mixing without manual adjustments. Moreover, dynamic adaptation techniques
like DyLoRA[90] allow for the training of low-rank adaptation blocks across different ranks, optimising
the learning process by sorting the representations during training. LoRA-FA[91], a variant of LoRA,
optimises the fine-tuning process by freezing the first low-rank matrix after initialisation and using it as a
random projection while training the other, thereby reducing the number of parameters by half without
compromising performance.
The Efficient Attention Skipping (EAS)[92] module introduces a novel parameter and computation-
efficient tuning method for MLLMs, aiming to maintain high performance while reducing parameter and
computation costs for downstream tasks. However, MemVP[93] critiques this approach, noting that it
still increases the input length of language models. To address this, MemVP integrates visual prompts
with the weights of Feed Forward Networks, thereby injecting visual knowledge to decrease training time
and inference latency, ultimately outperforming previous PEFT methods.

11.2.1 Full-parameter Fine-Tuning

Methods such as those introduced by LOMO[94] and MeZO[95] provide alternative solutions by focusing
on memory efficiency. LOMO utilises a low-memory optimisation technique derived from Stochastic
Gradient Descent (SGD), reducing memory consumption typically associated with the ADAM optimiser.
MeZO, on the other hand, offers a memory-efficient optimiser that requires only two forward passes
to compute gradients, enabling comprehensive fine-tuning of large models with a memory footprint
equivalent to inference [87].

90

11.2.2 Case study of fine-tuning MLLMs for Medical domain

The following section provides a case study on fine-tuning MLLMs for the Visual Question Answering
(VQA) task. In this example, we present a PEFT for fine-tuning MLLM specifically designed for Med-
VQA applications. To ensure accurate performance measurement, human evaluations were conducted,
demonstrating that the model achieves an overall accuracy of 81.9% and surpasses the GPT-4v model
by a substantial margin of 26% in absolute accuracy on closed-ended questions.
The model consists of three components: the vision encoder, a pre-trained Large Language Model (LLM)
for handling multimodal inputs and generating responses, and a single linear layer for projecting embed-
dings from the visual encoding space to the LLM space, as shown in figure 11.3.
The Vision Transformer (ViT) type backbone, EVA, encodes image tokens into visual embeddings,
with model weights remaining frozen during the fine-tuning process. The technique from MiniGPT-v2
is utilised, grouping four consecutive tokens into one visual embedding to efficiently reduce resource
consumption by concatenating on the embedding dimension.
These grouped visual tokens are then processed through the projection layer, resulting in embeddings
(length 4096) in the LLM space. A multimodal prompt template integrates both visual and question
information, which is input into the pre-trained LLM, LLaMA2-chat(7B), for answer generation. The
low-rank adaptation (LoRA) technique is applied for efficient fine-tuning, keeping the rest of the LLM
frozen during downstream fine-tuning. A beam search with a width of 1 is utilised.

Figure 11.3: Overview of Med VQA architecture integrating LoRA and a pre-trained LLM with a Vision
Encoder for medical visual question answering tasks. The architecture includes stages for processing
images and generating contextually relevant responses, demonstrating the integration of vision and lan-
guage models in a medical setting (adopted from [96]).

The multimodal prompt includes input images, questions, and a specific token for VQA tasks, following
the MiniGPT-v2 template. In Figure 11.3, the image features derived from linear projection are labelled
as ImageFeature, with the corresponding questions serving as text instructions. The special token [VQA]

is used as the task identifier, forming the complete multimodal instructional template:

91

[INST]<ImageFeature>[VQA] Instruction [/INST].

Model Training

Weights from MiniGPT-v2, pre-trained on general domain datasets, are further fine-tuned using multi-
modal medical datasets in two stages. The LoRA technique is employed for efficient fine-tuning, updating
only a small portion of the entire model, as detailed below:

• Fine-tuning with image captioning: During this stage, the model is fine-tuned using the ROCO
medical image-caption dataset, which contains medical image-caption pairs of varying lengths. The
prompt template used is <ImageHere>[caption] <instruction>, with the instruc-
tion prompt randomly selected from a pool of four candidates, such as “Briefly describe this image.”
During training, only the linear projection layer and the LoRA layer in the LLM are fine-tuned,
while other parts of the model remain frozen.

• Fine-tuning on VQA: In the second stage, the model is fine-tuned on the Med-VQA dataset,
VQA-RAD, which contains triplets of images, questions, and answers. Following the instruction
template proposed in MiniGPT-v2, the template used is: “[INST] <ImageFeature>[VQA]

Instruction [/INST]”, where the instruction prompt is: “Based on the image, respond to this
question with a short answer: question,” with question signifying the question corresponding to
the given medical image. The motivation for generating short answers is to validate against the
existing labelled data in VQA-RAD, where the answers are typically short in both open-ended and
closed-ended QA pairs. Similar to the first stage, the vision encoder and the LLM remain frozen
while only the linear projection and LoRA layers in the LLM are updated.

11.3 Applications of Multimodal models

1. Gesture Recognition - These models interpret and recognise human gestures, which is crucial
for sign language translation. Multimodal models facilitate inclusive communication by processing
gestures and converting them into text or speech.

2. Video Summarisation - Multimodal models can summarise lengthy videos by extracting key vi-
sual and audio elements. This capability streamlines content consumption, enables efficient content
browsing, and enhances video content management platforms.

3. DALL-E is a notable example of multimodal AI that generates images from textual descriptions.
This technology expands creative possibilities in content creation and visual storytelling, with
applications in art, design, advertising, and more.

4. Educational Tools - Multimodal models enhance learning experiences by providing interactive
educational content that responds to both visual and verbal cues from students. They are integral
to adaptive learning platforms that adjust content and difficulty based on student performance and
feedback.

5. Virtual Assistants - Multimodal models power virtual assistants by understanding and respond-
ing to voice commands while processing visual data for comprehensive user interaction. They are
essential for smart home automation, voice-controlled devices, and digital personal assistants.

11.4 Audio or Speech LLMs Or Large Audio Models

Audio or speech LLMs are models designed to understand and generate human language based on audio
inputs. They have applications in speech recognition, text-to-speech conversion, and natural language
understanding tasks. These models are typically pre-trained on large datasets to learn generic language
patterns, which are then fine-tuned on specific tasks or domains to enhance performance.
Audio and Speech Large Language Models (LLMs) represent a significant advancement in the integration
of language processing with audio signals. These models leverage a robust Large Language Model as a
foundational backbone, which is enhanced to handle multimodal data through the inclusion of custom
audio tokens. This transformation allows the models to learn and operate within a shared multimodal
space, where both text and audio signals can be effectively processed.

92

Unlike text, which is inherently discrete, audio signals are continuous and need to be discretized into
manageable audio tokens. Techniques like HuBERT[97] and wav2vec[98] are employed for this purpose,
converting audio into a tokenized format that the LLM can process alongside text. The model, typically
autoregressive and decoder-based, is pre-trained using a combination of self-supervised tasks, such as
predicting masked tokens in interleaved text and audio, and supervised fine-tuning for specific tasks like
transcription or sentiment analysis. This capability to handle and generate audio and text simultane-
ously allows for a wide range of applications, from audio question answering to speech-based sentiment
detection, making Audio and Speech LLMs a versatile tool in multimodal AI. The figure 11.4 illustrates
an example of a multimodal Audio LM architecture. In this setup, a prompt provides instructions in
both text and audio formats. The audio is tokenized using an audio tokenizer. The multimodal model
then combines these text and audio tokens and generates spoken speech through a vocoder (also known
as a voice decoder).

Figure 11.4: Multimodal Audio-Text Language Model architecture that integrates text and audio in-
puts for advanced multimodal processing. The architecture utilises text tokenizers and audio en-
coders/tokenizers to convert inputs into tokens, which are then processed by the audio-text LM. This
model supports both discrete and continuous speech processing and enables tasks such as sentiment anal-
ysis and response generation in natural language. The audio tokens are further refined using a vocoder,
while text tokens are detokenized to produce coherent text outputs (adapted from [99]).

93

Audio and speech LLMs like AudioPaLM[100], AudioLM[101], and various adaptations of models like
Whisper and LLaMA, integrate capabilities for understanding and generating audio data, including
speech-to-text (STT), text-to-speech (TTS), and speech-to-speech (STS) translation. These models
have shown that LLMs, initially designed for text, can be effectively adapted for audio tasks through
sophisticated tokenization and fine-tuning techniques.

