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Large language models (LLM) have demonstrated emergent abilities in text generation, question answering, and reasoning, facilitating
various tasks and domains. Despite their proficiency in various tasks, LLMs like LaPM 540B and Llama-3.1 405B face limitations due
to large parameter sizes and computational demands, often requiring cloud API use which raises privacy concerns, limits real-time
applications on edge devices, and increases fine-tuning costs. Additionally, LLMs often underperform in specialized domains such as
healthcare and law due to insufficient domain-specific knowledge, necessitating specialized models. Therefore, Small Language Models
(SLMs) are increasingly favored for their low inference latency, cost-effectiveness, efficient development, and easy customization
and adaptability. These models are particularly well-suited for resource-limited environments and domain knowledge acquisition,
addressing LLMs’ challenges and proving ideal for applications that require localized data handling for privacy, minimal inference
latency for efficiency, and domain knowledge acquisition through lightweight fine-tuning. The rising demand for SLMs has spurred
extensive research and development. However, a comprehensive survey investigating issues related to the definition, acquisition,
application, enhancement, and reliability of SLM remains lacking, prompting us to conduct a detailed survey on these topics. The
definition of SLMs varies widely, thus to standardize, we propose defining SLMs by their capability to perform specialized tasks and
suitability for resource-constrained settings, setting boundaries based on the minimal size for emergent abilities and the maximum size
sustainable under resource constraints. For other aspects, we provide a taxonomy of relevant models/methods and develop general
frameworks for each category to enhance and utilize SLMs effectively. We have compiled the collected SLM models and related
methods on GitHub: https://github.com/FairyFali/SLMs-Survey.
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1 INTRODUCTION

The evolution of neural language models (LMs) from BERT’s [77] pre-training and fine-tuning paradigm to T5’s [250]
pre-training plus prompting approach, and finally to GPT-3’s [33] pre-training plus in-context learning, has greatly
enhanced natural language processing (NLP). These advancements have broadened NLP’s application across various
fields, including language understanding [311], programming [227, 294], recommendation systems [327], information
retrieval [38, 136, 204, 281], mobile-device control [80], scientific discovery [275, 379], medical question answering
[30, 325], and legal question answering [10]. In particular, the recent emergence of proprietary commercial models
including ChatGPT, Bard, and Claude, and open-sourced models such as Llama [84, 301, 302] has led to rapid growth
in the development of large language models (LLMs). Even though neural networks consistently improve on various
tasks with longer training times, larger datasets, and increased model sizes—a phenomenon known as a neural scaling
law [149], these models unpredictably exhibit a sudden acquisition of versatile abilities, termed "emergent ability,"
once they reach a critical scale threshold, thereby supporting the "larger is better" trend. This ability is not present in
small-scale models. For instance, the latest Llama-3.1 model with 405 billion parameters performs better in dialogue,
logical reasoning, and programming compared to the smaller 7B counterpart [84].

Despite their prowess in complex tasks, LLMs’ huge parameters and computational needs impose significant
limitations, hindering their adoption in many real-world applications. For example, the LLaMa 3.1 model with 405 billion
parameters [84], trained on 16K H100 GPUs for 54 days, requires about 202.5 GB of GPU memory using int4 precision
and has large inference latency. These issues present several challenges in specific contexts: (1) LLMs are generally
hosted in the cloud and used via cloud-based APIs due to the large GPU memory and computational cost. Users need to
upload their data to query LLMs, raising data leakage and privacy concerns, especially in high-stake scenarios such as
healthcare, finance, and e-commerce; (2) Driven by personal agents, on-device deployment is a critical requirement.
Several factors, including cloud costs, latency, and privacy concerns, hinder the on-device processing of cloud-based
LLMs, and direct deployment is impractical due to their high parameter and cache requirements, which often exceed
the capabilities of devices such as mobile phones; (3) Their large parameter count can cause inference delays from
seconds to minutes, unsuitable for real-time applications. For instance, Llama 2 7B takes approximately 84 seconds to
process 100 tokens on benchmarks including HellaSwag, TruthfulQA, MMLU, and Arc_C when run on a smartphone
equipped with a Snapdragon 685 processor [299]; (4) To boost performance in specialized domains like healthcare and
law, where generic LLMs underperform, LLMs are often fine-tuned. However, this process is computationally expensive
due to their large size. (5) Though general-purpose LLMs are powerful, many real-world applications require only
specific abilities and domain knowledge, deploying general-purpose LLMs would be a waste of resources and such
LLMs often cannot match the performance of models tailored for specific tasks [44, 112, 139, 244, 327].

Recently, small language models (SLMs) have shown great potential in alleviating these issues while achieving
performance comparable to LLMs for domain-specific problems [1, 24, 104, 128, 199, 243, 296, 299, 352, 382]. We Owing
to fewer parameters, SLMs excel in efficiency, cost, flexibility, and customization. They provide significant computational
Manuscript submitted to ACM
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[264]

SLM for extracting LLM prompts
(§6.2)

Prompt Stealing Attacks [266]; Output2prompt [376]; Model Purifying [175]; Zhang et al.
[386]

SLM for fine-tuning LLMs (§6.3) Emulated Fine-tuning [218]; CROSSLM [73]; Swayamdipta et al. [287]; Mekala et al. [215];
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[290]; Sennrich et al. [265]

SLM for LLM evaluation (§6.5) SLIDE [391]
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Fig. 1. Overview of Small Language Models.
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Fig. 2. Download Statistics Last Month in Huggingface for LLMs with Various Model Sizes, obtained on October 7, 2024.

savings in pre-training and inference with reduced memory and storage needs, which is vital for applications requiring
efficient resource use. These small models are especially effective in resource-limited settings, performing well on
low-power devices such as edge devices. Besides, SLMs improve on-device processing by enhancing privacy, security,
response times, and personalization. This supports advanced personal assistants and cloud-independent applications,
boosting energy efficiency and reducing carbon emissions. For example, the Llama 3.2 models (1B & 3B) demonstrate
that local processing enables immediate execution of prompts and responses [7]. This approach protects privacy by
keeping sensitive data such as patient health information (PHI), business data, personal messages, and calendar details
local, enhancing confidentiality. It also allows for precise control over which queries are processed on-device versus
those requiring cloud-based models. Therefore, small language models are gaining increasing attention as alternatives
to LLMs, as indicated in Figure 2, which shows that SLMs are downloaded more frequently than larger models in the
Hugging Face community, and Figure 3, which illustrates the growing popularity of SLM releases over time.

Typically, LMs that exhibit emergent abilities are classified as LLMs. However, the categorization of SLMs remains
unclear. Studies vary in their contexts: some define SLMs as models with fewer than one billion parameters [199],
while others consider the term “small language model” relative to the larger counterparts [163, 290, 327], with no
consensus on a unified definition in the current landscape of LLMs. Research suggests SLMs for mobile devices, typically
possessing around 6GB of memory, consist of sub-billion parameter models [199], whereas others classify models with
up to 10 billion parameters as small, noting their lack of emergent abilities [94]. Given their use in resource-constrained
environments and for specific tasks, we propose a generalized definition: Given specific tasks and resource constraints,

we define SLMs as falling within a range where the lower bound is the minimum size at which the model exhibits emergent

abilities for a specialized task, and the upper bound is the largest size manageable within limited resource conditions. This
definition integrates various perspectives and addresses factors related to mobile computing and capability thresholds.

Due to the growing demand for SLMs, extensive literature has emerged on various aspects of SLMs. For example,
several training techniques optimized for SLMs, such as quantization-aware training [198, 316, 350] and selective
architectural component choices [199, 299], aim to enhance performance in specific applications [32, 44, 244, 260, 338].
These methods have led to the development of numerous open-source, general-purpose, and domain-specific SLMs
[3, 24, 30, 296, 352, 378]. Beyond their inherent capabilities, SLMs can also serve as a module or effective proxies for
enhancing LLMs [218, 266, 339, 349, 361, 392]. Despite the commendable performance of SLMs, it is crucial not to
overlook their credibility issues, such as the risks of producing hallucinations and privacy breaches [81, 85, 123, 158,
158, 220, 226, 242, 312, 328, 370]. However, currently, there is no comprehensive survey thoroughly exploring these
works on SLMs in the era of LLMs. Therefore, this paper offers the first comprehensive survey that analyzes various
aspects of SLMs in the LLM era and their future directions. The overview structure of our paper is shown in Figure 1.
To summarize, our major contributions are:

• In Section 3, we examine various techniques for improving the performance of SLMs, including training from scratch,
fine-tuning, knowledge distillation, quantization, and leveraging LLM-enhancing technologies to optimize SLMs.
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• In Section 4, we discuss the tasks that SLMs can enhance and the deployment strategies that enable models to fit
within the resource constraints of edge devices while maintaining acceptable inference speed.

• In Section 5, we collect SLMs with fewer than 7 billion parameters across both general-purpose and domain-specific
applications, reviewing common architectural choices, training techniques, and datasets, and providing a comparative
summary of performance across different model sizes. Recent SLMs are listed.

• In Section 6, we explore how SLMs can address key challenges faced by LLMs, such as high inference latency,
labor-intensive fine-tuning, susceptibility to knowledge noise, and risks of copyright infringement.

• In Section 7, we investigate the trustworthiness issues of SLMs, including hallucination and privacy concerns, by
providing a taxonomic summary of current evaluation methods.

2 FOUNDATIONAL CONCEPTS IN BUILDING LANGUAGE MODELS
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Feed Forward
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Input 
Embedding
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Multi-Head 
Attention

Add & Norm

Add & Norm
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Output 
Embedding
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Masked 
Multi-Head 
Attention

Add & Norm

Linear

Softmax

Output 
Probabilities

Inputs Outputs

Fig. 4. Transformer architecture.

This section will introduce foundational concepts and background knowledge
that are important for language models. We will introduce the basic concepts
both in architecture and the training process respectively. The advanced training
strategy to improve SLM performance will be introduced in Section 3.

2.1 Architecture of SLMs

Generally, the architecture of small language models (SLMs) is based on LLMs but
optimized for computational efficiency and scalability. SLMs commonly employ
the Transformer architecture [308] (see Figure 4), which utilizes self-attention
mechanisms to manage long-range text dependencies, essential for maintaining
performance with constrained resources.

2.1.1 Transformer [308] for SLMs. The Transformer’s self-attention mechanism
[308] allows SLMs to efficiently capture contextual information across longer
sequences, even with limited resources. SLM Transformers generally adopt an

Manuscript submitted to ACM
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encoder-decoder structure featuring self-attention mechanisms, feedforward networks, positional embeddings, and
layer normalization.

