
Advanced Persistent Threats (APT) Attribution Using Deep
Reinforcement Learning

ANIMESH SINGH BASNET, Cyber Security Research Centre, London Metropolitan University, UK
MOHAMED CHAHINE GHANEM*, Cyber Security Research Centre, London Metropolitan University,
UK
DIPO DUNSIN, Cyber Security Research Centre, London Metropolitan University, UK
WIKTOR SOWINSKI-MYDLARZ, Cyber Security Research Centre, London Metropolitan University, UK

Abstract: This paper investigates the application of Deep Reinforcement Learning (DRL) for attributing malware to specific
Advanced Persistent Threat (APT) groups through detailed behavioural analysis. By analysing over 3,500 malware samples
from 12 distinct APT groups, the study utilises sophisticated tools like Cuckoo Sandbox to extract behavioural data, providing a
deep insight into the operational patterns of malware. The research demonstrates that the DRLmodel significantly outperforms
traditional machine learning approaches such as SGD, SVC, KNN, MLP, and Decision Tree Classifiers, achieving an impressive
test accuracy of 89.27%. It highlights the model’s capability to adeptly manage complex, variable, and elusive malware
attributes. Furthermore, the paper discusses the considerable computational resources and extensive data dependencies
required for deploying these advanced AI models in cybersecurity frameworks. Future research is directed towards enhancing
the efficiency of DRL models, expanding the diversity of the datasets, addressing ethical concerns, and leveraging Large
Language Models (LLMs) to refine reward mechanisms and optimise the DRL framework. By showcasing the transformative
potential of DRL in malware attribution, this research advocates for a responsible and balanced approach to AI integration,
with the goal of advancing cybersecurity through more adaptable, accurate, and robust systems.
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1 Introduction
In recent years, cyber attacks have evolved from isolated incidents into sophisticated operations conducted
by well-resourced Advanced Persistent Threats (APTs), which are characterised by their strategic, long-term
approaches compared to more opportunistic cyberattacks [17]. Like traditional cyberattacks, APTs utilise malware
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as their primary tool, but they stand out due to their complexity, higher number of network events, and intricate
behavioural activities [15]. APTs are meticulously orchestrated, employing advanced techniques to remain
hidden while they extract data, disrupt operations, or create entry points for future attacks [38]. Often backed by
nation-states or large organisations with political or economic motives, APTs pose significant threats to critical
resources [17]. A notable example is the Stuxnet worm, which, although discovered in 2010, had been operating
covertly since at least 2005, specifically targeting Iran’s nuclear facilities at the Natanz uranium enrichment plant
[4]. Developed by the USA, Stuxnet utilised advanced evasion techniques like zero-day exploits and rootkits to
infiltrate and compromise its target while remaining undetected for years [4].

According to Statista, the global revenue from the APT protection market is worked to reach $12.5 billion by
2025, driven by the urgent need to defend against these evolving threats [18]. Despite significant investments
in security solutions, APT incidents, including ransomware attacks, continue to rise across industries, military
sectors, and government institutions, with a 55.5% increase in ransomware cases in 2023 alone, reaching 4,368
incidents worldwide [26, 31]. The use of advanced technologies like large language models (LLMs) has further
intensified the threat landscape, enabling more sophisticated cyberattacks [14]. This escalation underscores the
critical need for innovative defence strategies, encouraging organisations and governments to continuously
invest in advanced security measures to stay ahead of these persistent adversaries [5].
The increasing sophistication and frequency of APTs highlight the critical challenge of precise attribution in

the cybersecurity landscape [15]. Accurate attribution is essential for developing targeted defensive strategies,
as understanding an adversary’s tactics, techniques, and procedures (TTPs) allows for tailored responses to
specific threats [29]. It also plays a key role in holding perpetrators accountable, which can act as a deterrent
through legal and diplomatic consequences, thereby maintaining global cyber stability [24]. However, attribution
is complicated by the obfuscation methods used by APTs, including routing attacks through proxies and deceptive
indicators [33]. These sophisticated tactics require extensive technical expertise and collaboration across sectors
to analyse threat profiles that reveal attackers’ motives and strategies [33]. Building on this complexity, each APT
group possesses a distinct signature, merging specific malware applications with strategic objectives, whether for
financial gain or disrupting critical infrastructure [18]. The intricacies of these profiles underscore the importance
of attribution, pinpointing the perpetrator not only aids in defence but also in shaping cybersecurity policies and
measures to pre-empt future attacks [9].
To address the growing challenge of attributing APTs, this report suggests leveraging machine learning

algorithms that focus on analysing malware behaviour within sandbox environments. Machine learning’s ability
to process vast datasets and detect subtle patterns offers a promising solution to understanding the complex
and often hidden techniques used by APT groups [29]. By training models on behavioural data obtained from
executing malware in virtual systems, these systems can be developed to automatically detect and classify patterns,
leading to more precise attribution of cyberattacks. Within this context, Deep Reinforcement Learning (DRL)
emerges as particularly effective for attributing APT malware. DRL combines deep learning’s pattern recognition
capabilities with reinforcement learning’s adaptive decision-making through trial and error, enabling it to detect
and enhance its response to evolving malware behaviours [25]. Techniques like the Markov Decision Process
(MDP) and model-free learning allow DRL to structure decision-making and adapt without relying on predefined
models. Unlike traditional machine learning models that may struggle with the dynamic nature of cyber threats,
DRL continuously learns and refines its strategies, making it highly effective against sophisticated APT tactics.
Its ability to operate in environments with incomplete information, simulate diverse attack scenarios, and evolve
through interaction underscores its potential as a powerful tool in crafting robust cyber defence strategies [27].
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2 Related Work
The adoption of Deep Reinforcement Learning (DRL) for malware detection is a relatively recent and promising
development in the wider field of cybersecurity [3]. Grasping the related work in this area requires an initial
understanding of the behavioural patterns, origins, and classifications of malware. Since malware plays a crucial
role in APT attacks, analysing the characteristics of these malware attacks can reveal essential attributes of
the attacking APT group [42]. The chosen papers examine current research and methodologies in malware
behavioural analysis, attribution, and family classification, critically assessing the effect of these elements to
enhance the precision and efficiency of cybersecurity defences [12].