11.4.1 Tokenization and Preprocessing

A key aspect of adapting LLMs for audio is the tokenization of audio data into discrete representations
that the model can process. For instance, AudioLM and AudioPaLM utilise a combination of acoustic
and semantic tokens. Acoustic tokens capture the high-quality audio synthesis aspect, while semantic
tokens help maintain long-term structural coherence in the generated audio. This dual-token approach
allows the models to handle both the intricacies of audio waveforms and the semantic content of speech.

11.4.2 Fine-Tuning Techniques

Fine-tuning audio and speech LLMs typically involve several key strategies:

• Full Parameter Fine-Tuning: This involves updating all the model’s parameters during fine-
tuning. For instance, LauraGPT and SpeechGPT fine-tune all parameters to adapt pre-trained
text LLMs to various audio tasks, although this can be computationally expensive.

• Layer-Specific Fine-Tuning: Techniques like LoRA (Low-Rank Adaptation) update only spe-
cific layers or modules of the model. This method significantly reduces computational requirements
while still allowing effective adaptation. Models like Qwen-Audio leverage LoRA to fine-tune pre-
trained components for enhanced performance on speech recognition tasks.

• Component-Based Fine-Tuning: Recent models, such as those integrating the Whisper en-
coder, freeze certain parts of the model (like the speech encoder) and only fine-tune a linear
projector or specific adapters to align the speech and text modalities. This approach simplifies the
training process and enhances efficiency[102].

• Multi-Stage Fine-Tuning: Models like AudioPaLM perform multi-stage fine-tuning, starting
with a text-based pre-training phase, followed by fine-tuning on a mixture of tasks that include
both text and audio data. This staged approach leverages the strengths of pre-trained text models
while adapting them for multimodal tasks.

11.4.3 Fine-Tuning Whisper for Automatic Speech Recognition (ASR)

Whisper1 is an advanced Automatic Speech Recognition (ASR) model developed by OpenAI, designed
to convert spoken language into text. Built upon the powerful Transformer architecture, Whisper excels
at capturing and transcribing diverse speech patterns across various languages and accents. Unlike
traditional ASR models that require extensive labelled data, Whisper leverages a vast dataset and self-
supervised learning, enabling it to perform robustly in noisy environments and handle a wide range of
speech variations. Its versatility and high accuracy make it an ideal choice for applications such as voice
assistants, transcription services, and multilingual speech recognition systems.

Why Fine-Tune Whisper?

Fine-tuning Whisper for specific ASR tasks can significantly enhance its performance in specialised
domains. Although Whisper is pre-trained on a large and diverse dataset, it might not fully capture
the nuances of specific vocabularies or accents present in niche applications. Fine-tuning allows Whisper
to adapt to particular audio characteristics and terminologies, leading to more accurate and reliable
transcriptions. This process is especially beneficial in industries with domain-specific jargon, like medical,
legal, or technical fields, where the generic model might struggle with specialised vocabulary.

1https://openai.com/index/whisper/

94

https://openai.com/index/whisper/

Steps to Fine-Tune Whisper

• Data Collection and Preparation: Gather a sizable dataset that matches the target domain or
task. Ensure the dataset includes diverse examples with clear transcriptions. Clean and preprocess
the audio files and transcripts, ensuring they are in a consistent format and aligned correctly. Tools
like FFmpeg2 can help standardise audio formats and sample rates.

• Data Augmentation: To improve robustness, augment the dataset with variations such as dif-
ferent noise levels, accents, or speeds. Techniques like adding background noise, altering pitch, or
changing the tempo can help the model generalise better to real-world conditions.

• Preprocessing: Convert the audio files into a format suitable for Whisper, typically into mel
spectrograms or another time-frequency representation. This transformation is crucial as Whisper
relies on such representations to learn and transcribe speech effectively.

• Model Configuration: Initialise the Whisper model with pre-trained weights. Configure the
model to accommodate the target language or domain-specific adjustments. This includes setting
appropriate hyperparameters, like learning rate and batch size, tailored to the dataset’s size and
complexity.

• Training: Fine-tune the Whisper model on the prepared dataset using a framework like PyTorch
or TensorFlow. Ensure to monitor the model’s performance on a validation set to avoid overfitting.
Techniques like gradient clipping, learning rate scheduling, and early stopping can help maintain
training stability and efficiency.

• Evaluation and Testing: After training, evaluate the model’s performance on a separate test
set to assess its accuracy and generalisability. Metrics like Word Error Rate (WER) or Character
Error Rate (CER) provide insights into how well the model transcribes audio compared to ground
truth transcriptions.

11.4.4 Case Studies and Applications

1. Medical Transcription: Fine-tuning speech LLMs on medical data has led to significant im-
provements in transcribing doctor-patient interactions. Models like Whisper have been fine-tuned
on medical terminologies, resulting in more accurate and reliable transcriptions.

2. Legal Document Processing: Legal firms have employed fine-tuned audio LLMs to transcribe
court proceedings and legal discussions. Domain-specific fine-tuning has enhanced the models’
ability to recognise and accurately transcribe legal jargon.

3. Customer Service Automation: Companies are using fine-tuned speech models to automate
customer service interactions. These models are trained on customer support data to understand
and respond to queries more effectively, providing a more seamless user experience.

2https://ffmpeg.org/ffmpeg.html

95

https://ffmpeg.org/ffmpeg.html

Chapter 12

Open Challenges and Research
Directions

12.1 Scalability Issues

The fine-tuning of Large Language Models (LLMs) such as GPT-4, PaLM1 , and T52 has become a critical
area of research, presenting several significant challenges and opening up new avenues for exploration,
particularly in scaling these processes efficiently. This discussion focuses on the two main aspects: the
challenges in scaling fine-tuning processes and potential research directions for scalable solutions.

12.1.1 Challenges in Scaling Fine-Tuning Processes

1. Computational Resources: Large-scale models such as GPT-3 and PaLM require enormous
computational resources for fine-tuning. For instance, fine-tuning a 175-billion parameter model
like GPT-3 necessitates high-performance GPUs or TPUs capable of handling vast amounts of data
and complex operations. The sheer volume of parameters translates to extensive computational
demands. Even a relatively smaller model, such as BERT-large with 340 million parameters, can
be computationally intensive to fine-tune.

2. Memory Requirements: The memory footprint for fine-tuning LLMs is staggering. Each pa-
rameter in the model requires storage, and during training, additional memory is needed to store
intermediate computations, gradients, and optimiser states. For example, loading a 7 billion pa-
rameter model (e.g., LLaMA 2) in FP32 (4 bytes per parameter) requires approximately 28 GB
of GPU memory, while fine-tuning demands around 112 GB of GPU memory[103]. This memory
demand is beyond the capability of most consumer-grade hardware, making fine-tuning accessible
primarily to well-funded organisations or research institutions.

3. Data Volume: LLMs typically require vast amounts of training data to achieve state-of-the-art
performance during fine-tuning. This data needs to be loaded, preprocessed, and fed into the model
at high speeds to maintain efficient training. Managing large datasets can become a bottleneck,
especially if the data is stored in a distributed fashion across multiple systems or if it needs to be
fetched from remote storage.

4. Throughput and Bottlenecks: High throughput is essential to keep GPUs or TPUs fully
utilised. However, data pipelines can become bottlenecks if not properly optimised. For exam-
ple, shuffling large datasets or loading them into memory quickly enough to keep up with the
training process can be challenging. Techniques like data packing, where multiple small examples
are combined into larger batches, help improve throughput but add complexity to data handling
routines.[104]

5. Efficient Use of Resources: The financial and environmental costs of fine-tuning large models
are significant. Large-scale fine-tuning involves not just the direct cost of computational resources
but also the indirect costs associated with energy consumption and infrastructure maintenance.

1https://ai.google/discover/palm2/
2https://huggingface.co/docs/transformers/en/model_doc/t5

96

https://ai.google/discover/palm2/
https://huggingface.co/docs/transformers/en/model_doc/t5

Techniques such as mixed-precision training and gradient checkpointing can reduce these costs by
optimising memory and computational efficiency.