Self-Attention Mechanism enables the model to evaluate the importance of tokens relative to each other. The
self-attention mechanism is written as

Attention(Q,K,V) = softmax

(
QK⊤√︁
𝑑𝑘

)
V

where Q, K, and V are query, key, and value matrices, scaled by
√︁
𝑑𝑘 for stability where 𝑑𝑘 is the dimension of key

matrices. The dot product QK⊤ reflects the similarity between the query and key vectors.
Multi-Head Attention (MHA) [308] is the first method that uses multiple heads to capture diverse information.

MHA allows the model to attend to different parts of the input sequence using multiple attention heads as

MultiHead(Q,K,V) = Concat(head1, head2, . . . , headℎ)W𝑂 , with head𝑖 = Attention(QW𝑄

𝑖
,KW𝐾

𝑖 ,VW
𝑉
𝑖 ), (1)

Each head in the Multi-Head Attention mechanism operates independently, allowing the model to capture diverse
aspects of the data. The outputs are combined using learned projection matrices W𝑄

𝑖
, W𝐾

𝑖
, and W𝑉

𝑖
, concatenated, and

passed through the output projection matrixW𝑂 .
Building on this foundation, several modifications have been introduced to further optimize self-attentionmechanisms

for specific challenges such as memory efficiency and computational speed. To address the KV-cache bottleneck in
MHA, Multi-Query Attention (MQA) [270] proposes that all attention heads share the same set of keys and values,
which reduces the memory and computational overhead associated with storing and managing multiple key-value pairs.
Grouped Query Attention (GQA) [8] serves as a middle ground between MHA and MQA. It introduces subgroups of
query heads (fewer than the total number of attention heads), where each subgroup shares a single key and value head.
Unlike MQA and GQA, which reduce the number of key and value heads,Multi-Head Latent Attention (MLA) [188]
compresses the keys and values into a joint latent vector. This compression allows for efficient handling of key-value
pairs while maintaining high performance, significantly reducing the KV-cache and improving inference efficiency.
Flash Attention [67, 68] accelerates the self-attention mechanism by minimizing the memory overhead typical of
standard attention calculations. This optimization allows SLMs to process longer sequences more efficiently, enhancing
their functionality under strict hardware constraints.

Feedforward Network (FFN) comprises two linear transformations separated by a non-linearity, typically modeled
as FFN(𝑥) = 𝜎 (𝑥W1 + 𝑏1)W2 + 𝑏2. where W1 and W2 are the weight matrices, and 𝑏1 and 𝑏2 are bias terms. 𝜎
is the activation function, which introduces non-linearity, allowing models to learn complex patterns. Generally,
ReLU is used as the activation function. In addition to ReLU, activation functions such as GeLU and SiLU are also
used in SLMs to improve performance. We give the details here: (i) ReLU (Rectified Linear Unit) [5] is defined as
𝜎 (𝑥) = max(0, 𝑥), which is commonly used for its simplicity and effectiveness. (ii) GELU (Gaussian Error Linear
Unit) [121] is defined as GELU(𝑥) = 𝑥 · Φ(𝑥) = 𝑥 · 12

[
1 + erf

(
𝑥√
2

)]
, where Φ(𝑥) is the standard Gaussian CDF and

erf is the error function. It is smoother than ReLU and widely used in models such as BERT [77] and GPT [248]
for better gradient flow control. Since calculating the Gaussian error function for each neuron is computationally
expensive and time consuming, there are approximations using tanh and sigmoid functions, corresponding to GELUtanh

and SiLU: (iii) GELU with tanh is defined as GELUtanh (𝑥) = 0.5 · 𝑥 ·
(
1 + tanh

(√︃
2
𝜋 · (𝑥 + 0.044715 · 𝑥3)

))
. This

approximation uses the Tanh function to simplify computations. (iv) SiLU (Sigmoid Linear Unit) [87] is calculated as
SiLU(𝑥) = 𝑥 · sigmoid(𝑥) = 𝑥 · 1

1+𝑒−𝑥 . It effectively combines the sigmoid function with its input, enhancing modeling
Manuscript submitted to ACM
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capabilities. (v) SwiGLU (Swish-Gated Linear Units) [271] integrates the Swish activation function with Gated Linear
Units, defined as SwiGLU(𝑥) = Swish(𝑥 ·𝑊 + 𝑏) ⊙ (𝑥 ·𝑉 + 𝑐) where𝑊,𝑉 are the weight matrix and 𝑏, 𝑐 are the bias
terms. The Swish function, a smooth non-linear activation, is expressed as Swish(𝑥) = 𝑥 · sigmoid(𝑥). This combination
enhances expressiveness and computational efficiency, making it a preferred choice in advanced models such as the
Qwen series [352].

Positional Embeddings in Transformer models [308] are essential for capturing token order, providing context
about relative positions within a sequence. Traditional positional embeddings in the Transformer architecture utilize a
sinusoidal function, defined as:

𝑃𝐸 (𝑝𝑜𝑠, 2𝑖) = sin
(

𝑝𝑜𝑠

100002𝑖/𝑑model

)
𝑃𝐸 (𝑝𝑜𝑠, 2𝑖 + 1) = cos

(
𝑝𝑜𝑠

100002𝑖/𝑑model

)
(2)

where 𝑝𝑜𝑠 represents the position within the sequence, 𝑖 is the dimension index, and 𝑑model is the dimensionality
of the model. This method alternates between sine and cosine functions across dimensions. BERT-family models
[77, 195], in contrast, employ learned positional embeddings, enhancing flexibility and adaptation to various text
structures. To improve the model’s capacity for understanding the relative positions of tokens within a sequence,
Rotary Positional Embedding (RoPE) [282] introduces a rotational matrix to the embeddings. RoPE significantly
enhances the positional encoding by maintaining the relative distances through rotational transformations, thus
optimizing the model’s interpretative ability regarding sequence dynamics.

Layer Normalization [165] stabilizes the training process by normalizing layer outputs, accelerating convergence.
Two types of layer normalization are commonly used [165]: (i) Non-Parametric Layer Norm normalizes inputs using
the mean and variance calculated across the layer’s dimensions without learnable parameters as

LN(𝑥) = 𝑥 − 𝜇
𝜎

where 𝜇 is the mean and 𝜎 is the standard deviation of the inputs. Its simplicity makes it ideal for SLMs. (ii) Parametric
Layer Norm includes learnable parameters 𝛾 and 𝛽 for adaptive scaling and bias, enhancing model flexibility:

PLN(𝑥) = 𝛾
(𝑥 − 𝜇
𝜎

)
+ 𝛽

Additionally, RMS Norm (Root Mean Square Layer Normalization) [374] simplifies the calculation by using the
root mean square of inputs, reducing computational demands:

RMSNorm(𝑥) = 𝛾 𝑥√︃
1
𝑁

∑𝑁
𝑖=1 𝑥

2
𝑖
+ 𝜖

+ 𝛽

where 𝑁 is the number of inputs, 𝑥𝑖 is the 𝑖-th input, and 𝜖 is a small constant to prevent division by zero.

2.1.2 Mamba Model [69, 105]. Mamba leverages a refined version of the Transformer architecture, which includes
improvements in multi-head attention and feedforward networks. Specifically, Mamba uses dynamic attention heads,
which adjusts the number of active attention heads based on the complexity of the input sequence. This approach mirrors
the Multi-Head Attention mechanism within the Transformer but with the added benefit of dynamically scaling the
attention resources to match the task’s demands. This dynamic adaptation allows Mamba to maintain high performance
while minimizing unnecessary computations for simpler sequences, making it highly efficient. Additionally, Mamba
incorporates adaptive feedforward networks, which align closely with the Feedforward Network architecture in
Transformers. These adaptive networks dynamically adjust the depth of the feedforward layers based on the input’s
complexity, ensuring that computational resources are allocated efficiently. This adaptive mechanism preserves power
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for more demanding tasks while keeping the model lightweight for simpler tasks, directly improving the efficiency of
the Transformer architecture in SLMs.

2.2 Training SLMs from Scratch

Training SLMs from scratch entails several critical steps: (i) Pre-training, focused on acquiring general features and
knowledge from the corpus; (ii) Fine-tuning, targeted at boosting the model’s abilities and performance for specific tasks;
(iii) Decoding strategies, which involve the methods used for iteratively selecting the next token during generation.

2.2.1 Pretrain. Typically, pre-training paradigms for language models are divided into encoder-based and decoder-
based approaches. Encoder-based models, such as BERT [77], utilize Masked Language Modeling (MLM) tasks where
the goal is to predict masked tokens within a sentence. This is achieved by maximizing:

𝑃 (masked token | context) = softmax(W · hmask + 𝑏),

where masked token is the original token that has been masked, context represents the other unmasked tokens in the
sentence, W and 𝑏 are trainable parameters of a linear output layer, hmask is the output from the transformer encoder
for the masked position, and softmax is the activation function that converts logits to probabilities over the vocabulary.
This process enhances the model’s language encoding capabilities. Decoder-based models, such as GPT [248], employ
Next Token Prediction (NTP) tasks, aiming to model the distribution of the next token by maximizing:

𝑃 (next token | context) = softmax(W · hlast + 𝑏),

where next token is the token that the model aims to predict, context represents the sequence of tokens preceding the
token to be predicted, and hlast is the output from the transformer encoder for the last token in the context. Effective data
preprocessing, crucial for optimizing the performance of SLMs trained from scratch, involves meticulous data cleaning
and strategic tokenization. Data Cleaning involves techniques such as filtering, deduplication, and noise reduction,
which improve data quality and help the model generalize better. Filtering noisy or irrelevant data, addressing outliers,
and handling imbalances in the dataset ensure that the training data is both representative and efficient. Deduplication,
in particular, helps prevent overfitting by removing repeated instances, making the model more robust with efficient
parameter usage. Tokenization Strategies play a vital role in handling diverse vocabularies without increasing model
size. Advanced methods such as Byte-Pair Encoding (BPE) [95] and WordPiece [280] break text into subwords [77],
allowing the model to manage rare and compound words efficiently. These strategies ensure that SLMs maintain a
balance between vocabulary coverage and model compactness, crucial for improving generalization while minimizing
computational demands.