2.1 Behavioural Analysis
Malware behavioural analysis is a cornerstone technique in cybersecurity that involves observing and under-
standing the actions performed by malware within a controlled environment, typically a sandbox [44]. This
technique allows for the identification of malicious patterns and behaviours including networks and operations
within the system. Recent studies emphasise the evolution of this analysis to include automated systems that
leverage machine learning to predict and react to malware behaviour dynamically [13]. Such systems can discern
between benign and malicious processes by examining changes made by the software to the system’s state or its
network behaviour [41]. These analyses often involve the extraction of features such as API calls, file-system
operations, and network activity which are then processed using advanced algorithms to detect anomalous
patterns that suggest malicious intent [41]. By comprehensively understanding the behaviour exhibited by the
malware during execution and examining its underlying code and structure, we can gain valuable insights that
aid in accurately attributing the malware to specific APT groups or threat actors.

2.2 Malware Attribution
The attribution of malware, identifying the probable origin or actor behind an attack, is a complex yet crucial
task within cybersecurity. Traditional approaches in malware attribution have relied heavily on manual, domain-
specific feature engineering and pre-processing to isolate attributes indicative of a malware’s lineage or family
ties [30]. The incorporation of neural networks has significantly advanced malware attribution capabilities,
particularly using machine learning techniques such as Random Forest and Extreme Gradient Boosting (XGBoost),
which have strengthened efforts in this area [16]. These algorithms refine neural network models by improving
accuracy and handling overfitting, essential for distinguishing between benign and malicious activities in vast and
complex datasets [16]. This synergy optimises feature selection and enhances predictive capabilities, effectively
supporting the identification of malware origins and behaviours.
Recent studies have introduced novel approaches in malware attribution that significantly improve upon

traditional methods. For instance, the work by Binhui Tang and colleagues transforms APT malware samples
into RGB images rather than relying on standard grayscale feature extraction [37]. This approach allows for
deeper and more nuanced feature mining, using an enhanced Convolutional Neural Network (CNN) model that
incorporates Self-Attention mechanisms and Spatial Pyramid Pooling (SPP-net) [37]. This novel framework aids
in not only detecting APT malware but also in facilitating the identification of malware origins and attack
methodologies through sophisticated visual data representations. Another innovative approach is presented by
Elijah Snow and his team, who utilised an end-to-end multimodal learning strategy [36]. This method integrates
three distinct neural network architectures—dense networks, CNNs, and Recurrent Neural Networks (RNNs)
with Long Short-Term Memory (LSTM) cells—to automatically extract and learn features from diverse malware
data attributes [36]. By combining these architectures, their model effectively classifies malware into respective
groups, enhancing the granularity and accuracy of malware attribution. Further, Gil Shenderovitz and Nir Nissim
introduced a dynamic analysis technique for segmenting Multivariate Time Series Data (MTSD) derived from API
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calls [35]. Their approach uses temporal segmentation to provide a detailed behavioural profile of APT malware,
facilitating the detection and attribution to specific cyber-groups or nations with enhanced explainability.

Table 1. Summary of Recent Research Works on Malware Attribution

Research
Work

Year Dataset Type of
Data Used

RGB
Image
Con-
ver-
sion

Time
Series
Analy-
sis

Feature
Engi-
neer-
ing

Multi-
Input /
Fusion
Model

Machine
Learning
Model

Tang, et al.
[37]

2023 3594 malware sam-
ples from 12 APT
groups

Visual Data X X X X Enhanced
CNN with
Self-Attention
and SPP-net

Snow, et al.
[36]

2020 Microsoft Malware
Challenge Dataset

Multimodal
Data

X X X X Dense Net-
works, CNN,
RNN using
LSTM

Shenderovitz,
et al. [35]

2024 API calls of 12,655
malware from 188
APT groups

Time Series
Data

X ✓ X X Machine
Learning Clas-
sification

Zhang, et al.
[43]

2024 Behavioural data
and binary instruc-
tions from 2809
malware samples

Behavioural
& Binary
Data

✓ X ✓ ✓ GNNs and Im-
ageCNTM

Li, et al.
[20]

2021 Behavioural data
from 2389 malware
samples from 7 APT
groups

Behavioural
Data

X X ✓ X Multiclass
SMOTE-RF
Model

Our Sys-
tem

2024 3594 malware sam-
ples from 12 APT
groups

Behavioural
Data

X X ✓ X Deep Learning
Model

The work of Jian Zhang and colleagues improved the integration of multiple feature dimensions by employing
a Graph Neural Network (GNN) model to create an event behaviour graph based on API instructions and
operations, combined with an innovative ImageCNTM for capturing local spatial correlations and long-term
dependencies of opcode images [43]. By fusing word frequency and behavioural features in a multi-input deep
learning model, they propose a comprehensive system that classifies and accurately attributes APT malware,
improving upon traditional single-dimensionalmodels. Similarly, Shudong Li and his team refined the classification
methodology by implementing a dynamic analysis and preprocessing stage for malware samples, followed by
feature representation using the TF-IDF method and feature dimensionality reduction using the chi-square test
[20]. Their innovative use of a Multiclass SMOTE-RF model addresses class imbalance, enhancing the classification
accuracy significantly across various malware families [20].