The challenges in scaling the fine-tuning processes of LLMs are multifaceted and complex, involving sig-
nificant computational, memory, and data handling constraints. Innovations in PEFT, data throughput
optimisation, and resource-efficient training methods are critical for overcoming these challenges. As
LLMs continue to grow in size and capability, addressing these challenges will be essential for making
advanced AI accessible and practical for a wider range of applications.

12.1.2 Research Directions for Scalable Solutions

Advanced PEFT Techniques and Sparse Fine-Tuning

Recent advancements in PEFT techniques, like LoRA and its variant, Quantised LoRA, are revolu-
tionising the scalability of LLMs. LoRA reduces the computational burden by updating only a low-rank
approximation of the parameters, significantly lowering memory and processing requirements. Quantised
LoRA further optimises resource usage by applying quantisation to these low-rank matrices, maintaining
high model performance while minimising the need for extensive hardware. This has enabled efficient
fine-tuning of massive models, such as in Meta’s LLaMA project, where adapting a smaller set of influ-
ential parameters allowed the models to perform robustly across various tasks with less computational
strain.

Sparse fine-tuning techniques, such as SpIEL [105] complement these efforts by selectively updating
only the most impactful parameters. SpIEL fine-tunes models by only changing a small portion of the
parameters, which it tracks with an index. The process includes updating the parameters, removing the
least important ones, and adding new ones based on their gradients or estimated momentum using an
efficient optimiser.

Data Efficient Fine-Tuning (DEFT)

To address the scalability challenges, recently the concept of DEFT has emerged. This novel approach
introduces data pruning as a mechanism to optimise the fine-tuning process by focusing on the most
critical data samples.

DEFT aims to enhance the efficiency and effectiveness of fine-tuning LLMs by selectively pruning the
training data to identify the most influential and representative samples. This method leverages few-shot
learning principles, enabling LLMs to adapt to new data with minimal samples while maintaining or even
exceeding performance levels achieved with full datasets [106].

Key Components of DEFT

High Accuracy Through Influence Score: DEFT introduces the concept of an influence score to
evaluate and rank the importance of each data sample in the context of LLM fine-tuning. The influence
score estimates how removing a specific sample would impact the overall performance of the model. This
approach allows for the selection of a small subset of data that is highly representative and influential,
thereby enabling the model to maintain high accuracy with significantly fewer samples.

High Efficiency Through Effort Score and Surrogate Models: To address the cost and complexity
of evaluating large datasets, DEFT employs a surrogate model—a smaller, computationally less intensive
model—to approximate the influence scores. This surrogate model helps estimate the impact of each
sample without the heavy computational burden associated with directly using the LLM. Additionally,
DEFT introduces an effort score to identify and prioritise more challenging samples that may require
special attention from the LLM. This dual-score system ensures that the fine-tuning process remains
both efficient and effective.

Practical Implications and Use Cases

• Few-Shot Fine-Tuning for Rapid Adaptation: DEFT is particularly beneficial for applica-
tions where models need to quickly adapt to new data with minimal samples. In scenarios such as

97

personalised recommendations or adapting to sudden changes in user behaviour, DEFT allows for
rapid fine-tuning, maintaining high performance with a fraction of the data typically required.

• Reducing Computational Costs in Large-Scale Deployments: By focusing on the most
influential data samples and using surrogate models, DEFT significantly reduces the computational
resources needed for fine-tuning. This makes it feasible to maintain high-performing LLMs even in
large-scale deployments where data volumes are substantial.

Future Directions

The DEFT introduces a data pruning task for fine-tuning large language models (LLMs), setting the
stage for new research into efficient LLM-based recommendation systems and presenting numerous op-
portunities for future exploration. Key areas for further investigation include:

• Applying the proposed DEALRec[107] approach to a broader range of LLM-based recommender
models across diverse cross-domain datasets, thereby enhancing fine-tuning performance within
resource constraints.

• Addressing the limited context window of LLMs by selectively focusing on the most informative
items in user interaction sequences for fine-tuning purposes.

12.1.3 Hardware and Algorithm Co-Design

Co-designing hardware and algorithms tailored for LLMs can lead to significant improvements in the
efficiency of fine-tuning processes. Custom hardware accelerators optimised for specific tasks or types of
computation can drastically reduce the energy and time required for model training and fine-tuning.

• Custom Accelerators: Developing hardware accelerators specifically for the sparse and low-
precision computations often used in LLM fine-tuning can enhance performance. These accelerators
are designed to efficiently handle the unique requirements of LLMs, such as the high memory
bandwidth and extensive matrix multiplications involved in transformer architectures.

• Algorithmic Optimisation: Combining hardware innovations with algorithmic optimisation
techniques, such as those that minimise data movement or leverage hardware-specific features
(e.g., tensor cores for mixed-precision calculations), can further enhance the efficiency of fine-tuning
processes.

• Example: NVIDIA’s TensorRT3 is an example of hardware and algorithm co-design in action.
It optimises deep learning models for inference by leveraging NVIDIA GPUs’ capabilities, signifi-
cantly speeding up the process while reducing the resource requirements. TensorRT’s optimisations
include support for mixed-precision and sparse tensor operations, making it highly suitable for fine-
tuning large models.

As the scale of language models continues to grow, addressing the challenges of fine-tuning them efficiently
becomes increasingly critical. Innovations in PEFT, sparse fine-tuning, data handling, and the integration
of advanced hardware and algorithmic solutions present promising directions for future research. These
scalable solutions are essential not only to make the deployment of LLMs feasible for a broader range of
applications but also to push the boundaries of what these models can achieve.

12.2 Ethical Considerations in Fine-Tuning LLMs

12.2.1 Bias and Fairness

When fine-tuning LLMs, the goal is often to optimise their performance for specific tasks or datasets.
However, these datasets may inherently carry biases that get transferred to the model during the fine-
tuning process. Biases can arise from various sources, including historical data, imbalanced training
samples, and cultural prejudices embedded in language. For instance, an LLM fine-tuned on a dataset
primarily sourced from English-speaking countries might underperform or make biased predictions when

3https://docs.nvidia.com/tensorrt/index.html

98

https://docs.nvidia.com/tensorrt/index.html

applied to text from other linguistic or cultural backgrounds. Google AI’s Fairness Indicators tool4 is a
practical solution that allows developers to evaluate the fairness of their models by analysing performance
metrics across different demographic groups. This tool can be integrated into the fine-tuning pipeline to
monitor and address bias in real-time.

Addressing Bias and Fairness

• Diverse and Representative Data: Ensuring that fine-tuning datasets are diverse and repre-
sentative of all user demographics can help mitigate bias.

• Fairness Constraints: Incorporating fairness constraints, as suggested by the FairBERTa frame-
work5, ensures that fine-tuned models maintain equitable performance across different groups.

• Example Application: In healthcare, an LLM fine-tuned to assist in diagnosing conditions might
initially be trained on data from predominantly white patients. Such a model could produce less
accurate diagnoses for patients from other racial backgrounds. By using fairness-aware fine-tuning
techniques, healthcare providers can develop models that perform more equitably across diverse
patient populations.

12.2.2 Privacy Concerns

Fine-tuning often involves using sensitive or proprietary datasets, which poses significant privacy risks. If
not properly managed, fine-tuned models can inadvertently leak private information from their training
data. This issue is especially critical in domains like healthcare or finance, where data confidentiality is
paramount.

Ensuring Privacy During Fine-Tuning

• Differential Privacy6: Implementing differential privacy techniques during fine-tuning can pre-
vent models from leaking sensitive information.

• Federated Learning7: Utilising federated learning frameworks allows models to be fine-tuned
across decentralised data sources, which enhances privacy by keeping data localised.

• Example Application: In customer service applications, companies might fine-tune LLMs using
customer interaction data. Employing differential privacy ensures that the model learns from these
interactions without memorising and potentially leaking personal information, thus maintaining
customer confidentiality.

12.2.3 Security Risks

• Security Vulnerabilities in Fine-Tuned Models: Fine-tuned LLMs are susceptible to secu-
rity vulnerabilities, particularly from adversarial attacks. These attacks involve inputs designed to
exploit model weaknesses, causing them to produce erroneous or harmful outputs. Such vulnera-
bilities can be more pronounced in fine-tuned models due to their specialised training data, which
may not cover all possible input scenarios.