2.2.2 Fine-Tuning. After the initial training, SLMs are fine-tuned on specific tasks using task-specific data and loss
functions. Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), prefix-tuning, and adapter
modules, are particularly effective for SLMs. Low-Rank Adaptation (LoRA) [127] modifies Transformer weights by
introducing trainable low-rank matrices A and B for efficient fine-tuning, avoiding significant alterations to pre-trained
weights. The update is represented as:

ΔW = AB⊤ (3)

The fine-tuned weight matrix used in Transformer operations then becomes:

Wft = W + 𝛼ΔW (4)
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where 𝛼 is a scaling factor adjusting the adaptation’s impact, allowing fine-tuning on a smaller set of parameters while
retaining the model’s foundational capabilities. Prefix-Tuning [177] prepends learnable prefixes to the input sequence,
guiding the model’s attention without altering core model parameters. It is especially useful for generative tasks.
Adapter Modules [125] are small, trainable layers inserted into the pre-trained model. These layers are fine-tuned on
task-specific data, allowing the base model to remain fixed while the adapters learn the necessary adjustments. The
typical structure of an adapter module includes a down-projection, a non-linearity, and an up-projection:

Adapter(h) = h +Wup · 𝜎 (Wdown · h + bdown) + bup (5)

where h is the input hidden state, Wdown and Wup are the projection matrices, bdown and bup are the bias terms, and 𝜎
is a non-linear activation function.

2.2.3 Decoding Strategies. After pre-training or fine-tuning, employing an effective decoding strategy is crucial for
generating output from language models. Decoding, the process of text generation from SLMs, involves iteratively
selecting the next word. A fundamental method is the greedy search, which predicts the most likely token at each step.
This is formally modeled as: 𝑥𝑖 = argmax𝑥 𝑃 (𝑥 | 𝑥<𝑖 ), where 𝑥𝑖 is the token with the highest probability at the 𝑖-th
step, conditioned on the preceding context 𝑥<𝑖 . Other decoding strategies, such as beam search or top-k sampling, are
crucial for generating high-quality outputs. Beam search balances exploration and exploitation by considering multiple
possible sequences simultaneously, while top-k sampling introduces diversity and creativity in text generation. These
strategies collectively ensure that SLMs are efficient and capable of delivering high performance across various natural
language processing tasks.

2.3 Obtain SLM from LLM

Obtaining a small language model (SLM) from a large language model (LLM) is crucial for deploying in resource-
constrained environments. Instead of training from scratch, leveraging an LLM allows for knowledge transfer, enabling
SLMs to retain much of the LLM’s linguistic and domain knowledge with reduced training time and data. To obtain
SLMs from LLMs, three primary techniques are used: pruning, knowledge distillation, and quantization. Pruning
removes less critical parameters, reducing model size while aiming to maintain performance. Knowledge distillation
transfers knowledge from a large teacher model to a smaller student model, preserving much of the original model’s
understanding. Quantization decreases parameter precision, significantly lowering memory and computation needs
with minimal impact on accuracy. These methods balance size reduction, efficiency, and performance retention.

(b) Structured Pruning(a) Unstructured Pruning

Active Neurons Pruned Neurons

Fig. 5. Visualizations of unstructured and
structured pruning.

2.3.1 Pruning. Pruning is a technique used to reduce a model’s size and
computational requirements (e.g., LLMs) without significantly sacrificing
its performance [113]. This process involves identifying and removing less
important or redundant parameters and components from the model. The
primary goal of LLM pruning is to make the model more efficient, faster, and
suitable for deployment in resource-constrained environments. Typically,
pruning can be categorized into two main types: unstructured pruning and
structured pruning [320, 398]. An illustration of unstructured pruning and
structured pruning is shown in Figure 5.

Unstructured Pruning [70, 91, 179, 268, 285, 381, 385] prunes an LLM
by removing weights individually without considering its internal structure.
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The least significant parameters are pruned according to specific criteria (e.g. magnitude or impact on the output). This
method can achieve significant compression while maintaining performance. However, it can also lead to irregular
memory access patterns and reduced hardware efficiency because the pruned model lacks a regular structure. SparseGPT
[91] is a representative unstructured pruning method that can reduce large-scale GPT models like OPT-175B [383]
and BLOOM-176B [162] to up to 60% sparsity using a novel sparse regression solver. Wanda [285] combines weight
magnitudes with input activations to efficiently identify and discard less impactful parameters. It operates in a single
forward pass, rapidly achieving high sparsity without retraining. It is also worth noting that recent studies specifically
address the compatibility issues between pruning and Low-rank Adaptation (LoRA) [127], such as LoRAPrune [381].

Structured Pruning [12, 17, 43, 111, 167, 174, 207, 216, 341, 358, 388], which prunes an LLM by targeting entire
structural components—such as neurons, channels, or layers—rather. This approach allows for a direct reduction in
dimensionality, thus efficiently reducing model complexity and memory usage. Although structured pruning may lead
to higher accuracy degradation than unstructured pruning, it simplifies implementation without requiring specialized
hardware. ShortGPT [216] proposes the Block Influence (BI) metric, which measures the significance of each layer
based on its transformation of hidden states. Essentially, a transformer block’s influence is measured by how much it
alters the hidden states. By calculating BI scores, ShortGPT determines which layers contribute minimally to the overall
performance and removes these low-importance layers. This simple yet effective layer removal strategy significantly
reduces the model’s parameters and computational requirements. LLM Pruner [207] offers a method to efficiently
prune LLMs without access to the original training dataset. It employs a three-step compression pipeline: Discovery
(identifying interdependent structures), Estimation (evaluating the performance impact of each group), and Recovery
(post-training to address performance loss). NutePrune [174] enhances structured pruning with a Numerous-teacher
method, employing variable sparsity masks and LoRA modules to guide the pruning process. This approach effectively
reduces model size and complexity.

Training 
Data

White-box KD

Teacher 
Model

Student 
Model

LLM API

Balck-box KD

Training 
Data

Student 
Model

Fig. 6. Illustration of white-box and black-box knowledge distillation [217].

2.3.2 Knowledge Distillation. Knowledge distillation (KD) compresses a larger teacher model into a smaller student
model by training the student to mimic the teacher’s outputs [122]. This enables the student to retain much of the
teacher’s capabilities with fewer parameters, making it ideal for scaling down LLMs for resource-limited environments
while maintaining performance. KD can be categorized into white-box and black-box approaches [320, 353, 398] as
shown in Figure 6. InWhite-Box KD, the student has access to the teacher’s internal states or output distributions
[6, 106, 140, 151, 155, 236, 377]. Generalized Knowledge Distillation (GKD) [155] introduces skew KL divergence to
stabilize gradients and enhance performance, using an adaptive off-policy approach to minimize noisy feedback and
improve efficiency. Black-Box KD relies only on teacher outputs without having access to model internals [41, 240,
319]. Methods like Distilling Step-by-Step [126] use teacher-generated rationales to train smaller models, improving
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Table 1. Representative quantization methods.

Mehtods Bit Type Technical Contribution Problems
SqueezeLLM [152] 3-bit PTQ Sensitivity-based non-uniform quantization,

dense and sparse decomposition
ultra-low bit quantization

JSQ [109] Flexible PTQ Joint Sparsification and Quantization better compression-accuracy trade-offs.
FrameQuant [4] Fractional bit PTQ Fractional bit widths better compression-accuracy trade-offs.
OneBit [350] 1-bit PTQ Quantization-aware knowledge distillation 1-bit quantization
BiLLM [133] 1-bit PTQ Crucial Weights Selection, Block-based error

compensation
1-bit quantization

LQER [375] Flexible PTQ Quantization Error Minimization better compression-accuracy trade-offs
I-LLM [129] Flexible PTQ Fully-Smooth Block-Reconstruction, Dy-

namic Integer-onlyMatMul and Integer-only
Non-linear Operators

Integer-only Quantization

PV-Tuning [213] 1-bit/2-bit PTQ PV algorithm better compression-accuracy trade-offs.
BitNet [316] 1-bit QAT 1-bit Transformer Architecture 1-bit quantization

BitNet b1.58 [206] {-1, 0, 1} QAT Ternary Parameters 1-bit quantization
PEQA [150] Flexible QAT Quantization Scales Optimization Parameter-Efficient Finetuning
QLoRA [75] NF4 QAT 4-bit NormalFloat and Double Quantization Parameter-Efficient Finetuning

2.1

5.8

…

3.5

5.3

1.2 0.2 … 3.1 2.3

0.9 1.0 … 0.3 2.5

Decomposition

Finetune for 

downstream task

1 0 … 3 2

1 1 … 0 3

1 0 … 3 2

1 1 … 0 3

2.5

4.8

…

3.8

3.4

Full-Precision Low-Precision Low-Precision. .

1.2 0.2 … 3.1 2.3

0.9 1.0 … 0.3 2.5

1 0 … 3 2

1 1 … 0 3

Full-Precision Low-Precision

(Optional)

QAT

Trainable Frozen

PTQ

Calibration Data

Training Data

Fig. 7. Illustration of quantization-aware training (QAT) and post-training quantization (PTQ).

performance with fewer examples. LaMini-LM [336] creates a diverse instruction dataset with GPT-3.5 Turbo responses,
enabling robust performance in smaller models.

2.3.3 Quantization. Quantization reduces the storage and computational demands of LLMs by converting floating-
point representations into lower-precision formats, significantly cutting both storage requirements and computational
complexity. Existing methods fall into two categories: Post-Training Quantization (PTQ) and Quantization-Aware Training
(QAT). Figure 7 illustrates the two quantization methods. Post-Training Quantization, applied after training, simplifies
model compression without altering the architecture or requiring retraining, though it may result in precision loss.
Consider a group or block of weights w; the linear operation can be expressed as 𝑦 = wx, while the quantized version is
given by 𝑦 = 𝑄 (w)x. Generally, the quantization function 𝑄 is defined as [184]:

𝑄 (w) = Δ · Round
(w
Δ

)
, Δ =

max( |w|)
2𝑁−1 ,

where 𝑁 is the number of quantization bits, and Δ is the quantization scale factor determined by the absolute maximum
value of w. Quantization-Aware Training (QAT) enhances LLM efficiency by incorporating quantization directly
into the training process, often resulting in higher accuracy compared to PTQ. During QAT, the forward pass utilizes
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Table 2. Comparison of Model Compression Techniques

Criteria Pruning Knowledge Distilla-
tion

Quantization Low-Rank Techniques

Definition Removes unneeded pa-
rameters

Transfers knowledge
from a larger to a smaller
model

Lowers the precision of
parameters

Uses low-rank decompo-
sition on weights

Goal Reduces size and compu-
tation

Shrinks model while re-
taining performance

Decreases size and
speeds up processing

Reduces parameters and
computation

Method Cuts weights or layers
based on importance

Smaller model mimics
larger model’s output

Converts parameters to
lower precision

Decomposes matrices
into smaller components

Advantages Reduces size and compu-
tation significantly

Preserves performance
in smaller models

Speeds up inference, less
storage

Efficient, mostly pre-
serves performance

Disadvantages May reduce accuracy, ir-
regular memory access

Resource-intensive,
requires large teacher
model

Potential accuracy loss,
may need specific hard-
ware

Effectiveness varies, re-
quires rank selection

Model Size Im-
pact

High reduction Significant reduction
through knowledge
transfer

High, tied to precision re-
duction

Moderate, reduces redun-
dant parameters

Performance Im-
pact

Possible degradation if
over-pruned

Maintains if well distilled Minor to moderate loss,
depends on method

Mostly retains perfor-
mance, may need tuning

Complexity Moderate, needs parame-
ter evaluation

High, involves dual-
model training

Moderate, varies with
precision level

Moderate, requires ma-
trix factorization

Use Cases Resource-limited set-
tings

Efficient model creation
for limited resources

Fast inference needs,
edge devices

When weight matrices
are redundant

quantized weights 𝑄 (W) and activations 𝑄 (X), while retaining full-precision values during the backward pass and for
updating gradients to ensure stable learning dynamics. The comparisons of the post-training quantization methods are
summarized in Table 1, detailing precision, addressed problems, and technical contributions of each method.