However, despite these advancements, challenges persist, particularly when dealing with malware that lacks
evolutionary links or belongs to completely different families. Traditional methods, as noted by Rosenberg and
colleagues, often fall short in such scenarios because they primarily focus on detecting mutations or similarities
within the same functional group [30]. This limitation highlights the need for more advanced and flexible
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analytical tools capable of handling a broad spectrum of malware types, moving beyond familial or evolutionary
similarities to embrace a more holistic and integrative approach in malware analysis.

Table 2. Summary of Related Work on Malware Detection Using Reinforcement Learning

Research
Work

Year Data Source Technique Used Approach

Xuan & Cuong
[8]

2024 Network traffic data
involving APT IPs
and normal IPs

(1) BiLSTM and Attention net-
works for unusual behaviour ex-
traction in APT IPs.
(2) Data rebalancing and con-
trastive learning for APT IP clas-
sification.

Introduces the FIERL model,
combining advanced machine
learning techniques to im-
prove APT attack detection.

Saheed &
Henna [31]

2023 Wireless network
traffic data, including
dynamic interactions
and multi-stage APT
attack patterns.

Deep Reinforcement Learning
that dynamically interacts with
the environment to learn and
adapt to new APT attack strate-
gies.

Proposed deep reinforcement
learning to continually adapt
and respond to evolving APT
threats in wireless networks.
This method outperforms tra-
ditional Feed Forward Neural
Network models by learning
faster

Atti & Yogi [3] 2024 Microsoft Malware
Prediction Dataset

(1) Implements various tech-
niques to prepare features ex-
tracted from executable files for
training.
(2) Involves data cleaning and
pre-processing to optimise the
dataset for model training.
(3) Employs deep learning mod-
els, specifically Proximal Policy
Optimization (PPO), to train the
system’s ability to detect mal-
ware.

Introduces a DRL framework
for malware detection that
learns complex patterns from
executable files to identifyma-
licious software

Addressing these challenges, this work presents a novel approach utilising Deep Reinforcement Learning (DRL)
for malware attribution, specifically tailored for APTs developed by nation-states. DRL has previously shown
significant advancements in malware detection, effectively identifying and responding to APT activities. For
instance, Cho Do Xuan and Nguyen Hoa Cuong have developed the FIERL model, which employs BiLSTM and
Attention networks to extract unusual behaviour from network traffic data involving APT and normal IPs, further
enhancing detection capabilities through data rebalancing and contrastive learning for APT IP classification [8].
Similarly, Kazeem Saheed and Shagufta Henna applied DRL to wireless network traffic data, where the system
dynamically learns and adapts to new APT attack strategies, showcasing an ability to outperform traditional
models by rapidly adjusting to evolving threats [31]. Additionally, Mangadevi Atti and Manas Kumar Yogi
utilised a DRL framework that leverages Proximal Policy Optimization (PPO) to learn complex patterns from
executable files, optimising malware detection processes and enhancing the system’s predictive accuracy [3].
These applications underscore DRL’s pivotal role in the detection domain, demonstrating its potential not only
for identifying malware but also for attributing it effectively to specific APTs developed by nation-states.
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DRL’s application in the context of malware attribution offers a significant advancement over previous methods,
as it does not rely on pre-defined models or static features, which are often limited by the need for extensive
manual extraction and are less effective across disparate malware families [19]. DRL leverages the strengths
of deep learning for pattern recognition within complex and large-scale datasets, combined with the strategic
decision-making capabilities of reinforcement learning [2]. This approach is particularly adept at processing
incomplete or obfuscated data commonly employed in sophisticated cyberattacks, enabling it to adaptively learn
and predict attribution based on behavioural patterns rather than static signatures.

3 ResearchQuestions and Contribution
As previous sections have detailed the complexity and threat posed by APTs, this study leverages the sophisticated
capabilities of DRL to analyse and interpret intricate malware data from controlled tests. The main goal is to refine
a DRL model that effectively attributes APTs by analysing behavioural patterns, thus advancing cybersecurity
defence mechanisms. This initiative to apply DRL seeks to harness its superior pattern recognition and strategic
decision-making properties to enhance the detection and mitigation of advanced cyber threats.

3.1 ResearchQuestions
The guiding questions of this research aim to critically evaluate the effectiveness of DRL in the cybersecurity
landscape, particularly in attributing APTs. These questions explore: the identification of unique behavioural
patterns of APTs within sandbox-analysed malware, the capability of DRL to precisely differentiate between
malware behaviours from diverse APT groups, and the influence of the Markov Decision Process in boosting
the strategic decision-making of DRL models within the context of cyber threat attribution. These inquiries are
designed to assess whether DRL can offer a sophisticated and adaptive approach to understanding and countering
APTs.

3.2 Contribution
This study makes impactful contributions to the domain of cybersecurity by pioneering the use of Deep Rein-
forcement Learning (DRL) for the specific purpose of APT attribution, benchmarking its effectiveness against
traditional machine learning models, and exploring its adaptability to varied APT scenarios. It constructs a DRL
model that not only processes and understands detailed behavioural data from malware but also empirically
demonstrates its enhanced effectiveness over existing techniques. Additionally, by probing the model’s ability
to adapt to new threats, the research highlights DRL’s potential to evolve and maintain relevance in a rapidly
changing threat environment. The findings and methodologies of this research expand the practical and theoreti-
cal frameworks for deploying advanced AI in active cybersecurity defences, potentially setting new standards for
the integration of machine learning in threat intelligence and response strategies.

4 Methodology
This section outlines the methodology adopted during the design, implementation and testing of the system. it
provides details and justification on tools, approaches and methods employed as well as providing background
information necessary for understanding the methodology.