• Recent Research and Industry Practices: Microsoft’s Adversarial ML Threat Matrix pro-
vides a comprehensive framework for identifying and mitigating adversarial threats during model
development and fine-tuning. This matrix helps developers understand the potential attack vectors
and implement defensive strategies accordingly.

• Enhancing Security in Fine-Tuning:

– Adversarial Training: Exposing models to adversarial examples during fine-tuning can
enhance their robustness against attacks.

– Security Audits: Regularly conducting security audits on fine-tuned models can help iden-
tify and address potential vulnerabilities.

4https://research.google/blog/fairness-indicators-scalable-infrastructure-for-fair-ml-systems/
5https://huggingface.co/facebook/FairBERTa
6https://privacytools.seas.harvard.edu/differential-privacy
7https://research.ibm.com/blog/what-is-federated-learning

99

https://research.google/blog/fairness-indicators-scalable-infrastructure-for-fair-ml-systems/
https://huggingface.co/facebook/FairBERTa
https://privacytools.seas.harvard.edu/differential-privacy
https://research.ibm.com/blog/what-is-federated-learning

12.3 Accountability and Transparency

12.3.1 The Need for Accountability and Transparency

Fine-tuning can significantly alter an LLM’s behaviour, making it crucial to document and understand
the changes and their impacts. This transparency is essential for stakeholders to trust the model’s
outputs and for developers to be accountable for its performance and ethical implications.

12.3.2 Recent Research and Industry Practices

Meta’s Responsible AI framework8 underscores the importance of documenting the fine-tuning process
and its effects on model behaviour. This includes maintaining detailed records of the data used, the
changes made during fine-tuning, and the evaluation metrics applied.

12.3.3 Promoting Accountability and Transparency

• Comprehensive Documentation: Creating detailed documentation of the fine-tuning process
and its impact on model performance and behaviour.

• Transparent Reporting: Utilising frameworks like Model Cards9 to report on the ethical and
operational characteristics of fine-tuned models.

• Example Application: In content moderation systems, LLMs fine-tuned to identify and filter
harmful content need clear documentation and reporting. This ensures that platform users and
regulators understand how the model operates and can trust its moderation decisions.

12.3.4 Proposed frameworks/techniques for Ethical Fine-Tuning

Frameworks for Mitigating Bias

Bias-aware fine-tuning frameworks aim to incorporate fairness into the model training process. Fair-
BERTa, introduced by Facebook, is an example of such a framework that integrates fairness constraints
directly into the model’s objective function during fine-tuning. This approach ensures that the model’s
performance is balanced across different demographic groups.

Organisations can adopt fairness-aware frameworks to develop more equitable AI systems. For instance,
social media platforms can use these frameworks to fine-tune models that detect and mitigate hate speech
while ensuring fair treatment across various user demographics.

Techniques for Privacy Preservation

Differential privacy and federated learning are key techniques for preserving privacy during fine-tuning.
TensorFlow Privacy10, developed by Google, provides built-in support for differential privacy, allowing
developers to fine-tune models securely without compromising data confidentiality.
LLMs are highly effective but face challenges when applied in sensitive areas where data privacy is cru-
cial. To address this, researchers focus on enhancing Small Language Models (SLMs) tailored to specific
domains. Existing methods often use LLMs to generate additional data or transfer knowledge to SLMs,
but these approaches struggle due to differences between LLM-generated data and private client data. In
response, a new Federated Domain-specific Knowledge Transfer (FDKT)[108] framework is introduced.
FDKT leverages LLMs to create synthetic samples that mimic clients’ private data distribution using
differential privacy. This approach significantly boosts SLMs’ performance by approximately 5% while
maintaining data privacy with a minimal privacy budget, outperforming traditional methods relying
solely on local private data.

In healthcare, federated fine-tuning can allow hospitals to collaboratively train models on patient data
without transferring sensitive information. This approach ensures data privacy while enabling the de-
velopment of robust, generalisable AI systems.

8https://ai.meta.com/responsible-ai/
9https://huggingface.co/docs/hub/en/model-cards

10https://www.tensorflow.org/responsible_ai/privacy/guide

100

https://ai.meta.com/responsible-ai/
https://huggingface.co/docs/hub/en/model-cards
https://www.tensorflow.org/responsible_ai/privacy/guide

Frameworks for Enhancing Security

Adversarial training and robust security measures[109] are essential for protecting fine-tuned models
against attacks. The adversarial training approach involves training models with adversarial examples
to improve their resilience against malicious inputs. Microsoft Azure’s adversarial training tools provide
practical solutions for integrating these techniques into the fine-tuning process, helping developers create
more secure and reliable models.

In cybersecurity, fine-tuned LLMs used for threat detection can benefit from adversarial training to
enhance their ability to identify and respond to sophisticated attacks, thereby improving organisational
security.

Frameworks for Ensuring Transparency

Transparency and accountability frameworks, such as Model Cards and AI FactSheets11, provide struc-
tured ways to document and report on the fine-tuning process and the resulting model behaviours. These
frameworks promote understanding and trust among stakeholders by clearly outlining the model’s capa-
bilities, limitations, and ethical considerations.

In government applications, where AI systems might be used for decision-making or public services,
maintaining transparent documentation through frameworks like AI FactSheets ensures that these sys-
tems are accountable and their decisions can be audited and trusted by the public.

Fine-tuning LLMs introduces several ethical challenges, including bias, privacy risks, security vulnera-
bilities, and accountability concerns. Addressing these requires a multifaceted approach that integrates
fairness-aware frameworks, privacy-preserving techniques, robust security measures, and transparency
and accountability mechanisms. By leveraging recent advancements in these areas, researchers and
practitioners can develop and deploy LLMs that are not only powerful but also ethically sound and
trustworthy.

12.4 Integration with Emerging Technologies

Integrating LLMs with emerging technologies such as IoT (Internet of Things) and edge computing
presents numerous opportunities and challenges, reflecting advancements and insights from recent re-
search and industry developments.

12.4.1 Opportunities

• Enhanced Decision-Making and Automation: LLMs have the capability to analyse and derive
insights from vast amounts of unstructured data generated by IoT devices. This data can range
from sensor readings in manufacturing plants to environmental data in smart cities. By processing
this data in real-time, LLMs can optimise decision-making processes and automate tasks that
traditionally required human intervention. For example:

– Industrial Applications: Predictive maintenance can be enhanced by LLMs analysing sen-
sor data to predict equipment failures before they occur, thereby reducing downtime and
maintenance costs.

– Smart Cities: LLMs can analyse traffic patterns and environmental data from IoT sensors
to optimise city infrastructure and improve urban planning decisions.

• Personalised User Experiences: Integration with edge computing allows LLMs to process
data locally on devices rather than relying solely on cloud-based servers. This enables LLMs to
deliver highly personalised services based on real-time data and user preferences, enhancing user
experiences across various domains:

– Healthcare: LLMs can provide personalised healthcare recommendations by analysing data
from wearable devices and integrating it with medical records securely stored on edge devices.

11https://aifs360.res.ibm.com/

101

https://aifs360.res.ibm.com/

• Improved Natural Language Understanding: IoT data integration enriches LLMs’ ability to
understand context and respond more intelligently to natural language queries. This can signifi-
cantly improve user interactions with smart environments:

– Smart Homes: LLMs integrated with IoT devices can understand and respond to voice
commands more accurately, adjusting smart home settings based on real-time sensor data
(e.g., adjusting lighting and temperature based on occupancy and environmental conditions).

12.4.2 Challenges

• Data Complexity and Integration: Integrating data from diverse IoT devices poses challenges
related to data quality, interoperability, and scalability. LLMs need to effectively process and
interpret this heterogeneous data to derive meaningful insights:

– Data Integration: Ensuring seamless integration of data streams from different IoT plat-
forms and devices without compromising data integrity or performance.

– Data Preprocessing: Cleaning and preprocessing IoT data to ensure consistency and reli-
ability before feeding it into LLMs for analysis.

• Privacy and Security: Edge computing involves processing sensitive data locally on devices,
raising concerns about data privacy and security:

– Data Privacy: Implementing robust encryption techniques and access control mechanisms
to protect sensitive data processed by LLMs on edge devices.

– Secure Communication: Ensuring secure communication channels between IoT devices
and LLMs to prevent data breaches or unauthorised access.