2.3.4 Low-Rank Techniques. Low-rank techniques compress LLMs by approximating high-dimensional weight matrices
with two lower-dimensional matrices, reducing computational and memory requirements. A matrix W of size𝑚 × 𝑛 is
approximated as W ≈ A × B, where A is𝑚 × 𝑟 and B is 𝑟 × 𝑛, with 𝑟 much smaller than𝑚 or 𝑛, significantly reducing
the number of parameters. Building on this concept, Ji et al. [141] propose a low-rank compression method tailored for
LLMs, leveraging the observation that while LLMs have high-rank weights, their feature interactions tend to exhibit
low-rank properties. The method estimates feature distributions using pooled covariance matrices and allocates distinct
compression ratios to layers based on their sensitivity to low-rank compression. A Bayesian optimization strategy,
using a Gaussian process as the surrogate model, optimizes the allocation of low-rank dimensions, ensuring the model
maintains performance while achieving significant compression. Transitioning from model compression to fine-tuning,
Cho et al. [54] tackles system and data heterogeneity with the HETLORA method, which uses heterogeneous low-rank
approximations to accommodate the diverse capabilities of clients and data complexities. By combining local rank
self-pruning with sparsity-weighted aggregation, it balances high and low-rank LoRA modules, improving convergence
speed and performance compared to uniform approaches.

2.4 Comparison between Different Compression Methods

To summarize the key differences between pruning, knowledge distillation, quantization, and low-rank techniques for
model compression, we present a comparative table highlighting their definitions, goals, advantages, disadvantages,
and typical use cases, as shown in Table 2.
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Fig. 8. Innovative Training Methods for Small Language Models from Scratch

3 ADVANCED ENHANCEMENT STRATEGIES FOR SMALL LANGUAGE MODELS

With the foundational concepts introduced in Section 2, this section explores various advanced techniques that enhance
the performance of SLMs, including innovative training methods for training SLMs from scratch, supervised fine-tuning
(SFT) to align SLMs to adhere to instructions, advanced knowledge distillation and quantization techniques, and
techniques frequently used in LLMs such as mixture-of-experts to enhance SLM for specific applications. A summary of
enhancement techniques is also summarized in Table 3.

3.1 Innovative Training Methods for Small Language Models from Scratch

In scenarios with limited resources, we aim to train small language models to provide efficient, cost-effective solutions
tailored for specific domains, while still maintaining competitive performance with larger models. Training small
language models (SLMs) from scratch involves unique strategies that diverge significantly from those used for large
language models (LLMs). This section synthesizes cutting-edge techniques tailored to optimize the inherent capabilities
of SLMs, underscoring their potential to match or surpass larger counterparts in efficiency and effectiveness. As shown
in Figure 8, the methods for training SLMs from scratch can be categorized into three primary categories: Architecture
Design, Data Construction, and Optimization Strategy. Next, we introduce each category in detail.

Architecture Design for SLMs When designing SLM architectures, parameter-sharing techniques are employed to
minimize space usage and reduce the model’s size. As shown in the first part of Figure 8, parameter sharing is achieved
by two approaches: (i) a single Feed-Forward Network (FFN) module is shared by every transformer layer, and (ii) entire
transformer blocks are shared. For example, to design language models for scenarios that require on-device processing
ability and energy, FFN layer sharing/reusing (see Figure 8 (1)) can be a potential option. By sharing FFN layers,
the model can maintain a smaller size while still benefiting from the depth and complexity gained through repeated
processing of input data. This technique is firstly applied in MobiLlama [299] which surpasses the performance of
existing SLMs of comparable size. Generally, deeper and thinner models consistently perform better than shallower
and wider ones [199]. Based on this observation, Transformer Block-wise Sharing is another parameter-sharing
approach that maintains depth and complexity. There are different transformer block-wise sharing strategies such
as repeating the transformer blocks all over again or repeating the immediate transformer block. Experiments show
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Table 3. Advanced enhancement methods for SLM.

Topic Method Main Contribution
Training
from
Scratch

MindLLM [359] Bilingual pre-trained lightweight models with advanced architectural features
MobiLlama [299] An on-device SLMwith dual objectives ofmodel capability and efficiency through

parameter sharing
MobileLLM [199] A deep and thin architecture with advanced techniques to optimize LLM deploy-

ment on mobile devices

Supervised
Fine-tuning

MobileBERT [286] Compact BERT that can fine-tune on downstream tasks.
Alpaca 7B [292] 52k ChatGPT-generated instruction-following examples from 175 self-instructed

seed tasks to tune Llama 7B [301].
RLHF [235] Gather human-preferred data, train a reward model, and fine-tune the LM using

reinforcement learning.
DPO [249] Adjust the log probabilities of preferred versus non-preferred responses using a

dynamic weighting mechanism, preventing model degradation issues.
Data
Quality
in KD

TinyStory [86] Small language models can generate coherent stories using a child-friendly
dataset and foundational vocabulary

AS-ES [340] Categorize reasoning steps into extractive and abstractive segments for enhanced
small model CoT capabilities

Self-Amplify [25] A proxy-free, self-generating rationale method for small language models to
automate CoT data annotation

Distillation
for SLM

GKD [6] Align training and inference distributions using on-policy sequences and flexible
divergence measures

DistiLLM [155] A skew KL divergence loss for stability and an adaptive off-policy approach for
efficient student-generated output utilization.

Adapt-and-Distill [362] Enhances small models by first domain adapting both teacher and student models
before distillation

Quantization

SmoothQuant [342] 8-bit quantization by balancing quantization difficulty between activations and
weights using a per-channel scaling transformation

BiLLM [133] Post-training quantization by using a Hessian-based metric to identify salient
weights and applying binary residual approximation and optimal splitting search
for precise quantization.

LLM-QAT [198] Quantization by data-free knowledge distillation and fine-tuning with logit
distillation from the full-precision model

PB-LLM [267] Selectively binarizes non-salient weights while preserving salient ones in higher
precision, balancing model compression and accuracy

OneBit [350] Sign-Value-Independent Decomposition to achieve near 1-bit quantization, bal-
ancing extreme compression with minimal performance loss

BitNet [316] A 1-bit Transformer architecture with BitLinear layers and quantization-aware
training, optimizing low-precision representation for better accuracy and train-
ing stability.

BitNet b1.58 [206] Enhanced BitNet by introducing a ternary weight system, achieving full-
precision performance from 3 billion parameters with reduced memory and
latency costs

LLMs for
SLM Ma et al. [209] An adaptive filtering and re-ranking paradigm combining LLMs and SLMs im-

proves Information Extraction tasks
MoQE [154] Apply quantization only to expert weights and achieve better performance than

the dense model trained on the same dataset.
SLM-RAG [192] Suggests that SLMs equipped with Retrieval-Augmented Generation (RAG) can

perform comparably to Large Language Models (LLMs).

that simply reusing the same transformer blocks can still improve performance [199]. This improvement likely comes
from the fact that repeating the blocks effectively maintains the model’s depth and complexity, allowing it to capture
more information without adding new parameters. While repeat-all-over sharing generally yields better performance,
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block-wise immediate sharing optimizes cache utilization. This is because the shared weights remain in the cache
and can be processed again immediately. This technique is applied in MobileLLMs [199] which has 125M and 350M
parameters. MobileLLMs demonstrate performance improvements of 2.7% and 4.3%, respectively, compared to previous
models with equivalent parameters. Moreover, they exhibit accuracy comparable to LLaMa-2-7B on API call tasks,
highlighting the capabilities of smaller models in mobile environments.

Data Construction For small language models, the emphasis on data quality surpasses that of quantity and
diversity [359]. Experiments demonstrate that using a quality filtering approach to remove low-quality data can lead to
improved performance in SLMs [359]. Unlike large models, which can handle diverse and large datasets, SLMs benefit
more from cleaner, high-quality data probably due to their limited capacity against noise. Generally, data processing
has several steps: (i) Format cleaning, which involves removing HTML, CSS, and JS identifiers, as well as non-textual
elements, to ensure clean text input; (ii) Low-quality content filtering that excludes webpages with low text-to-content
ratios; (iii) Deduplication using Locality-Sensitive Hashing (LSH), particularly the SimHash algorithm [71, 261], to
prevent content redundancy; (iv) Sensitive information exclusion through heuristics and a sensitive word vocabulary to
filter out offensive and illegal content, with special tokens replacing private information; and (v) A self-repeating content
filter that eliminates repetitive phrases typical of advertisements, enhancing the training dataset’s information value
[40, 359]. These steps collectively ensure that training data has high-quality, informative texts. SLMs also significantly
benefit from these techniques. For example, MindLLMs [359], which are bilingual lightweight language models (available
in 1.3B and 3B versions), adopt these data processing techniques and achieve improved capability acquisition, while
mitigating issues like catastrophic forgetting.

Training Strategy for SLMs For LLMs, due to the large model size and data volume, LLMs are usually trained with
one round. For SLMs, multiple-round training can be applied [291]. Considering some examples are hard to fit, hard
examples can be trained with a high probability [291]. For each round of training, the data sampling probability is
updated according to the overall loss of that sample. Experiments results show that two rounds of training and a 50%
sampling rate are a good trade-off between performance and training efficiency. Tang et al. [291] show that a deep and
thin neural architecture and multiple-round training can enhance the performance of the trained Pangu 1.5B pro model.
This model outperforms the conventionally trained Pangu 1.5B and a series of other comparable large language models
with similar model sizes on multiple benchmark datasets, achieving an average performance increase of 8.87%.