4.1 Proposed System Design
The research adopts an experimental and simulation-based design, focusing on developing and evaluating a
Deep Reinforcement Learning model for malware attribution to APT groups. The study begins by preparing
a dataset of malware samples, followed by data preprocessing and feature extraction to ensure accuracy and
relevance. The DRL model is then trained and tested in a simulated environment designed to mimic real-world
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conditions. This allows for controlled experimentation, where the model’s ability to handle complex and evasive
malware behaviours can be systematically assessed using metrics such as accuracy, robustness, and computational
efficiency.

Fig. 1. System workflow for the proposed APT Attribution Model

4.2 Data Collection
Data collection is strategically executed from two specialised sources to capture a broad spectrum of malware
behaviours and characteristics, ensuring the depth and breadth of data necessary for effective DRL modelling.

4.2.1 Cuckoo Report. The Cuckoo Sandbox is an advanced open-source malware analysis system designed to
analyse and report on the behaviour of potentially malicious files in a secure, isolated environment [6, 39]. It is
widely used for malware detection by providing a controlled setting where files can be executed to observe their
actions without risking the integrity of the host system [39]. In this work, the Cuckoo Sandbox plays an integral
role in the hybrid process of collecting malware behavioural data, combining both manual and automated tasks
to efficiently analyse large datasets of malware samples.
Specifically, because this analysis utilises the web version of Cuckoo Sandbox, mallicious files are manually

uploaded via the Cuckoo Sandbox interface, which provides detailed system specifications and analytics, then
prioritise and monitor these files in a secure environment to ensure the host system’s integrity. Process IDs
are then generated during the analysis phase, which allow tracking and retrieval of detailed reports on each
malware sample’s activity, including system changes and network traffic. An automated script further facilitates
the extraction of these IDs, organising them into a structured dataset and performing data cleanup to avoid
duplicates, ensuring the integrity and accuracy of the analysis.
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4.2.2 VirusTotal Report. VirusTotal is a comprehensive online service that analyses files and URLs to detect
viruses, worms, trojans, and other kinds of malicious content [32, 40]. Leveraged by security professionals and
researchers, VirusTotal aggregates information from over 70 antivirus scanners and URL/domain blacklisting
services, along with a plethora of tools for the analysis of files, which makes it an indispensable resource for the
real-time detection of emerging threats [32].
In this work, VirusTotal complements the Cuckoo Sandbox by offering an extensive database of antivirus

scan results and behaviour reports for more in-depth analysis of malware samples. Automated scripts access
specific API endpoints using the SHA-256 hash of each sample to fetch detailed file reports and behaviour
summaries. The file report encapsulates antivirus detection results, file type, size, and associated detection names,
while the behaviour report sheds light on the malware’s activities within an operating system, such as registry
modifications and network actions. These reports are critical for understanding the malware’s potential impact
and aid in training deep reinforcement learning models to recognise and predict similar behaviours in future
security threats.

4.3 Data Understanding
Understanding the data collected from sources like Cuckoo Sandbox and VirusTotal is essential before diving
into deeper analyses or model development, as it establishes the groundwork for recognising patterns, anomalies,
and intrinsic properties of malware behaviours. This preliminary step ensures that subsequent processes, such as
data cleaning, preprocessing, and detailed exploratory analysis, are effectively tailored to the characteristics of
the data. For instance, the "reports.json" file from Cuckoo Sandbox provides a wealth of information on malware
activities through detailed logs of file creation, registry changes, and network connections. By parsing these
entries, it is possible to discern the common tactics used by malware, such as communication strategies and
system infiltration methods, which are crucial for identifying threat behaviours.

Similarly, VirusTotal’s file and behaviour reports complement the data by providing insights into the malware’s
detectable characteristics and operational tactics within infected systems. These reports include critical metadata
on the malware’s type, the extent of its recognition across different security platforms (unique_sources), and
its evasion techniques (packers). Additionally, behavioural data like registry modifications and network traffic
from these reports help in understanding how malware interacts with and affects systems, highlighting potential
persistence mechanisms or damage attempts. Through a comprehensive understanding of these datasets, it is
possible to understand that the data used in modelling is accurate, reliable, and robust enough to develop effective
machine-learning models that can attribute malware to specific APT groups, enhancing cybersecurity measures
and threat intelligence.

4.4 Data Preparation
Data preparation is crucial for transforming raw data from Cuckoo Sandbox and VirusTotal into a structured
format suitable for in-depth analysis and modelling. The process begins with data cleaning, which involves
refining the datasets to highlight essential malware characteristics. For file reports, this includes isolating key
attributes like "file_name", "apt_group", and "unique_sources", and quantifying the threat level by analysing entries
classified as "malicious". Additionally, the "import_list" is parsed to assess the complexity of malware interactions.
For behaviour reports, the focus is on dynamic interactions, such as the number of files written and registry keys
manipulated, which provide insights into the malware’s impact on system operations. Cuckoo reports are also
processed to extract API call statistics from "api_stats", giving a detailed view of system interactions at the API
level.

Following data cleaning, the process moves to data integration, where the cleaned datasets are merged into a
cohesive framework for unified analysis. The file and behaviour datasets are merged with the Cuckoo reports,
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with missing entries filled with zeros to maintain numerical data integrity. This step is essential for creating a
comprehensive dataset that aligns all aspects of the malware’s behaviour, enabling more effective modelling and
analysis.