• Real-Time Processing and Reliability: LLMs deployed in edge computing environments must
operate with low latency and high reliability to support real-time applications:

– Latency: Optimising algorithms and processing capabilities of LLMs to handle real-time
data streams efficiently without delays.

– Reliability: Ensuring the accuracy and consistency of insights generated by LLMs in dynamic
and unpredictable IoT environments.

12.5 Future Research Areas

• Federated Learning and Edge Computing: Exploring federated learning techniques where
LLMs can be trained collaboratively across edge devices without centralised data aggregation.
This approach addresses privacy concerns and reduces communication overhead.

• Real-Time Decision Support Systems: Developing LLM-based systems capable of real-time
decision-making by integrating with edge computing infrastructure. This includes optimising algo-
rithms for low-latency processing and ensuring reliability under dynamic environmental conditions.

• Ethical and Regulatory Implications: Investigating the ethical implications of integrating
LLMs with IoT and edge computing, particularly regarding data ownership, transparency, and
fairness. This area requires frameworks for ethical AI deployment and governance.

102

Glossary

LLM Large Language Model – A type of AI model, typically with billions of parameters, trained on vast
amounts of text data to understand and generate human-like text. They are primarily designed
for tasks in natural language processing (NLP).

NLP Natural Language Processing – A field of artificial intelligence that focuses on the interaction
between computers and humans through natural language, including tasks like language generation,
translation, and sentiment analysis.

LoRA Low-Rank Adaptation – A parameter-efficient fine-tuning technique that adjusts only small low-
rank matrices to adapt pre-trained models to specific tasks, thus preserving most of the original
model’s parameters.

DoRA Weight-Decomposed Low-Rank Adaptation – A technique that decomposes model weights into
magnitude and direction components, facilitating fine-tuning while maintaining inference efficiency.

QLoRA Quantised Low-Rank Adaptation – A variation of LoRA, specifically designed for quantised
models, allowing for efficient fine-tuning in resource-constrained environments.

PPO Proximal Policy Optimisation – A reinforcement learning algorithm that adjusts policies by bal-
ancing the exploration of new actions and exploitation of known rewards, designed for stability and
efficiency in training.

DPO Direct Preference Optimisation – A method that directly aligns language models with human
preferences through preference optimisation, bypassing reinforcement learning models like PPO.

MoE Mixture of Experts – A model architecture that employs multiple specialised subnetworks, called
experts, which are selectively activated based on the input to improve model performance and
efficiency.

MoA Mixture of Agents – A multi-agent framework where several agents collaborate during training
and inference, leveraging the strengths of each agent to improve overall model performance.

PEFT Parameter-Efficient Fine-Tuning – A fine-tuning approach for large models that involves adjust-
ing only a subset of model parameters, improving efficiency in scenarios with limited computational
resources. This includes techniques like LoRA, QLoRA, and adapters.

Adapters Small, trainable modules introduced into the layers of pre-trained language models, allowing
efficient task-specific fine-tuning without modifying the core parameters of the original model.
Techniques such as **AdapterFusion** and **AdapterSoup** fall under this category, facilitating
the combination of multiple adapters for complex multitasking.

Soft Prompt Tuning (SPT) A fine-tuning technique where a set of trainable prompt tokens are added
to the input sequence to guide a pre-trained model towards task-specific performance without
modifying internal model weights.

Prefix-Tuning A variation of soft prompt tuning where a fixed sequence of trainable vectors is prepended
to the input layer at every layer of the model, enhancing task-specific adaptation.

Quantisation The process of reducing the precision of model weights and activations, often from 32-bit
to lower-bit representations like 8-bit or 4-bit, to reduce memory usage and improve computational
efficiency.

103

Quantised LLMs Large Language Models that have undergone quantisation, a process that reduces
the precision of model weights and activations, often from 32-bit to 8-bit or lower, to enhance
memory and computational efficiency.

Pruning A model optimisation technique that reduces the complexity of large language models by
removing less significant parameters, enabling faster inference and lower memory usage.

Half Fine-Tuning (HFT) A fine-tuning method where half of the model’s parameters are kept frozen
while the other half are updated, helping to maintain pre-trained knowledge while adapting the
model to new tasks.

Structured Masking A technique that masks entire layers, heads, or other structural components of
a model to reduce complexity while fine-tuning for specific tasks.

Unstructured Masking A technique where certain parameters of the model are masked out randomly
or based on a pattern during fine-tuning, allowing for the identification of the most important
model weights.

GLUE General Language Understanding Evaluation – A benchmark used to evaluate the performance
of NLP models across a variety of language understanding tasks, such as sentiment analysis and
natural language inference.

SuperGLUE Super General Language Understanding Evaluation – A more challenging extension of
GLUE, consisting of harder tasks designed to test the robustness and adaptability of NLP models.

TruthfulQA A benchmark designed to measure the truthfulness of a language model’s output, focusing
on factual accuracy and resistance to hallucination.

IFEval Instruction Following Evaluation – A benchmark that assesses a model’s ability to follow explicit
instructions across tasks, usually in the context of fine-tuning large models for adherence to specific
instructions.

BBH Big Bench Hard – A subset of the Big Bench dataset, which consists of particularly difficult tasks
aimed at evaluating the advanced reasoning abilities of large language models.

MATH A dataset created to evaluate a model’s ability to solve high-school level mathematical problems,
presented in formal formats like LaTeX.

GPQA General-Purpose Question Answering – A challenging dataset that features knowledge-based
questions crafted by experts to assess deep reasoning and factual recall.

MuSR Multimodal Structured Reasoning – A dataset that involves complex problems requiring lan-
guage models to integrate reasoning across modalities, often combining text with other forms of
data such as images or graphs.

MMLU Massive Multitask Language Understanding – A benchmark that evaluates a language model’s
ability to perform various tasks across diverse domains, such as humanities, STEM, social sciences,
and others, typically requiring high-level reasoning.

MMLU-PRO A refined version of the MMLU dataset with a focus on more challenging, multi-choice
problems, typically requiring the model to parse long-range context.

ARC AI2 Reasoning Challenge – A benchmark for evaluating a language model’s reasoning capabilities
using a dataset of multiple-choice science questions.

COQA Conversational Question Answering – A benchmark that evaluates how well a language model
can understand and engage in back-and-forth conversation, especially in a question-answer format.

DROP Discrete Reasoning Over Paragraphs – A benchmark that tests a model’s ability to perform
discrete reasoning over text, especially in scenarios requiring arithmetic, comparison, or logical
reasoning.

SQuAD Stanford Question Answering Dataset – A popular dataset for evaluating a model’s ability to
understand and answer questions based on passages of text.

104

TREC Text REtrieval Conference – A benchmark that evaluates models on various text retrieval tasks,
often focusing on information retrieval and document search.

WMT Workshop on Machine Translation – A dataset and benchmark for evaluating the performance
of machine translation systems across different language pairs.

XNLI Cross-lingual Natural Language Inference – A dataset designed to evaluate a model’s ability to
understand and infer meaning across multiple languages.

PiQA Physical Interaction Question Answering – A dataset that measures a model’s understanding of
physical interactions and everyday tasks.

Winogrande A large-scale dataset aimed at evaluating a language model’s ability to handle common-
sense reasoning, typically through tasks that involve resolving ambiguous pronouns in sentences.

RLHF Reinforcement Learning from Human Feedback – A method where language models are fine-
tuned based on human-provided feedback, often used to guide models towards preferred behaviours
or outputs.

RAFT Retrieval-Augmented Fine-Tuning – A method combining retrieval techniques with fine-tuning
to enhance the performance of language models by allowing them to access external information
during training or inference.

105

Bibliography

[1] N-gram language models. https://web.stanford.edu/~jurafsky/slp3/3.pdf. [Accessed 01-07-
2024].

[2] Anis Koubaa. Gpt-4 vs. gpt-3.5: A concise showdown, 04 2023.

[3] Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback, 2024.

[4] Yu-Chu Chang, XuWang, JindongWang, Yuanyi Wu, Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, Weirong Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qian Yang,
and Xingxu Xie. A survey on evaluation of large language models. ACM Transactions on Intelligent
Systems and Technology, 15:1 – 45, 2023.