Insights: We draw several key insights from the training techniques of SLMs:

• For parameter sharing techniques, maintaining complexity and depth of model structure is essential for
maintaining model performance (e.g., shared Feed-Forward Networks [299] and transformer blocks) [199].

• Data quality is more important than data quantity in the effectiveness of SLMs [359].
• Different from LLMs, we can take advantage of the compact nature of SLMs and employ more flexible
training strategies, such as multiple-round training [291].

3.2 Supervised Fine-Tuning (SFT) for Enhancing SLM performance

Supervised Fine-Tuning (SFT) employs a training methodology similar to pre-training but is specifically tailored to
align models to adhere to the instructions encapsulated within various instructional datasets. This approach is designed
to refine the model’s responsiveness and appropriateness to given contexts as dictated by the training data. For example,
various models, such as Alpaca [292], UltraChat [79], WizardLM [346], SlimOrca [181], ShareGPT [315], Capybara
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Fig. 9. Fine-tuning for Enhancing SLMs

[66], Deita [193], and MetaMathQA [366], incorporates a suite of conversational datasets to enhance their capabilities
in context-aware dialogue and instruction adherence. Usually, as shown in Figure 9, existing SFL methods can be
categorized into 3 categories: (i) Classical fine-tuning with downstream data [77, 248] trains SLMs on task-specific
annotated data, transferring general language representations to specific tasks such as sentiment analysis. In the LLM
era, this approach remains effective, such as enhancing LLMs by calibrating responses or assigning risk scores with
smaller models such as BERT [392], or optimizing for mobile devices with MobileBERT [286]. (ii) Instruction tuning

with LLM-generated data [79, 181, 292] or human-generated questions with LLM annotations [315] aims to align
generative models with specific instructions, enhancing their instruction-following and reasoning capabilities. For
example, Alpaca 7B [292] uses 52k ChatGPT-generated instruction-following examples from 175 self-instructed seed
tasks to tune Llama 7B [301]. Meanwhile, StableLM [24, 303] is trained on the Restruct-v1 dataset, which includes
summarization, question-answering, and sentiment analysis tasks, using instruction data from [202]. (iii) Preference
optimization with human feedback [235, 249, 315] aims to better align language models with human preferences.
Reinforcement Learning from Human Feedback (RLHF) [235] gathers human-preferred data, trains a reward model,
and fine-tunes the LM using reinforcement learning. Direct Preference Optimization (DPO) [249] provides a simpler
alternative to RLHF. Unlike RLHF, DPO avoids explicit reward modeling and reinforcement learning techniques. Instead,
it adjusts the log probabilities of preferred versus non-preferred responses using a dynamic weighting mechanism,
preventing model degradation issues typical of methods relying on probability ratios. For instance, Llama 3.2 1B & 3B
apply SFT and DPO in post-training to enhance alignment with instructions and human preferences.

3.3 DataQuality in Knowledge Distillation (KD)

Transitioning from the discussion on training SLMs from scratch, this section delves into the critical role of data quality
in Knowledge Distillation (KD). The motivation here is to highlight how high-quality data generated from LLMs can
significantly enhance the learning efficiency and performance of SLMs. The central idea is that meticulously crafted
datasets when used in KD, enable SLMs to more effectively mimic the advanced capabilities of their larger counterparts.
As shown in Figure 10, the data can come either from (1) other strong LLMs (e.g., GPT-4 [2]) which are much larger and
more powerful than the target SLM, or (2) the target SLM itself.

Augment Data from Other Models. Due to the limitations of model size, studies have shown that training SLMs
requires simple and comprehensible data [86, 163, 340]. TinyStory [86] demonstrates that language models with a
relatively small number of parameters (tens of millions) can still generate coherent stories tailored for children aged 3-4
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Fig. 10. DataQuality in Knowledge Distillation (KD)

years. This is achieved by prompting GPT-3.5 or GPT-4 [2] to create simple and easily understandable stories from
three keywords selected from a foundational vocabulary of 1,500 words. The generated stories are then used to train
SLMs, enabling them to produce similar narratives. This approach shows that varied and comprehensible data can help
smaller models exhibit behaviors similar to those of larger language models, such as obeying scaling laws and achieving
enhanced performance. Many efforts to enhance the Chain-of-Thought (CoT) capabilities of small models involve using
LLMs to generate high-quality CoT data. These data are then employed to train small models in an end-to-end fashion
to mimic the CoT reasoning process [210, 340]. AS-ES Learning [340] argues that previous methods often overlook
the limited capacity of small models to learn complex reasoning, despite being provided with very detailed reasoning
processes. Even these detailed processes still require more nuanced capabilities, such as extraction and abstraction.
Therefore, this study introduces a novel training paradigm that categorizes reasoning steps into extractive segments,
which remind the model of the context and set the stage for subsequent conclusions, and abstractive segments that
infer additional insights not explicitly stated in the context.

Augment Data from Itself. Besides distilling data from other LLMs, language models can also train on their own
outputs [25, 131, 300]. Since voting strategies can improve the performance of LLMs, reasoning paths that lead to the
majority answer can be further utilized to fine-tune LLMs [131]. Similarly, SLMs can generate their training data with
the aid of existing rationale generation methods. Self-Amplify [25] notes that human annotation of Chain-of-Thought
(CoT) data is very time-consuming; thus, automated rationale generation methods have been proposed. These methods
involve three main steps: (1) Selection of samples (𝑥,𝑦) that the model predicts correctly as few-shot examples; (2)
Rationale generation, where rationales are produced using post hoc explanation methods; (3) Prompt design for SLMs,
where the final prompt is crafted based on the previously generated rationales.

3.4 Distillation Techniques for Enhancing SLM Performance

Following the discussion on data quality in KD, this section reviews specialized KD training strategies designed to
enhance the performance of SLMs. The motivation is to address the unique challenges and constraints involved in
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Fig. 11. Distillation Techniques for Enhancing SLM Performance

distilling knowledge from LLMs to SLMs, ensuring that the smaller models can maximize their performance gains. As
shown in Figure 11, two main gaps between LLMs and SLMs lead to challenges in distillation: distribution mismatch and
domain gap. Distribution mismatch [6, 155] occurs when the distribution of output sequences during training does not
align with the distribution of sequences that SLMs produce during inference, leading to suboptimal performance of the
student model. The domain gap [362] arises when there is a discrepancy between the domains or tasks on which the
LLMs and SLMs are trained and applied. This gap can cause significant degradation in the performance of the student
model if not properly addressed during the distillation process. To address these issues, specialized strategies involve
first aligning the teacher and student models with the target domain before proceeding with knowledge distillation. To
explore these challenges further, we now delve into the details of these two branches of methods.

Distribution Mismatch In original knowledge distillation, illustrated in Figure 11 Distribution Mismatch (a),
the teacher and student are provided with the same input sequences 𝑥 and output labels 𝑦, producing probability
distributions for the next token (𝑞 and 𝑝). The loss is calculated as the difference between these two distributions,
𝐷 (𝑞, 𝑝). However, a key challenge arises due to distribution mismatch: the output sequences during training (𝑦) differ in
distribution from those the SLMs produce during inference (𝑦′). To address this challenge, various techniques have been
proposed. As shown in Figure 11 Distribution Mismatch (b), one approach trains the student model using on-policy
sequences—sequences generated by the student itself—guided by the teacher model’s feedback. Specifically, both the
student and teacher take the same input (𝑥 ) and the student-generated output (𝑦′), producing probability distributions
for the next token (𝑞 and 𝑝 , respectively). The loss is calculated as the difference between these two distributions,
𝐷 (𝑞, 𝑝). This approach helps the student model reduce the distribution gap between training and inference by learning
from the teacher’s feedback on its own generated sequences. Generalized Knowledge Distillation (GKD) [6] is the
first work using this technique and improves distillation outcomes. However, a drawback of this technique is that
it requires the student to constantly produce new training sequences, which can be computationally expensive. To
improve efficiency, as shown in Figure 11 Distribution Mismatch (c), an adaptive off-policy approach can be used to
efficiently manage student-generated outputs by storing them in a replay buffer, thereby reducing computational costs.
DistiLLM [155] employs this off-policy approach and improves the efficiency of KD.
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Domain GapWhen training an SLM in a specific domain that differs from the domain of the LLMs, the gap between
the two domains becomes problematic. As illustrated in Figure 11 Domain Gap (a), domain adaptation fine-tunes a
languagemodel, initially trained on a general corpus, using a specialized dataset such as PubMed to enhance performance
in that specific domain. As illustrated in Figure 11 Domain Gap (b), Knowledge distillation transfers knowledge from
the larger model to the smaller one. However, because the teacher model may not produce high-quality outputs on
specialized datasets, domain adaptation is needed prior to knowledge distillation. As illustrated in Figure 11 Domain
Gap (c), Adapt-and-Distill [362] tackles the domain gap by distilling general large models into smaller ones. This
paper introduces AdaLM and demonstrates that the “Adapt-and-Distill” strategy—first involving domain adaptation
of both the large teacher model and the small student model, followed by distillation—is the most effective compared
to three other strategies: training directly from scratch, distillation followed by adaptation, and adapting the teacher
model before distillation into a general small student model. These innovative techniques are crucial for enhancing the
capabilities of SLMs, making them more efficient and effective for various applications. However, adapting both the
teacher (LLMs) and the student (SLMs) models to the target domain can be time-consuming. Future research could
focus on efficiently solving the domain gap problem.

Insights: Here are some insights from distillation techniques:

• Sampling SLM outputs during the training process is the main approach to resolving distribution mismatch.
• Techniques like Adapt-and-Distill address the domain gap by first adapting both the teacher (LLMs) and the
student (SLMs) models to the target domain before proceeding with distillation.

3.5 Performance Improvement throughQuantization

As mentioned in Section 2, quantization is one of the most effective methods for adapting LLMs to SLMs. However, com-
pression to smaller sizes often compromises performance. To address the performance drop associated with quantization,
various methods have been proposed. This section examines how these quantization methods specifically enhance
the performance of SLMs. While the general introduction to compression methods is discussed in the compression
section, the focus here is on detailing those approaches that boost the efficiency and effectiveness of SLMs. As shown in
Figure 7, we categorize these quantization methods into two main approaches: Post-Training Quantization (PTQ), where
quantization is conducted on a well-trained fixed model, and Quantization-Aware Training (QAT), where quantization
is integrated into the training process. This section introduces advanced techniques in PTQ and QAT respectively.