4.5 Data Modelling
In the data modelling phase, several critical steps are undertaken to prepare the dataset for effective machine
learning applications. The process begins with Variable Transformation, where the dataset variables are identified
and categorised based on their data types. Numerical columns are separated from categorical columns to facilitate
different preprocessing techniques suitable for each type. The "apt_group" column, serving as the target variable
for the models, is meticulously handled to ensure it is excluded from the feature sets when present in numerical
columns, preventing data leakage. Categorical variables are then transformed into integer codes using techniques
like Label Encoding, converting nominal data into a format that is digestible for machine learning algorithms.
This transformation is essential for preparing the data for accurate and efficient modelling, ensuring that all
features are in a machine-readable form.
Following the transformation, the dataset undergoes Data Partition and Class Imbalance treatment and

normalisation to optimise it for model training and evaluation. SMOTE (Synthetic Minority Over-sampling
Technique) is employed to address class imbalances within the dataset, synthesising new examples in the minority
class to prevent model bias towards the majority class. This ensures a balanced representation across classes,
which is crucial for generalising the model effectively. The data is then split into training and testing sets, with a
significant portion reserved for testing to assess model performance. Subsequently, normalisation is performed
using MinMaxScaler, scaling all features to a uniform range to prevent any single variable from dominating due
to its scale. This step is vital as it allows the machine learning model to converge more rapidly during training.
The normalised data is then carefully reformatted back into DataFrames, retaining the original column names for
better traceability and clarity during model training and evaluation phases.

4.6 Model Building
In the model-building phase, a bespoke environment is crafted using the Gymnasium framework, tailored to the
complexities of Advanced Persistent Threat (APT) data. This setup precisely defines the observation space based
on the feature set derived from malware samples and the action space aligned with unique labels constructed
using the number of APT groups. The environment facilitates the simulation of interaction sequences, rewarding
the model for accurate predictions and resetting for new episodes as data points are iteratively processed.
During the training of the model, a Deep Q-Network (DQN) is utilised, configured with adjustable learning

rates and buffer sizes to optimise the learning curve. The model’s performance is periodically assessed using key
metrics such as accuracy and the F1 score, which aid in fine-tuning the training regimen. This dynamic approach
ensures a balance between exploration of new strategies and exploitation of known effective tactics, enhancing
the model’s ability to make progressively more accurate malware classifications. Subsequent development
includes hyperparameter tuning—adjusting the discount factor, exploration rate (epsilon), and mini-batch sizes—to
enhance the learning process’s efficiency and effectiveness. Training episodes are varied in length to reflect
the complex nature of real-world APT scenarios better, preventing overfitting and improving generalisation.
Moreover, regularization techniques like dropout and batch normalisation are integrated within the neural
network architecture to mitigate the risk of overfitting by moderating less predictive features’ influence and
stabilising learning across different batches. Detailed performance analysis and error metrics are continuously
collected and reviewed to identify the model’s strengths and weaknesses, providing a clear direction for its ability
to capture the APT groups.
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4.7 Dataset
The APT Malware Dataset utilised in this work is a comprehensive collection of over 3,500 malware samples
(https://github.com/cyber-research/APTMalware), categorised into 12 distinct Advanced Persistent Threat (APT)
groups obtained from. These groups are believed to be state-sponsored by five different countries, including
China, Russia, North Korea, the USA, and Pakistan. The dataset serves as a critical resource for benchmarking
various machine-learning techniques aimed at authorship attribution of cyberattacks.[7]

Table 3. APT Malware Dataset Distribution [7]

Country APT Group Sample Size

China APT 1 405
China APT 10 244
China APT 19 32
China APT 21 106
Russia APT 28 214
Russia APT 29 281
China APT 30 164
North-Korea DarkHotel 273
Russia Energetic Bear 132
USA Equation Group 395
Pakistan Gorgon Group 961
China Winnti 387

Total 3594

Each APT group in the APT Malware Dataset represents a unique threat actor with a specific set of malware
samples attributed to their cyber activities. The dataset’s diversity is evident in both the quantity of samples
per group and the variety of file types, ranging from executable files like .dll and .exe to documents such as
.doc, .xlsx, and .ppt. This assortment adds complexity to the analysis, enabling robust evaluations of the various
attack vectors and infection methods used by these groups. However, the dataset also shows a significant class
imbalance, with some groups having as few as 32 samples and others as many as 961, presenting a challenge for
reinforcement learning models to achieve unbiased behavioural representations. To manage this, the samples
are meticulously labeled with their SHA-256 hashes for precise identification and stored in separate, password-
protected compressed folders to ensure security and data integrity, with the universal password "infected"
providing controlled access. The analysis leverages tools like Cuckoo for dynamic analysis, where malware files
are extracted and executed, and VirusTotal, which uses the hashes to fetch pre-generated reports for deeper
insights into the malware behaviour.

4.8 MDP Model
The Markov Decision Process (MDP) provides a structured framework for understanding how an agent makes
decisions while interacting with its environment [22]. In this work, MDP framework is utilised to design and
develop the DRL model for attributing malware to APT groups. The primary data sources for the model come
from detailed reports generated by Cuckoo Sandbox and VirusTotal, which offer comprehensive behavioural
analyses of malware samples. These reports provide a multi-dimensional view of each malware’s characteristics
and behaviour, which are crucial for defining the states, actions, and rewards in the MDP framework as listed
below:
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4.8.1 States Space. The state represents the current understanding of a malware sample based on its observed
behaviours and characteristics. Each state is derived from a feature dataset that encapsulates various aspects of
malware behaviour, such as file operations, registry changes, network activities, and other dynamic interactions
recorded during the malware’s execution. This dataset is constructed using key data points extracted from the
Cuckoo and VirusTotal report. These features collectively form a comprehensive behavioural profile of the
malware, encapsulating its operational tactics and techniques, which are used to define the current state in the
MDP. This state representation serves as the foundation for the reinforcement learning model’s decision-making
process, enabling accurate attribution and classification of malware to specific APT groups.

4.8.2 Actions Space. In the MDP model, an action refers to the transition from analysing one malware sample to
another within the dataset. Each action involves selecting a new malware sample from the dataset and performing
the analysis to obtain its behavioural profile, thus transitioning the state of the MDP from the current malware
profile to the next. This action reflects the decision-making process in identifying and comparing malware
attributes across different samples, which is central to attributing them to specific APT groups.