[5] Ahtsham Zafar, Venkatesh Balavadhani Parthasarathy, Chan Le Van, Saad Shahid, Aafaq Iqbal
Khan, and Arsalan Shahid. Building trust in conversational ai: A review and solution architecture
using large language models and knowledge graphs. Big Data and Cognitive Computing, 8(6):70,
2024.

[6] Zhibo Chu, Shiwen Ni, Zichong Wang, Xi Feng, Min Yang, and Wenbin Zhang. History, develop-
ment, and principles of large language models-an introductory survey, 2024.

[7] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space, 2013.

[8] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022.

[11] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

[12] The art of fine-tuning large language models, explained in
depth — linkedin.com. https://www.linkedin.com/pulse/

art-fine-tuning-large-language-models-explained-depth-cherickal-giavc. [Accessed
01-07-2024].

106

https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://www.linkedin.com/pulse/art-fine-tuning-large-language-models-explained-depth-cherickal-giavc
https://www.linkedin.com/pulse/art-fine-tuning-large-language-models-explained-depth-cherickal-giavc

[13] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language models,
2024.

[14] Jeff Li, MBA, PMP on LinkedIn: Fine-tuning versus RAG in Generative AI Ap-
plications Architecture — linkedin.com. https://www.linkedin.com/posts/xjeffli_

fine-tuning-versus-rag-in-generative-ai-applications-activity-7189276988690382848--vxT.
[Accessed 01-08-2024].

[15] Tingfeng Hui, Zhenyu Zhang, Shuohuan Wang, Weiran Xu, Yu Sun, and Hua Wu. Hft: Half
fine-tuning for large language models. arXiv preprint arXiv:2404.18466, 2024.

[16] Rion Snow, Brendan O’Connor, Dan Jurafsky, and Andrew Y Ng. Cheap and fast—but is it good?
evaluating non-expert annotations for natural language tasks. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 254–263, 2008.

[17] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher
Ré. Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB
Endowment, volume 11, pages 269–282, 2017.

[18] Liang Ding, Philipp Gentner, Artur Duda, Vaibhav Sangtani, Dominik Ziegler, Max Hennen,
Siddharth Jain, and Roland Werthschützky. Automatic data labeling for supervised learning with
applications to visual inspection of mixed-plastic waste. Journal of Cleaner Production, 234:1033–
1044, 2019.

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. In Proceedings of the International Conference on Learning Representations
(ICLR), 2013.

[20] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014.

[21] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models
with monolingual data. Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 86–96, 2016.

[22] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial ex-
amples for text classification. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 31–36, 2017.

[23] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[24] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-
shot learners. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 3816–3830, 2021.

[25] Steven Feng, Varun Gangal, Jinjun Wei, Yashvardhan Chandrasekhar, Yichong Chen, Dani He,
Shuyang Huang, Faisal Ladhak, Jiao Lee, Xinyi Li, et al. A survey of data augmentation approaches
for nlp. arXiv preprint arXiv:2106.07499, 2021.

[26] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
8342–8360, 2020.

[27] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, pages 610–623, 2021.

107

https://www.linkedin.com/posts/xjeffli_fine-tuning-versus-rag-in-generative-ai-applications-activity-7189276988690382848--vxT
https://www.linkedin.com/posts/xjeffli_fine-tuning-versus-rag-in-generative-ai-applications-activity-7189276988690382848--vxT

[28] Reuben Binns. Fairness in machine learning: Lessons from political philosophy. Proceedings of the
2018 Conference on Fairness, Accountability, and Transparency, pages 149–159, 2018.

[29] Sebastian Ruder. The stanford natural language inference (snli) corpus. arXiv preprint
arXiv:1807.03519, 2021.

[30] Pradeep Rajan, Krishna Vyas, Rajiv Bansal, Ranjan Sharma, and Shubhranshu Mukherjee. Ma-
chine learning for data preprocessing. Journal of Big Data, 6(1):1–25, 2019.

[31] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357, 2002.

[32] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6(1):1–48, 2019.

[33] Alexander Ratner, Henry Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher Ré.
Snorkel: Rapid training data creation with weak supervision. Proceedings of the VLDB Endowment,
11(3):269–282, 2020.

[34] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness in machine learning: Lessons from
political philosophy. In Proceedings of the 2017 ACM on Conference on Fairness, Accountability,
and Transparency, pages 149–159, 2017.

[35] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–45, 2020.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32,
2019.

[37] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2015.

[38] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[39] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[40] Sheng Shen, Zhewei Dong, Xiaocheng Ye, Linjian Ma, Zhewei Li, Zirui Wang, Samyam Rajbhan-
dari, Yuxiong Wang, and Zhen Yang. Q-bert: Hessian based ultra low precision quantization of
bert. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8815–8821, 2020.

[41] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

[42] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé III, and Kate Crawford. Datasheets for datasets. Communications of the ACM,
64(12):86–92, 2021.

[43] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[44] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. Proceedings of the 44th Annual International Symposium on Computer
Architecture, pages 1–12, 2017.

108

[45] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, 2016.

[46] Mohammad Shoeybi, Mostofa Patwary, Raghavendra Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[47] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Cho-Jui Hsieh, and Payal Yadollahpour. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

[48] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. 2016.

[49] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(2):281–305, 2012.

[50] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Machine Learning: Methods,
Systems, Challenges. Springer Nature, 2019.

[51] Lutz Prechelt. Early stopping-but when? Neural Networks: Tricks of the trade, pages 55–69, 1998.

[52] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[53] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Deepspeed: Extreme-scale
model training for everyone. arXiv preprint arXiv:2007.04822, 2020.

[54] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2018.

[55] Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark,
Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang, Mohamed
Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska,
Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara
Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan
Karthikesalingam, and Vivek Natarajan. Towards expert-level medical question answering with
large language models, 2023.

[56] Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. Fingpt: Open-source financial large
language models, 2023.

[57] Zhi Zhou, Jiang-Xin Shi, Peng-Xiao Song, Xiao-Wen Yang, Yi-Xuan Jin, Lan-Zhe Guo, and Yu-
Feng Li. Lawgpt: A chinese legal knowledge-enhanced large language model, 2024.

[58] Linqing Chen, Weilei Wang, Zilong Bai, Peng Xu, Yan Fang, Jie Fang, Wentao Wu, Lizhi Zhou,
Ruiji Zhang, Yubin Xia, Chaobo Xu, Ran Hu, Licong Xu, Qijun Cai, Haoran Hua, Jing Sun, Jin
Liu, Tian Qiu, Haowen Liu, Meng Hu, Xiuwen Li, Fei Gao, Yufu Wang, Lin Tie, Chaochao Wang,
Jianping Lu, Cheng Sun, Yixin Wang, Shengjie Yang, Yuancheng Li, Lu Jin, Lisha Zhang, Fu Bian,
Zhongkai Ye, Lidong Pei, and Changyang Tu. Pharmagpt: Domain-specific large language models
for bio-pharmaceutical and chemistry, 2024.

[59] Writer Engineering team. Palmyra-Fin-70B-32k: a powerful LLM designed for Finance. https:

//dev.writer.com, 2024.

[60] Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey, 2024.

[61] Lin Tian, Xiuzhen Zhang, and Jey Han Lau. Metatroll: Few-shot detection of state-sponsored
trolls with transformer adapters. In Proceedings of the ACM Web Conference 2023, WWW ’23.
ACM, April 2023.

109

https://dev.writer.com
https://dev.writer.com

[62] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

[63] PhD Sebastian Raschka. Practical Tips for Finetuning LLMs Using LoRA (Low-Rank
Adaptation) — magazine.sebastianraschka.com. https://magazine.sebastianraschka.com/p/

practical-tips-for-finetuning-llms. [Accessed 01-08-2024].

[64] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023.

[65] What is QLoRa? — Analytics Vidhya — community.analyticsvidhya.com. https://community.

analyticsvidhya.com/c/generative-ai-tech-discussion/what-is-qlora. [Accessed 01-08-
2024].

[66] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024.

[67] Apple intelligence foundation language models, 2024.

[68] Tingfeng Hui, Zhenyu Zhang, Shuohuan Wang, Weiran Xu, Yu Sun, and Hua Wu. Hft: Half
fine-tuning for large language models, 2024.