Post-Training Quantization (PTQ) primarily includes weight quantization and activation quantization. Weight
quantization aims to quantize model parameters while preserving performance. GPTQ [92] compresses LLMs to 4-bit or
2-bit by quantizing weights layer-by-layer to minimize layer-wise quantization errors. PB-LLM [267], applicable to both
PTQ and QAT, retains the most salient weights while binarizing the rest based on magnitudes. BiLLM [133], another
PTQ method, uses a Hessian-based metric to identify salient and non-salient weights. Salient weights undergo binary
residual approximation to minimize loss, while non-salient weights are divided into sparse and concentrated groups for
separate binarization, reducing quantization errors. Activation quantization faces challenges with outliers that can
stretch the quantization range, causing most values to cluster at few bits and introducing significant errors. To address
this, LLM.int8() [74] isolates outlier features for 16-bit processing and handles the rest in 8-bit. SmoothQuant [342]
circumvents per-channel quantization issues by employing a "smoothing" technique that shifts the quantization challenge
from activations to weights through a per-channel scaling transformation. This balance between activating and weight

Manuscript submitted to ACM



20 Fali Wang, et al.

quantization allows effective 8-bit quantization (W8A8), preserving accuracy while significantly reducing memory and
computational costs. SmoothQuant thus enhances the efficiency of SLMs in resource-constrained environments.

Quantization-Aware Training (QAT) differs from PTQ in that it includes a training phase after the model has been
quantized. When models are quantized to extremes, such as 2-bit or 1-bit, performance typically drops significantly,
but further training can help the model retain its capabilities. For instance, to mitigate performance degradation from
binarization, PB-LLM [267] selectively binarizes only non-salient weights, preserving the most salient ones at higher
precision. This method effectively reduces the model size without significantly impacting performance. Salient weights
are chosen based on their magnitude, ensuring that the most influential weights maintain higher precision to preserve
the model’s reasoning capabilities. The paper explores both post-training quantization (PTQ) and quantization-aware
training (QAT) to fine-tune and recover the performance of partially binarized models, achieving a balance between
compression and accuracy. OneBit [350] and BitNet [316] address the severe performance degradation associated
with 1-bit quantization by decomposing floating-point matrices and employing mixed-precision strategies. Specifically,
OneBit introduces Sign-Value-Independent Decomposition (SVID), which decomposes a floating-point matrix into a
1-bit matrix and two floating-point vectors. This method allows LLMs to be quantized to a 1-bit level while minimizing
performance loss. By retaining critical information with the floating-point vectors, OneBit effectively balances extreme
compression with maintaining model accuracy. BitNet b1.58 [206] improves on the original BitNet by introducing a
ternary matrix weight system -1, 0, 1, resulting in a 1.58-bit model. BitNet b1.58 matches the performance of full-precision
models starting from a 3 billion parameter size while further reducing memory and latency costs. LLM-QAT [198]
employs data-free knowledge distillation, where the pre-trained model itself generates data for fine-tuning the quantized
model (student) using logit distillation from the full-precision model (teacher). This method incorporates quantization
of weights, activations, and key-value cache, achieving accurate 4-bit quantization for weights and key-value caches,
and 6-bit for activations, demonstrating substantial improvements over existing post-training quantization methods.

Insights: Insights drawn from quantization strategies include:

• Post-Training Quantization techniques primarily focus on quantizing model weights, where selecting salient
weights is crucial. Beyondweight quantization, handling outliers in activation signals is a significant challenge
in quantizing activations.

• Quantization-Aware Training methods show that low-bit quantization (e.g., 1-bit models) requires additional
tuning to maintain performance. Knowledge can be distilled from the model before quantization to the
quantized model.

3.6 Techniques in LLMs Contributing to SLMs

To enhance the performance of LLMs, various techniques such as Retrieval-Augmented Generation (RAG) and Mixture
of Experts (MoE) are employed. This section discusses their potential to maintain or improve the performance of SLMs
within constrained computational budgets. However, effectively integrating these advanced techniques into SLMs,
which have inherently limited capabilities, remains an open challenge.

Retrieval Augmented Generation (RAG) enhances the capabilities of language models in knowledge-intensive
tasks by incorporating a retrieval mechanism. This approach allows models to access relevant contextual information
from a data repository in response to user queries. By integrating this retrieved data, RAG-equipped models gain a
better understanding of specific topics, enabling more informed and accurate outputs. For SLMs, a significant concern
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is whether they possess the capacity for long-context reasoning. A recent study [363] compares the performance of the
original FP16 and the quantized INT4 on multiple 7B and 8B LLMs, indicating that for a 7B LLM already performing
effectively, quantization does not compromise its performance or its ability to reason over long contexts. Another study
[192] compares SLMs at the 7B level with RAG to larger models such as GPT-3.5 and GPT-4 [2], suggesting that SLMs
equipped with Retrieval-Augmented Generation can sometimes perform comparably or even better than LLMs. These
findings indicate that RAG for SLMs is effective and represents a promising direction for future research.

Mixture-of-Experts (MoE) offers an efficient scaling strategy for LLMs through expert parallelism. However, this
approach requires significant memory overhead, necessitating model compression techniques for its adoption in SLMs.
Several studies [154, 172] have found that traditional quantization techniques are less effective for MoE models. The
Mixture of Quantized Experts (MoQE) [154] demonstrates that expert layers in MoE models are more resilient to
quantization compared to traditional feedforward network (FFN) layers. They apply quantization only to expert weights
and achieve superior performance compared to dense models trained on the same dataset. Similarly, another study
[172] suggests that since FFN weights only engage with a subset of input tokens, more bits should be allocated to
attention weights. These studies collectively indicate that in MoE architectures, FFN layers should be either quantized
or allocated fewer bits.

Insights: Here are some insights from LLM techniques that contribute to SLMs:

• Implementing RAG in SLMs shows significant promise. Developing techniques to better tailor retrieved
information for SLMs could be particularly beneficial.

• Quantization methods can effectively compress large MoE models by reducing bit allocation on FFN layers.
Future research might explore the potential of training small MoE models from scratch.

4 APPLICATIONS OF SMALL LANGUAGE MODELS

In this section, we delve into the applications of small language models (SLMs) across various NLP tasks and their
deployment strategies. Due to benefits such as enhanced privacy, faster inference, and lower memory requirements,
many NLP applications are now leveraging SLMs over LLMs, employing specialized techniques to enhance SLM
performance. Additionally, deploying SLMs often involves considerations of memory and runtime efficiency, which
are crucial for optimizing resource use on budget-constrained edge devices, particularly mobile phones. Then, we will
discuss task-specific applications of SLMs and their deployment methods on mobile and edge devices.

4.1 Task-specific SLM Applications

This subsection explores the diverse NLP tasks to which SLMs can contribute. Question-answering and coding represent
generative tasks, while recommender systems and web search (though not strictly within the NLP domain) typically
leverage the encoding capabilities of SLMs. Additionally, the application of SLMs on mobile devices is particularly
well-suited due to constraints in memory and computing resources. The representative works are systematically
organized in Table 4.

4.1.1 SLM Applications in Question-Answering. Question-answering (QA) is a fundamental task in the NLP field,
demanding language models to exhibit abilities in understanding language, reasoning, common sense, and recalling
specialized knowledge. Typically, larger language models yield better QA performance. However, the substantial size
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Table 4. Task-specific SLM Applications

Aspect Representative work Key point

SLM in QA

Alpaca [292] Tune Llama 7B [301] using 52k ChatGPT-generated examples
from 175 seed tasks.

Stable Beluga 7B [212] Employ explanation tuning to Llama-2 7B [302] on an Orca-style
dataset with explanatory LLM answers. capabilities

Fine-tuned BioGPT Guo et al. [112] Fine-tuning BioGPT (1.6B) [205] on PubMedQA.
Financial SLMs [244] Transfer financial knowledge from GPT-4 [2] to multiple SLMs,

such as Phi-3-Mini [1], via program of thought (PoT).
ColBERT [100] Fetch retrieval documents for SLMs to answer complex domain-

specific questions.
T-SAS [139] Enhance SLMs adaptability with self-generated pseudo labels.
Rationale Ranking [114] For OOD questions, generate intermediate reasoning steps or

rationales.

SLM in Coding

Phi-3.5-mini [1] New addition to the Phi-3 series and focus on high-quality,
reasoning-dense data.

TinyLlama [382] A transformer model with 1.1 billion parameters, has been trained
from scratch on a massive corpus of 3 trillion tokens.

CodeLlama [260] A derivative of Llama 2, undergo a rigorous fine-tuning process
on domain-specific datasets

CodeGemma [294] Stemming from Google DeepMind’s Gemma framework, also ex-
hibit a focused approach to enhancing coding capabilities through
fine-tuning.

SLM in Recom-
mendation

PromptRec [338] Training on prompt templates
SLIM [327] Step-by-step Knowledge Distillation
BiLLP [273] LLaMa-2-7B as planner and reflector
ONCE [191] LLaMa-2-7B as Content Encoder
RecLoRA [396] personalized low-rank adaptation

SLM in Web
Search

Content encoder [38, 136, 204] Encode concatenated queries and documents and integrates cor-
relations at character, word, and phrase levels post-output layer.

Ranker [56, 231] Introduce a retrieval framework that identifies candidates, which
are subsequently re-ranked using a specially fine-tuned T5

Rewriter [208] Utilize the "rewrite-retrieve-read" framework to bridge the gap
between queries and needed knowledge by rewriting inputs.

SLM in
Mobile-device

Octopus [44] Calling software APIs via learning in documents
MobileAgent [80] Standard Operating Procedure (SOP)
Revolutionizing Mobile Interaction
[37]

Text-to-action control and tests on 6GB Android devices and 4GB
devices

AutoDroid [333] Interaction based on GUI and APP knowledge injection
On-device Agent for Text Rewriting
[399]

Data Knowledge Distillation from LLMs

of these models introduces challenges such as immense computational requirements, privacy concerns when using
proprietary LLMs, and difficulties in customization. These issues lead researchers and developers to favor small language
models (SLMs) in scenarios that demand efficiency, privacy, and customization. Therefore, we explore methods to
enhance the capabilities of SLMs in QA across three key areas: (i) Instruction Tuning of Generic SLMs for QA, (ii)
Instruction Tuning of Domain-Specific SLMs for QA, and (iii) Enhancing SLMs for Out-of-Domain Questions.