4.8.3 Rewards. The reward in our proposed MDP model is defined by the accuracy of the attribution. When the
DRL model correctly attributes a malware sample to its respective APT group based on the analysed behaviours,
a positive reward is assigned. Conversely, incorrect attributions yield a negative reward. The magnitude of the
reward is scaled based on the confidence level of the attribution and the criticality of correctly identifying specific
APT-related malware, reflecting the importance of precision in cybersecurity measures.

In summary, the dataset features, such as process call count, registry access patterns, file operations, and
network behaviours, represent the various states of malware samples within the MDP framework. The DRL
agent continuously monitors these states and takes actions to attribute the malware to a specific APT group.
At each time step 𝑡 , the agent is in the state 𝑠𝑡 and selects an action 𝑎𝑡 , transitioning to a new state 𝑠𝑡+1, which
corresponds to the analysis of another set of behavioural features. The agent is rewarded based on the accuracy of
its attributions, receiving a positive reward (+1) for correct classifications and no reward (0) for misclassifications.
Through this process, the agent refines its policy, improving its ability to attribute malware samples to the correct
APT group as it progresses through the dataset.

5 Implementation and Testing

5.1 Simulation Environment
The proposed DRL model for Advanced Persistent Threat (APT) attribution utilises a structured approach
incorporating an environment for sequential decision-making, a Q-network for estimating the quality of actions,
and a replay memory for learning from past experiences. Here, the agent’s states are derived from comprehensive
behavioural data extracted from malware reports, while actions represent decisions to attribute malware to
specific APT groups. An action represented by 𝑎𝑡 = 𝑛 indicates the model’s prediction, where 𝑛 corresponds to
the malware associated with an APT group. The agent operates within this environment, aiming to optimise
the cumulative rewards over time, where the rewards are aligned with the accuracy of the attribution to the
correct APT group. This structure is designed to refine the agent’s decision-making process and improve its
policy through continuous learning and adaptation based on detailed malware behaviour analysis.

5.1.1 Environment. This is the simulated setting where the DRL agent is deployed, designed for making informed
attributions of malware to specific Advanced Persistent Threat (APT) groups based on behavioural analysis. This
environment is an adaptation of the OpenAI Gym interface, featuring a discrete action space that corresponds to
different APT groups identified in the dataset [21]. The observation space is constructed from detailed features
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Fig. 2. DRL Model design for APT Attribution

such as API calls, file-system operations, and network activities, which are crucial for defining the states of the
malware being analysed [21].

5.1.2 Q-Network. At the core of the decision-making process, the Q-Network includes a policy network and a
target network, each configured as a multilayer perceptron with two hidden layers leading to an output layer that
represents each potential APT group. The networks use Leaky ReLU activation functions to maintain gradient flow
during training, helping to prevent the vanishing gradient problem that can occur with standard ReLU functions
if negative values are present in the inputs [28]. The output layers of the networks apply a MinMaxScaler to
normalise the outputs, ensuring that the classification probabilities for the APT groups are scaled between 0 and
1 [34]. This normalisation helps stabilize the learning process by keeping the network’s predictions within a
consistent range.

5.1.3 Replay Memory. Essential for robust learning, Replay Memory archives tuples of the agent’s experiences,
including states, actions, rewards, and subsequent states. These experiences are accumulated as the agent processes
the behavioural data, employing an epsilon-greedy strategy 𝜖 to balance the exploration of new strategies with
the exploitation of known patterns. Each action—representing an attribution decision—transitions the agent from
one state to another (𝑠𝑡 to 𝑠𝑡+1), with rewards assigned based on the accuracy of these attributions.

5.1.4 Policy Training. The training of the DRL agent’s policy operates over a series of episodes, with each episode
consisting of numerous time steps, labelled as 𝑇 . Each time step 𝑡 involves the sampling of a feature vector
representing the current state 𝑠𝑡 from the replay buffer B, which is then fed into the policy network. The policy
network processes this input to output Q-values, 𝑄 (𝑠𝑡 , 𝑎𝑡 ), for potential actions aimed at matching these values
with the target or optimal Q-value, 𝑄 (𝑠, 𝑎).
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DRL - Agent Policy Training Algorithm

Preconditions: 0 ≤ 𝛾 ≤ 1; 0.1 ≤ 𝜖 ≤ 1 1: Set 𝑋𝜌 ← 𝑠𝑡

2: Set 𝑋𝑡 ← 𝑠𝑡+1
3: For each episode, repeat:
4: While 𝑡 ≤ 𝑇 do:
5: If 𝜖 ≥ 0.1 then:
6: Select random 𝑎𝑡 /* 𝜖-greedy strategy */

7: Else if 𝜖 ≡ 0.1 then:
8: 𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑋𝜌𝜔𝜌 + 𝑏
9: Select 𝑎𝑡 : 𝑎𝑡 ← index(max𝑄 (𝑠𝑡 , 𝑎𝑡 ))
10: End If
11: Observe 𝑟𝑡 , 𝑠𝑡+1
12: Store experiences: 𝐵𝑛 ← {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)𝑛}
13: Select randomly 𝐵 ⊂ 𝐵𝑛

14: 𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑋𝜌𝜔𝜌 + 𝑏
15: 𝑄 (𝑠𝑡+1, 𝑎𝑡+1) ← 𝑋𝑡𝜔𝑡 + 𝑏
16: 𝑄∗ (𝑠, 𝑎) ← 𝑟𝑡 + 𝛾 max(𝑄 (𝑠𝑡+1, 𝑎𝑡+1))
17: 𝐿(𝑓 𝑥) ← 𝑄∗ (𝑠, 𝑎) −𝑄 (𝑠, 𝑎)
18: 𝜔𝜌 ← {𝜔𝜌 − 𝛼 𝑑𝐿

𝑑𝜔𝜌
} /* update weights */

19: If 𝑇 ≡ 𝑓 then:
20: 𝑋𝑡𝜔𝑡 + 𝑏 ← 𝑋𝑝𝜔𝑝 + 𝑏
21: End If
22: 𝑡 ← 𝑡 + 1
23: End While
24: End For

Once the training process, detailed above, is complete, the efficacy of the agent’s policy is evaluated by
deploying the policy network model in a test environment. This test environment is carefully constructed using
the validation dataset, allowing for a thorough assessment of the model ability to perform under conditions that
simulate real-world scenarios.