[69] Johnny Li, Saksham Consul, Eda Zhou, James Wong, Naila Farooqui, Yuxin Ye, Nithyashree
Manohar, Zhuxiaona Wei, Tian Wu, Ben Echols, Sharon Zhou, and Gregory Diamos. Banishing
llm hallucinations requires rethinking generalization, 2024.

[70] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

[71] Applying Mixture of Experts in LLM Architectures — NVIDIA Techni-
cal Blog — developer.nvidia.com. https://developer.nvidia.com/blog/

applying-mixture-of-experts-in-llm-architectures/. [Accessed 01-08-2024].

[72] Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities, 2024.

[73] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

[74] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024.

[75] Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study, 2024.

[76] What are the most effective techniques for pruning ai models? — linkedin.com. https://www.

linkedin.com/advice/3/what-most-effective-techniques-pruning-0mlef. [Accessed 05-07-
2024].

[77] Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian
Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika,
Dan Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and Bo Li. Decodingtrust: A
comprehensive assessment of trustworthiness in gpt models, 2024.

[78] Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, and Madian Khabsa. Llama guard: Llm-
based input-output safeguard for human-ai conversations, 2023.

110

https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms
https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms
https://community.analyticsvidhya.com/c/generative-ai-tech-discussion/what-is-qlora
https://community.analyticsvidhya.com/c/generative-ai-tech-discussion/what-is-qlora
https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/
https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/
https://www.linkedin.com/advice/3/what-most-effective-techniques-pruning-0mlef
https://www.linkedin.com/advice/3/what-most-effective-techniques-pruning-0mlef

[79] Wenjun Zeng, Yuchi Liu, Ryan Mullins, Ludovic Peran, Joe Fernandez, Hamza Harkous, Karthik
Narasimhan, Drew Proud, Piyush Kumar, Bhaktipriya Radharapu, Olivia Sturman, and Oscar
Wahltinez. Shieldgemma: Generative ai content moderation based on gemma, 2024.

[80] Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang, Bill Yuchen Lin, Nathan Lambert, Yejin
Choi, and Nouha Dziri. Wildguard: Open one-stop moderation tools for safety risks, jailbreaks,
and refusals of llms, 2024.

[81] Vishal Mysore. LLM Deployment Strategies : Its not
Magic , Its Logic! — visrow. https://medium.com/@visrow/

llm-deployment-strategies-its-not-magic-its-logic-71d5f32ac2b4. [Accessed 07-08-
2024].

[82] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023.

[83] Preprocess and fine-tune llms quickly and cost-effectively using amazon emr serverless
and amazon sagemaker — aws.amazon.com. https://aws.amazon.com/blogs/big-data/

preprocess-and-fine-tune-llms-quickly-and-cost-effectively-using-amazon-emr-serverless-and-amazon-sagemaker/.
[Accessed 06-08-2024].

[84] Nvidia nemo build and customize your own llms (with tutorial) — run.ai. https://www.run.ai/
guides/ai-open-source-projects/nvidia-nemo. [Accessed 07-08-2024].

[85] Nvidia. What is nvidia nemo? https://www.nvidia.com/en-us/ai-data-science/products/

nemo/.

[86] Gemini Team and Rohan Anil et al. Gemini: A family of highly capable multimodal models, 2024.

[87] Yizhang Jin, Jian Li, Yexin Liu, Tianjun Gu, Kai Wu, Zhengkai Jiang, Muyang He, Bo Zhao, Xin
Tan, Zhenye Gan, Yabiao Wang, Chengjie Wang, and Lizhuang Ma. Efficient multimodal large
language models: A survey, 2024.

[88] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

[89] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learn-
ing, 2022.

[90] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation, 2023.

[91] Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning, 2023.

[92] Qiong Wu, Weihao Ye, Yiyi Zhou, Xiaoshuai Sun, and Rongrong Ji. Not all attention is needed:
Parameter and computation efficient transfer learning for multi-modal large language models, 2024.

[93] Shibo Jie, Yehui Tang, Ning Ding, Zhi-Hong Deng, Kai Han, and Yunhe Wang. Memory-space
visual prompting for efficient vision-language fine-tuning, 2024.

[94] Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources, 2024.

[95] Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes, 2024.

[96] Gang Liu, Jinlong He, Pengfei Li, Genrong He, Zhaolin Chen, and Shenjun Zhong. Pefomed:
Parameter efficient fine-tuning of multimodal large language models for medical imaging, 2024.

111

https://medium.com/@visrow/llm-deployment-strategies-its-not-magic-its-logic-71d5f32ac2b4
https://medium.com/@visrow/llm-deployment-strategies-its-not-magic-its-logic-71d5f32ac2b4
https://aws.amazon.com/blogs/big-data/preprocess-and-fine-tune-llms-quickly-and-cost-effectively-using-amazon-emr-serverless-and-amazon-sagemaker/
https://aws.amazon.com/blogs/big-data/preprocess-and-fine-tune-llms-quickly-and-cost-effectively-using-amazon-emr-serverless-and-amazon-sagemaker/
https://www.run.ai/guides/ai-open-source-projects/nvidia-nemo
https://www.run.ai/guides/ai-open-source-projects/nvidia-nemo
https://www.nvidia.com/en-us/ai-data-science/products/nemo/
https://www.nvidia.com/en-us/ai-data-science/products/nemo/

[97] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units, 2021.

[98] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations, 2020.

[99] Deepak Babu P R. Audio language models and multimodal ar-
chitecture — prdeepak.babu. https://medium.com/@prdeepak.babu/

audio-language-models-and-multimodal-architecture-1cdd90f46fac. [Accessed 19-07-
2024].

[100] Paul K. Rubenstein, Chulayuth Asawaroengchai, Duc Dung Nguyen, Ankur Bapna, Zalán Borsos,
Félix de Chaumont Quitry, Peter Chen, Dalia El Badawy, Wei Han, Eugene Kharitonov, Hannah
Muckenhirn, Dirk Padfield, James Qin, Danny Rozenberg, Tara Sainath, Johan Schalkwyk, Matt
Sharifi, Michelle Tadmor Ramanovich, Marco Tagliasacchi, Alexandru Tudor, Mihajlo Velimirović,
Damien Vincent, Jiahui Yu, Yongqiang Wang, Vicky Zayats, Neil Zeghidour, Yu Zhang, Zhishuai
Zhang, Lukas Zilka, and Christian Frank. Audiopalm: A large language model that can speak and
listen, 2023.

[101] Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt
Sharifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, and Neil Zeghidour.
Audiolm: a language modeling approach to audio generation, 2023.

[102] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language models,
2024.

[103] Fine-tune llama 2 with lora: Customizing a large language model for question-answering —
rocm.blogs.amd.com. https://rocm.blogs.amd.com/artificial-intelligence/llama2-lora/
README.html. [Accessed 15-07-2024].

[104] Aayush Mittal. Understanding llm fine-tuning: Tailoring large language mod-
els to your unique requirements — linkedin.com. https://www.unite.ai/

understanding-llm-fine-tuning-tailoring-large-language-models-to-your-unique-requirements.
[Accessed 11-07-2024].

[105] Alan Ansell, Ivan Vulić, Hannah Sterz, Anna Korhonen, and Edoardo M. Ponti. Scaling sparse
fine-tuning to large language models, 2024.

[106] Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng Chua.
Data-efficient fine-tuning for llm-based recommendation, 2024.

[107] Yue Liu, Shihao Zhu, Jun Xia, Yingwei Ma, Jian Ma, Wenliang Zhong, Xinwang Liu, Guannan
Zhang, and Kejun Zhang. End-to-end learnable clustering for intent learning in recommendation,
2024.

[108] Haoran Li, Xinyuan Zhao, Dadi Guo, Hanlin Gu, Ziqian Zeng, Yuxing Han, Yangqiu Song, Lixin
Fan, and Qiang Yang. Federated domain-specific knowledge transfer on large language models
using synthetic data, 2024.

[109] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks, 2019.