Instruction Tuning Generic SLMs for QA. Despite the Phi series’ impressive question-answering capabilities, the
cost of training with over 3.4T tokens on 512 H100 GPUs for 10 days [1] poses a challenge for many researchers and
developers. Instruction tuning [329] offers a cost-effective alternative fine-tuning method, enhancing small models via
fine-tuning on large foundation models’ outputs. Alpaca 7B [292] tunes Llama 7B [301] using 52k ChatGPT-generated
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examples from 175 seed tasks. In blind tests, the performance of Alpaca 7B matches the LLM text-davinci-003 [33],
winning 90 of 179 comparisons. This behavior cloning is effective in mimicking the style of teacher models. However,
this approach may not improve small model performance for reasoning-intensive QA tasks where accuracy, not style, is
crucial [52]. To counter this, Stable Beluga 7B [212] employs explanation tuning, refining Llama-2 7B [302] on an Orca-
style dataset with explanatory LLM answers to enhance reasoning capabilities. Explanation Tuning extracts detailed
answers from LLMs using system instructions, but effectiveness varies with system instructions, and instructions
that work for larger models like GPT-4 may not suit smaller models. Similarly, SLMs face challenges in identifying
optimal system instructions in various tasks for training that differ from LLMs’. Therefore, Orca 2 [219] proposes a
cautious reasoning SLM training process: (1) starting with diverse tasks, (2) guided by the performance of Orca 1 [223]
to select system instructions, (3) writing task-specific instructions, and (4) employing Prompt Erasing to replace detailed
instructions with generic ones, encouraging models to help SLMs learn not just task solutions but also deeper reasoning
abilities. Orca 2 introduces a new dataset with approximately 817K instances, training on Llama-2-7B or Llama-2-
13B [302] with 32 NVIDIA A100 GPUs over about 70 hours, demonstrating efficient instruction tuning compared to
training from scratch. Evaluation on the ARC-Challenge shows Orac-2-7B achieves 78.41 accuracy, outperforming
Llama-2-Chat-70B (67.66) and close to ChatGPT (84.73), showing that instruction tuning in Orca 2 can rival models 5-10
times its size.

Instruction Tuning Domain SLMs for QA. Beyond instruction tuning for generic SLMs, tuning domain-specific
SLMs is also crucial, as they provide specialized assistance where generic SLMs may underperform. Instruction-tuning
generic SLMs can derive domain SLMs. We summarize some representatives in several domains. (1) In the financial
domain, Phogat et al. [244] transfer financial QA abilities from generic teacher LLMs such as GPT-4 [2] to specialized
student SLMs, such as Phi-3-Mini [1], using datasets including FinQA [48], ConvFinQA [49], and TATQA [395]. They
apply step-wise arithmetic annotation via a program of thought (PoT) [45] prompting, preparing few-shot examples
that cover concept understanding, formula writing, extracting relevant entities, and performing calculations. Incorrect
codes and formats in teacher annotations are removed before fine-tuning SLMs with LoRA [127]. Tests on FinQA show
Phi-Mini closely matches GPT-4’s accuracy (77.59 vs. 77.51 zero-shot and 78.46 few-shot), improving fine-grained
financial QA abilities, especially in concept understanding and entity extraction. (2) In the medical field, Guo et al.
[112] enhance student SLMs, including domain-specific BioGPT (1.6B) [205] and general Llama 7B [301], by fine-tuning
on enriched PubMedQA [146] data. This enhancement is achieved by generating new samples or rewriting existing
ones using teacher LLMs, which include the highly knowledgeable GPT-4 and the relatively weaker ChatGPT. The
best SLM, with under 1.6 billion parameters, achieves 75.4% accuracy, surpassing GPT-4’s 74.4% in few-shot settings
on the PubmedQA test sets. It demonstrates that LLMs effectively refine and diversify question-answer pairs, leading
to enhanced performance in a significantly smaller model after fine-tuning. Additionally, there are three interesting
insights: (i) Direct tests on PubMedQA reveal that BioGPT (1.6B) performs comparably or worse than the larger Llama
7B (0.594 vs 0.63 accuracy, 0.495 vs 0.387 macro-F1). (ii) When fine-tuned on the same PubMedQA training data, BioGPT
(1.6B) notably outperforms Llama 7B, scoring 0.498 to Llama 7B’s 0.463 macro-F1, highlighting that domain knowledge
helps domain SLMs learn faster than general models. (iii) Stronger teacher LLMs improve fine-tuning outcomes. For
example, BioGPT (1.6B) fine-tuned with new QA data from ChatGPT and GPT-4 shows that the latter setup, with a
macro-F1 of 0.520, outperforms the former’s 0.498, indicating that more knowledgeable teachers significantly enhance
SLM specialization. We report the detailed results of comparisons of instruction-tuned domain-specific language models
(SLMs) for QA and larger language models on FinQA [48] and PubMedQA [146], as shown in Table 5.

Manuscript submitted to ACM



24 Fali Wang, et al.

Table 5. Comparison of instruction-tuned domain SLMs for QA and LLMs on FinQA [48] and PubMedQA [146].

Model Size Task Name Shot Type Accuracy (%)
GPT-4 [2] - FinQA Zero-shot 77.5

Phi-3-Mini [1] 2.7B FinQA Zero-shot 77.6
Meditron-70B [47] 70B PubMedQA Zero-shot 81.6

RankRAG-llama3-70B [367] 70B PubMedQA Zero-shot 79.8
Flan-PaLM [277] 540B PubMedQA Few-shot 79.0
GAL 120B [293] 120B PubMedQA Zero-shot 77.6
Flan-PaLM [277] 62B PubMedQA Few-shot 77.2
BioGPT [205] 345M PubMedQA Zero-shot 78.2

BioGPT-Large [205] 1.5B PubMedQA Zero-shot 81.0

Enhancing SLMs for Out-of-Domain Questions. One of the major advantages of LLMs is their strong compre-
hension and logical reasoning abilities, which SLMs often struggle to match due to their limited parameters, especially
when handling unseen or out-of-domain questions. Various methods have been developed to address this limitation,
including Chain-of-Thought (CoT) prompting, Retrieval-Augmented Generation (RAG), and self-adaptive techniques.
We categorize these techniques into the following groups:

(1) Retrieval-Augmented Generation (RAG): Incorporating External Knowledge for Domain-Specific QA Retrieval-
augmented generation (RAG) addresses out-of-domain (OOD) questions by integrating external knowledge during
inference, allowing models to access information beyond their pre-trained parameters. By retrieving relevant
documents in real time, RAG enables small language models to provide accurate answers on specialized topics. In
the telecommunications domain, Gichamba et al. [100] use ColBERT as a dense retrieval system to fetch documents
from technical datasets. By encoding queries and documents separately, ColBERT computes relevance scores,
helping small models like Phi-2 and Falcon-7B retrieve precise technical information to answer complex telecom-
related queries. Hartill et al. [115] propose an approach combining multi-task pre-training with dense retrieval
for compositional questions. The model decomposes complex, multi-hop queries and retrieves evidence from
external sources, showing improved performance on benchmarks like CommonsenseQA [288] and ARC-DA [58].
EffiChainQA [259] introduces a chain-of-reasoning framework that enhances reasoning in open-domain QA through
retrieval and question decomposition. By breaking down queries and retrieving documents using a retriever fine-
tuned on HotpotQA [360], EffiChainQA achieves performance comparable to state-of-the-art models on datasets
like HotpotQA, demonstrating the efficacy of SLMs in managing complex tasks with lower computational costs.

(2) Self-Adaptive Techniques: Enhancing Model Adaptability with Self-Generated Pseudo Labels Despite LMs’ capacity
to store extensive general knowledge applicable across various tasks, they often exhibit suboptimal performance
when transferring and adapting this knowledge to specific downstream tasks. Fine-tuning, while effective, can
be impractical in realistic scenarios where labeled datasets are scarce. To overcome this, self-adaptive techniques
employ self-generated pseudo labels to activate specific aspects of the target tasks, thereby enhancing model
adaptability [276, 309]. Jeong et al. [139] introduce Test-time Self-Adaptive Small LMs (T-SAS), a framework for
SLMs that first stochastically generates multiple answers for an unlabeled question. The most plausible answer is
then selected via majority voting to enhance pseudo-label accuracy, and samples with low agreement are filtered out.
Evaluated on QA datasets like Natural Questions [159], TriviaQA [147], and SQuAD [253], T-SAS shows improved
model adaptability. For example, on the SQuAD dataset, Flan-T5 base (250M) [57] attains a 63.02 EM score, nearly
matching the 69.94 score achieved by the fine-tuned Flan-T5 base with a training set.
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(3) Chain-of-Thought (CoT) Prompting: Generating Intermediate Reasoning Steps Chain-of-thought (CoT) prompting
enhances small language models’ ability to handle out-of-domain (OOD) questions by encouraging them to generate
intermediate reasoning steps. By articulating step-by-step thinking, CoT enables models to navigate unfamiliar
topics more effectively and arrive at accurate answers. Rationale Ranking [114] propose to use an SLM that generates
intermediate reasoning steps, or rationales, to provide answers grounded in evidence. By generating and ranking
these rationales, the SLM supports its answers with a clear chain of reasoning, reducing the risk of hallucination
when faced with unfamiliar or out-of-domain questions. Rationale ranking further enhances this process by scoring
the generated rationales based on relevance and truthfulness. This ranking allows the model to prioritize the
best rationale and improve accuracy. Together, these techniques ensure the model delivers reliable answers by
systematically selecting the most appropriate reasoning pathway, even when encountering unfamiliar queries.

Comparison between LLMs and SLMs for QA.When comparing LLMs like GPT-4 [2] or BLOOM-175B [162]
with fine-tuned SLMs in QA tasks, the benefits of SLMs are clear. LLMs, while versatile across multiple domains due to
extensive pre-training, are computationally demanding, making them less ideal for resource-limited settings. SLMs,
however, when fine-tuned for specific domains, often match or exceed the performance of larger models within those
specialties. The trade-off is between scale and specialization: LLMs handle diverse domains but may need additional
techniques like Retrieval-Augmented Generation (RAG) for domain-specific queries. In contrast, domain-specific SLMs,
though less flexible, provide higher accuracy and more relevant responses, making them ideal for edge deployments
where computational resources are scarce but domain precision is crucial.

4.1.2 SLM Applications in Coding. The adoption of SLMs for coding offers an alternative to LLMs due to their lower
computational needs and potential for domain-specific tuning. Despite LLMs’ proficiency in code generation and
programming support, SLMs are advantageous for their faster inference, reduced operational costs, and suitability
for real-time environments where rapid responses are crucial. Representative works are discussed next. The Phi
series [1, 138, 178] showcase SLMs’ evolution in coding tasks. For instance, Phi-1 [107], a Transformer with 1.3 billion
parameters, specializes in basic Python coding and achieves notable scores in benchmarks such as HumanEval [107],
which includes 164 programming problems. Subsequent models, Phi-1.5 and Phi-2, have enhanced these capabilities,
while Phi-3 demonstrated SLMs’ potential to rival larger models [1]. The latest model, Phi-3.5-mini, with 3.8 billion
parameters, excels in long context tasks using advanced fine-tuning and optimization techniques, performing comparably
to larger models such as Llama-3.1-8B-instruct [84] and surpassing smaller ones like Gemma-2 [296].