5.2 Experimental Specifications
The experimental setup for the DRL-based APT detection model involves finely tuned parameters for the Deep
Q-Network (DQN) model to optimise its performance in learning and adapting to detect advanced persistent
threats (APTs) effectively. This section details the specific arguments and configurations passed to the DQNmodel,
which are crucial in defining its learning behaviour and operational dynamics in the simulated environment.

5.3 Software Environment
In order to implement and evaluate the DRL-based APT attribution model, several key software tools and
techniques are utilised. These are essential for creating a robust environment that can simulate real-world
scenarios and evaluate the performance of the model under controlled conditions.
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Table 4. Experimental Setup for the DQN model

Parameter Value

Learning Rate Schedule 1 × 10−3 × (0.99 step/1000)
Policy MlpPolicy

Buffer Size 100,000
Batch Size 256

Gradient Steps 3
Tau (𝜏) 0.005

Exploration Fraction 0.1
Exploration Final Eps 0.02

Gamma (𝛾 ) 0.99
Net Architecture [1024, 512, 512, 256]

Activation Function torch.nn.LeakyReLU

5.3.1 Cuckoo Sandbox. Cuckoo Sandbox is an open-source automated malware analysis system that acts as
a vital tool in the environment. It allows for the isolation and analysis of suspicious files in a safe, contained
environment. This sandboxing technique enables the collection of detailed analysis about the behaviour of the file
while running in an operating system, which is vital for training the DRL model to recognise threat behaviours.
The outputs provided by Cuckoo Sandbox include API calls, network traffic, file system changes, and memory
dumps, which serve as critical inputs for the model’s learning process. [11]

5.3.2 Stable Baselines 3. Stable Baselines 3, an enhancement over the original OpenAI Baselines, offers refined
implementations of reinforcement learning algorithms. The Deep Q-Network (DQN) model from Stable Baselines
3 is specifically utilised for the agent’s training process. This model efficiently estimates the optimal action-value
function, which is central to making informed decisions in the simulated network environments. The DQN
supports the development of a robust policy that can effectively identify and differentiate between benign and
malicious network traffic. [1]

5.3.3 Gymnasium. Gymnasium, formerly known as Gym, is a tool from OpenAI that provides standardised
interfaces for a diverse array of environments. These environments serve as testbeds for reinforcement learning
algorithms. In this work, Gymnasium offers the foundational framework necessary for designing and managing
the interaction between the DRL agent and the simulated network environment, which is vital for both the
training and evaluation phases. It enables the DRL model to adapt and learn efficiently from dynamic scenarios
that mimic real APT attacks. [10]

6 Results and Discussions

6.1 Results Evaluation
The development of the DRL model for malware attribution involved extensive research, iterative coding, and
numerous adjustments based on the insights gathered from predecessor models and contemporary research
papers. This preparatory work was essential to establish a robust foundation for the model, ensuring it could
adapt and respond effectively to the dynamic nature of malware threats. Initially, the model struggled with
low accuracy levels, but through persistent adjustments to its architecture and learning algorithms, accuracy
improved dramatically—from about 7% to over 73% in early iterations. By the end of the training, the model
consistently reached accuracy levels near 98%, demonstrating its strong capability to accurately recognise and
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attribute malware activities. This upward trajectory in training accuracy is graphically represented in the Figure,
which vividly illustrates the model’s maturation and increasing proficiency over time.

Fig. 3. Accuracy of the DRL Model for APT Attribution on Training Data

Following the graph for training accuracy, a detailed heatmap was generated to gain insight into the model’s
performance across each of the APT groups, highlighting precision, recall, and F1-scores. Notably, the model
demonstrated exceptional performance with ’Equation Group’, achieving perfect scores across all metrics, show-
casing its capability to precisely attribute actions to this well-documented APT. Similarly, ’APT 30’, ‘Gorgon
Group’, and ’Winnti’ show remarkable precision and near-perfect F1-scores, reflecting the model’s strength in
handling sophisticated malware profiles. In contrast, ’APT 21’ presents a lower recall of 93.44%, indicating a
slight challenge in capturing all activities associated with this group. This variance in performance underscores
areas for potential refinement, providing valuable feedback for further enhancing the model’s accuracy and
adaptability to diverse malware behaviours. This heatmap serves as a crucial tool for visualising the model’s
specific strengths and areas for improvement in malware attribution.

In parallel with the training dataset, the DRL model’s accuracy on the test dataset was thoroughly evaluated,
demonstrating significant improvements throughout the training process. Starting from a modest 19.30% at the
initial evaluation (step 500), the model’s accuracy steadily climbed to an impressive 89.27% by the final testing step
(step 20000). This progression highlights the model’s increasing proficiency in adapting its predictive strategies
to the complexities inherent in cybersecurity data.

The analysis of the DRL model’s performance on the test dataset across various APT groups reveals its accuracy
through precision, recall, and F1-scores. The model excelled with ’APT 19’ and ’Equation Group’, achieving
F1-scores of 95.8% and 99.1% respectively, underscoring its proficiency in accurately identifying and attributing
their activities. In contrast, the model faced challenges with ’APT 28’, where it recorded a lower precision of 62.4%
and an F1-score of 68.1%, indicating difficulties in correctly detecting this group’s actions. Notably, ’Energetic Bear’
and ’Equation Group’ displayed almost perfect precision, highlighting the model’s strength in pinpointing these
groups with high accuracy. Generally, the model demonstrated relatively high precision, recall, and F1-scores
across most groups, reflecting its overall effectiveness in accurately attributing a diverse array of APT activities.