112

https://medium.com/@prdeepak.babu/audio-language-models-and-multimodal-architecture-1cdd90f46fac
https://medium.com/@prdeepak.babu/audio-language-models-and-multimodal-architecture-1cdd90f46fac
https://rocm.blogs.amd.com/artificial-intelligence/llama2-lora/README.html
https://rocm.blogs.amd.com/artificial-intelligence/llama2-lora/README.html
https://www.unite.ai/understanding-llm-fine-tuning-tailoring-large-language-models-to-your-unique-requirements
https://www.unite.ai/understanding-llm-fine-tuning-tailoring-large-language-models-to-your-unique-requirements

	Introduction
	Background of Large Language Models (LLMs)
	Historical Development and Key Milestones
	Evolution from Traditional NLP Models to State-of-the-Art LLMs
	Statistical Language Models (SLMs)
	Neural Language Models (NLMs)
	Pre-trained Language Models (PLMs)
	Large Language Models (LLMs)

	Overview of Current Leading LLMs
	What is Fine-Tuning?
	Types of LLM Fine-Tuning
	Unsupervised Fine-Tuning
	Supervised Fine-Tuning (SFT)
	Instruction Fine-Tuning via Prompt Engineering

	Pre-training vs Fine-tuning
	Importance of Fine-Tuning LLMs
	Retrieval Augmented Generation (RAG)
	Traditional RAG Pipeline and Steps
	Benefits of Using RAG
	Challenges and Considerations in Serving RAG
	Use Cases and Examples
	Considerations for Choosing Between RAG and Fine-Tuning

	Objectives of the Report
	Goals and Scope
	Key Questions and Issues Addressed
	Overview of the Report Structure

	Seven Stage Fine-Tuning Pipeline for LLM
	Stage 1: Dataset Preparation
	Stage 2: Model Initialisation
	Stage 3: Training Environment Setup
	Stage 4: Partial or Full Fine-Tuning
	Stage 5: Evaluation and Validation
	Stage 6: Deployment
	Stage 7: Monitoring and Maintenance

	Stage 1: Data Preparation
	Steps Involved in Data Preparation
	Data Collection
	Data Preprocessing and Formatting
	Handling Data Imbalance
	Splitting Dataset

	Existing and Potential Research Methodologies
	Data Annotation
	Data Augmentation
	Synthetic Data Generation using LLMs

	Challenges in Data Preparation for Fine-Tuning LLMs
	Available LLM Fine-Tuning Datasets
	Best Practices
	High-Quality Data Collection
	Effective Data Preprocessing
	Managing Data Imbalance
	Augmenting and Annotating Data
	Ethical Data Handling
	Regular Evaluation and Iteration

	Stage 2: Model Initialisation
	Steps Involved in Model Initialisation
	Tools and Libraries for Model Initialisation
	Challenges in Model Initialisation
	Tutorials

	Stage 3: Training Setup
	Steps Involved in Training Setup
	Setting up Training Environment
	Defining Hyperparameters
	Methods for Hyperparameter Tuning

	Initialising Optimisers and Loss Functions
	Gradient Descent
	Stochastic Gradient Descent (SGD)
	Mini-batch Gradient Descent
	AdaGrad
	RMSprop
	AdaDelta
	Adam
	AdamW

	Challenges in Training Setup
	Best Practices

	Stage 4: Selection of Fine-Tuning Techniques and Appropriate Model Configurations
	Steps Involved in Fine-Tuning
	Fine-Tuning Strategies for LLMs
	Task-Specific Fine-Tuning
	Domain-Specific Fine-Tuning

	Parameter-Efficient Fine-Tuning (PEFT) Techniques
	Adapters
	Low-Rank Adaptation (LoRA)
	QLoRA
	Weight-Decomposed Low-Rank Adaptation (DoRA)
	Fine-Tuning with Multiple Adapters

	Half Fine Tuning
	Benefits of using Half Fine tuning
	Comparison between HFT and LoRA

	Lamini Memory Tuning
	Lamini-1 - A model architecture based on Lamini

	Mixture of Experts
	Mixtral 8x7B Architecture and Performance

	Mixture of Agents
	Methodology
	Analogy with MoE
	What makes MoA works well?

	Proximal Policy Optimisation (PPO)
	Benefits of PPO
	Limitations of PPO
	Tutorial for training models using PPO technique

	Direct Preference Optimisation (DPO)
	Benefits of DPO
	Best Practices for DPO
	Tutorial for training models using DPO technique
	Is DPO Superior to PPO for LLM Alignment?

	Optimised Routing and Pruning Operations (ORPO)
	When to Prune AI Models?
	Benefits of Pruning
	Challenges of Pruning

	Stage 5: Evaluation and Validation
	Steps Involved in Evaluating and Validating Fine-Tuned Models
	Setting Up Evaluation Metrics
	Importance of Cross-Entropy for LLM Training and Evaluation
	Beyond Cross-Entropy: Advanced LLM Evaluation Metrics

	Understanding the Training Loss Curve
	Interpreting Loss Curves
	Avoiding Overfitting
	Sources of Noisy Gradients

	Running Validation Loops
	Monitoring and Interpreting Results
	Hyperparameter Tuning and Other Adjustments
	Data Size and Quality

	Benchmarking Fine-Tuned LLMs
	Evaluating Fine-Tuned LLMs on Safety Benchmark
	Evaluating Safety of Fine-Tuned LLM using AI Models
	Llama Guard
	Shield Gemma
	WILDGUARD

	Stage 6: Deployment
	Steps Involved in Deploying the Fine-Tuned Model
	Cloud-Based Providers for LLM Deployment
	Techniques for Optimising Model Performance During Inference
	Traditional On-Premises GPU-Based Deployments
	Distributed LLM: Torrent-Style Deployment and Parallel Forward Passes
	WebGPU-Based Deployment of LLM
	LLM on WebGPU using WebLLM
	Quantised LLMs
	vLLMs

	Key Considerations for Deployment of LLMs

	Stage 7: Monitoring and Maintenance
	Steps Involved in Monitoring and Maintenance of Deployed Fine-Tuned LLMs
	Continuous Monitoring of Model Performance
	Functional Monitoring
	Prompt Monitoring
	Response Monitoring
	Alerting Mechanisms and Thresholds
	Monitoring User Interface (UI)

	Updating LLM Knowledge
	Retraining Methods
	Additional Methods
	Key Considerations

	The Future of LLM Updates

	Industrial Fine-Tuning Platforms and Frameworks for LLMs
	Autotrain
	Steps Involved in Fine-Tuning Using Autotrain
	Best Practices of Using Autotrain
	Challenges of Using Autotrain
	When to Use Autotrain
	Tutorials

	Transformers Library and Trainer API
	Limitations of the Transformers Library and Trainer API

	Optimum: Enhancing LLM Deployment Efficiency
	Best Practices of Using Optimum
	Tutorials

	Amazon SageMaker JumpStart
	Steps Involved in Using JumpStart
	Best Practices for Using JumpStart
	Limitations of Using JumpStart
	Tutorials

	Amazon Bedrock
	Steps Involved in Using Amazon Bedrock
	Limitations of Using Amazon Bedrock
	Tutorials

	OpenAI’s Fine-Tuning API
	Steps Involved in Using OpenAI's Fine-Tuning API
	Limitations of OpenAI’s Fine-Tuning API
	Tutorials

	NVIDIA NeMo Customizer
	Key Features of NVIDIA NeMo
	Components of NVIDIA NeMo
	Customising Large Language Models (LLMs)
	Tutorials

	Multimodal LLMs and their Fine-tuning
	Vision Language Model (VLMs)
	Architecture
	Contrastive Learning

	Fine-tuning of multimodal models
	Full-parameter Fine-Tuning
	Case study of fine-tuning MLLMs for Medical domain

	Applications of Multimodal models
	Audio or Speech LLMs Or Large Audio Models
	Tokenization and Preprocessing
	Fine-Tuning Techniques
	Fine-Tuning Whisper for Automatic Speech Recognition (ASR)
	Case Studies and Applications

	Open Challenges and Research Directions
	Scalability Issues
	Challenges in Scaling Fine-Tuning Processes
	Research Directions for Scalable Solutions
	Hardware and Algorithm Co-Design

	Ethical Considerations in Fine-Tuning LLMs
	Bias and Fairness
	Privacy Concerns
	Security Risks

	Accountability and Transparency
	The Need for Accountability and Transparency
	Recent Research and Industry Practices
	Promoting Accountability and Transparency
	Proposed frameworks/techniques for Ethical Fine-Tuning

	Integration with Emerging Technologies
	Opportunities
	Challenges

	Future Research Areas

	Glossary