The overall performance of the DRL model on the test dataset can be quantified through key metrics including
accuracy, precision, recall, and F1-score. The model achieved an average accuracy of 89%, indicating a high rate
of correctly identifying APT-related activities. Precision averaged at 87%, suggesting that the majority of the
model’s predictions were relevant and accurately attributed to the correct APT groups. The recall rate of 85%
reflects the model’s ability to capture a substantial proportion of the actual positive cases, while the F1-score,
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Fig. 4. Precision, Recall and F1 Score of the DRL Model for APT Attribution on each of the APT group in the Training Data

Fig. 5. Accuracy of the DRL Model for APT Attribution on Test Data

averaging 86%, illustrates a balanced relationship between precision and recall, confirming the model’s robustness
in various testing scenarios.
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Fig. 6. Precision, Recall and F1 Score of the DRL Model for APT Attribution on each of the APT group in the Testing Data

Table 5. Performance Metrics for the APT Attribution Model on the Test Dataset

Metric Value (Average)

Accuracy 89%
Precision 87%
Recall 85%
F1-score 86%

6.2 Model Comparison
Following the evaluation of the DRL model’s performance, it is essential to place its achievements in the context
of alternative approaches. To establish a comprehensive understanding of the DRL model’s capabilities, it was
benchmarked against several other machine learning models that were developed using the same dataset. This
comparative analysis is pivotal as it provides a clearer picture of the DRL model’s relative efficiency and accuracy
in attributing malware to specific APT groups. Models such as Stochastic Gradient Descent (SGD), Support
Vector Classifier (SVC), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), and Decision Tree Classifier
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were implemented to represent a broad spectrum of machine learning techniques, each with its strengths and
weaknesses in handling classification tasks.

Table 6. Comparison of test accuracy across different models, including the proposed DRL model

Model Test Accuracy

SGD 71.47%
SVC 77.41%
KNN 80.21%
MLP 80.65%

Decision Tree Classifier 82.64%
DRL Model* 89.27%

The comparative analysis revealed that the DRL model significantly outperformed the other models, achieving
a test accuracy of 89.27%. In contrast, the Decision Tree Classifier, which had the next highest accuracy, reached
only 82.64%. Models such as MLP and KNN also showed strong performance with accuracies of 80.65% and
80.21% respectively, while the SVC and SGD trailed with 77.41% and 71.47%. The superior performance of the DRL
model underscores its advanced capability in learning from and adapting to the complex patterns of malware
behaviours more effectively than traditional models. This indicates not only the robustness of the DRL approach
in handling the nuances of cybersecurity threat detection but also its potential to provide more reliable and
precise attributions in real-world applications.

6.3 Limitations and Future Works
The study identifies several limitations in implementing the DRL model for APT attribution. One significant
constraint is the high computational demand, as the DRL model requires extensive processing power and memory
to handle large datasets and perform complex computations. This resource-intensive nature can limit its scalability,
particularly in environments with limited hardware capabilities. Additionally, the model’s effectiveness heavily
depends on the availability of high-quality and diverse training data. In cybersecurity, where data is often scarce
or sensitive, this dependency can restrict the model’s learning potential and adaptability. The complexity of
implementing and fine-tuning the DRL model also poses a challenge; its sophisticated nature requires expert
knowledge in both reinforcement learning and cybersecurity, along with careful parameter adjustments to
maintain optimal performance, which can be both resource-intensive and a barrier to widespread adoption.
To address these limitations, future work could focus on enhancing the computational efficiency of the DRL

model by refining its architecture, employing more efficient algorithms, and utilising techniques like transfer
learning and model pruning to reduce computational load without sacrificing performance. Expanding the
diversity of training datasets to include a broader range of malware samples would also strengthen the model’s
ability to generalise and improve accuracy across different attack types. Additionally, addressing legal and ethical
considerations, such as data privacy and bias, should be a priority, with guidelines developed for the ethical use
of AI in cybersecurity. Finally, leveraging Large Language Models (LLMs) could further enhance DRL systems
by optimising reward mechanisms and decision-making strategies. LLMs can help create more dynamic reward
structures, improving the balance between exploration and exploitation and ultimately boosting the model’s
capacity to detect and respond to complex security threats [23].
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7 Conclusion
This research demonstrates the significant advancements in the application of Deep Reinforcement Learning (DRL)
for attributing Advanced Persistent Threat (APT) groups, using a detailed dataset of over 3,500 malware samples
across 12 distinct APT groups. The DRLmodel showcased its capabilities by significantly outperforming traditional
machine learning approaches such as Stochastic Gradient Descent (SGD), Support Vector Classifier (SVC), K-
Nearest Neighbours (KNN), Multi-Layer Perceptron (MLP), and Decision Tree Classifiers. With a remarkable test
accuracy of 89.27%, the DRL model stands out, not only for its high precision in malware attribution but also
for its adaptability to the complex and evolving landscape of cyber threats. By applying DRL, organisations can
enhance their threat intelligence capabilities, allowing for more nuanced understanding and preemptive actions
against APTs. This study’s findings underscore the potential of DRL in enhancing cybersecurity operations by
providing rapid and accurate threat attribution, paving the way for further research on its applicability across
more diverse datasets and optimising its computational efficiency for broader use in real-world scenarios.

Research Ethics: This study was deemed exempt from ethics approval as it did not involve human or animal
subjects.

Code and Data: The code and datasets used and generated during this research are made publicly available at
https://github.com/crypticsy/APTAttribution
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