Another avenue of development is the fine-tuning of general-purpose SLMs for coding tasks [21, 108, 203, 260,
294]. For instance, CodeLlama models [260], derivatives of Llama 2 [302], undergo a rigorous fine-tuning process on
domain-specific datasets, enhancing their proficiency in specific programming languages such as Python. They are
trained to handle tasks such as syntax error detection, code suggestion, and infilling, where they learn to predict and
complete missing parts of the code. This specialized fine-tuning improves their ability to interpret and execute detailed
programming instructions, making them highly effective in real-time code editing environments [260]. CodeGemma
models [294], stemming from Google DeepMind’s Gemma framework, also exhibit a focused approach to enhancing
coding capabilities through fine-tuning. These models are specifically engineered for high-performance code generation
and infilling, underpinned by extensive training on a vast corpus of over 500 billion to 1 trillion tokens, predominantly
consisting of code. This comprehensive dataset enables CodeGemma models to excel in mathematical reasoning and
complex problem-solving within code contexts, setting new benchmarks in latency-sensitive applications such as
real-time IDE support and automated code reviews [294].
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Table 6. Performance comparison between SLMs
and LLMs in coding benchmarks. All models
listed are chat or instruct versions, and perfor-
mance are sourced from respective research pa-
pers or technical reports [84, 108, 260, 294, 305].

Model Size HumanEval MBPP

DeepSeek-Coder [108] 1.3B 65.2 49.4
CodeGemma [294] 2B 37.8 49.2
Gemma 2 [296] 2B 17.7 40.2
Phi-3.5-mini [305] 3.8B 62.8 69.6

DeepSeek-Coder [108] 6.7B 78.6 65.4
CodeGemma [294] 7B 60.4 55.2
Llama 3.1 [84] 8B 66.5 69.4
Gemma 2 [296] 9B 61.0 69.3
GPT-3.5 Turbo - 68.0 71.2

DeepSeek-Coder [108] 33B 79.3 70.0
Llama 3.1 [84] 70B 80.5 75.4
Llama 3.1 [84] 405B 89.0 78.8
GPT-4o OpenAI [234] - 90.2 81.4
Claude 3.5 Sonnet [14] - 92.0 76.6

Comparison between SLMs and LLMs on Coding. Table 6 provides
a comparative analysis of SLMs and LLMs on coding benchmarks Hu-
manEval [42] and MBPP [18]. Insights include: (i) Small SLMs (1.3B - 3.8B
Parameters) like Phi-3.5-mini [305] achieve high scores, demonstrating
the efficacy of small models. Mid-sized SLMs (6.7B - 9B Parameters), such
as DeepSeek-Coder 6.7B [108] and Llama 3.1 8B [84], show improved
performance, indicating that larger model sizes and enhanced training
contribute to better accuracy. Large models (33B and above) like Llama
3.1 405B [84], GPT-4o [234], and Claude 3.5 Sonnet [14] excel, supporting
the idea that bigger models generalize better across diverse coding tasks;
(ii) There’s a notable trade-off between computational efficiency and
performance, with larger models requiring more resources, impacting
their practical deployment in constrained environments; (iii) Specialized
training and fine-tuning, as used in models like DeepSeek-Coder [108],
are crucial for excelling in coding tasks, though such models may not
handle complex requests as effectively, highlighting the versatility of general SLMs for broader applications.

4.1.3 SLMApplications in Recommender Systems. Recommender systems are essential in various online services, helping
to manage information overload and meet users’ needs. SLMs enhance recommendation systems by (1) addressing
the cold start problem; (2) reducing popularity bias; (3) improving long-term planning; (4) serving as personalized
recommenders; and (5) acting as content encoders. These applications show the versatility and effectiveness of SLMs in
boosting performance and personalization in recommendation. Next, we introduce the details.

SLM for System Cold Start Problem. Traditional recommendation systems, which utilize historical user-item
interactions like clicks, purchases, and ratings to learn representations and match items to users, fail in scenarios lacking
any user-item interactions, known as the cold-start recommendation problem, often occurring in start-up businesses
[256]. Although LLMs address this with in-context learning, their slow and costly inference restricts real-time use. Thus,
PromptRec [338] explores using SLMs as in-context recommenders for recommendation system cold-start problems.
However, SLMs often struggle without emergent context-learning abilities. To overcome this, SLMs are enhanced by
pre-training on relevant corpora measured by mutual information between documents and user-item interactions, using
a C4 corpus subset [250], and by developing training prompts for different domains, enhancing cold-start performance.
Results show that enhanced SLMs like BERT-mini [77], with 11.3M parameters, achieve BERT-large’s performance in
cold-start scenarios, with only 17% of BERT-large’s inference time. Similarly, many studies have addressed the cold-start
problem by leveraging BERT [119, 232, 384, 400]. For example, ADLRS [119] employs BERT to convert web-crawled item
profiles into vectors that highlight key aspects, aiding recommender systems in acquiring essential initial information.

Recent studies have employed LLMs to address the cold-start problem. For instance, Sanner et al. [263] uses PaLM
62B [55] with prompts to infer preferences for cold users based on their textual profiles, LLM Interaction Simulator
(LLM-InS) [130] uses Llama 2 (size unspecified) to simulate interactions and generate user interaction sets for cold
items, enabling simultaneous training of cold and warm items to bridge their embedding gap, and Wang et al. [317]
applies PaLM to determine user preferences for cold-start items from textual descriptions of users’ historical behaviors
and new item descriptions. Despite the limited exploration of SLMs in the LLM era for recommendation cold-start
problems, researching them is worthwhile due to their enhanced in-context learning capabilities and small size.
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SLM for Mitigating Popularity Bias. Popularity bias in recommender systems, characterized by a discrepancy
between item popularity in training datasets and the open world, often arises from training on closed-loop datasets
that contain narrow and fixed information. Recent LLMs utilize their expansive open-world knowledge to enhance
reasoning about user-item interactions [183, 191], thereby mitigating this bias by enriching the inputs to recommenders
with more comprehensive item information. However, the substantial resource demands of LLMs limit their practical
application. To address this challenge, the Step-by-step Knowledge Distillation Framework for Recommendation (SLIM)
[327] distills the reasoning capabilities of LLMs into smaller language models (SLMs), retaining only 4% of the original
parameters—specifically transitioning fromChatGPT to Llama 7B [301]. SLIM employs streamlined templates to facilitate
this transfer, enabling SLMs to bolster recommender systems by incorporating additional item information. Evaluations
across three Amazon review categories—games, food, and home—demonstrate that SLIM not only maintains high
recommendation quality but also effectively reduces popularity bias, all while significantly lowering operational costs.

SLM for Long-termPlanning. Traditional recommendation systems primarily focus on optimizing users’ immediate
responses, often maximizing short-term benefits but neglecting long-term engagement, leading to issues like confining
users within an echo chamber of preferred information and filter bubbles [96, 326]. To address this, it is crucial to
integrate planning abilities into recommendations to consider both immediate and long-term outcomes. Language
models, with their world knowledge and reasoning abilities, are anticipated to offer powerful planning capabilities.
BiLLP [273] introduces a hierarchical learning approach with macro-learning and micro-learning phases. Macro-
learning involves a Planner and a Reflector, both implemented as SLM instances such as Llama-2-7B [302]. The Planner
uses high-level experiences to create long-term plans, while the Reflector updates the Planner by reflecting on past
actions. Micro-learning employs an SLM-based Actor-Critic mechanism for personalized planning, where the Actor
converts plans into actions and the Critic evaluates the actions for long-term benefits. Similar to SLMs for cold-start
problems, the use of SLMs for long-term planning is also underexplored and merits further investigation.
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Fig. 12. The illustration of lifelong behavior sequence
and personalized low-rank adaption (LoRA) for rec-
ommendation [396].

SLMs as a Personalized Recommender. Generative language
model-based recommender systems require integrating user knowl-
edge, typically achieved through fine-tuning. Fine-tuning techniques
like LoRA [127] can incorporate extensive knowledge across all users
by training an external module with a small number of parameters A
and B, but this approach often overlooks individual user preferences.
To address this, RecLoRA [396] utilizes Vicuna-7B [53] to integrate
personalized knowledge into SLMs/LLMs tailored for recommenda-
tion tasks, as illustrated in Figure 12. Specifically, RecLoRA maintains
a set of parallel, independent LoRA weights (A𝑖 ,B𝑖 ), allowing for
the customization of language model parameters to match individual
user preferences more effectively.

SLM as Content Encoder. Language models, particularly when deep, provide an effective starting point for fine-
tuning on downstream tasks. In news recommendation systems, the representational capability of a model significantly
impacts performance. Consequently, many news recommender systems now employ language models fine-tuned on
specific datasets as text encoders. For example, Wu et al. [335] conducts pioneering work using a pre-trained language
model to enhance large-scale news recommender systems by substituting traditional news encoders with a BERT model
[77]. While models such as BERT [77] may struggle to capture essential content when pre-trained on limited data, more
versatile LMs such as Llama-2-7B [302] enhance text descriptions and demonstrate improvements in recommendation
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Fig. 13. Roles of SLM in Web Search.

performance through advanced embedding techniques. ONCE [191] propose using Llama-2-7B [302] as an encoder to
overcome the limitations of BERT in content-based recommendations. Additionally, the study explores the synergistic
use of LLMs such as ChatGPT in recommendation systems, finding that SLMs optimized with LoRA [127] outperform
the recommendation results of systems assisted by generic LLMs such as ChatGPT.

4.1.4 SLM Applications in Web Search. Web search systems, involving retrieval and ranking, face challenges due to
the diverse web documents and search queries. Traditional keyword-matching methods often fall short because of
phrasing variations and the long-tail distribution of queries and content, complicating accurate semantic inference.
Effective integration of retrieval and ranking models is also crucial. Language models, serving as content encoders,
help overcome semantic challenges through their deep language understanding from pre-training [56, 82, 318]. Joint
training of retrieval and ranking models addresses integration, with SLMs ranking retrieved documents and acting as
re-rankers. Additionally, SLMs serve as rewriters in scenarios requiring enhanced query understanding. Thus, in web
search, SLMs fulfill three roles: content encoder [38, 136, 204], ranker [56, 231], and rewriter [208], as depicted in Figure
13. Next, we give details.

SLM as a Content Encoder. Text embeddings are vector representations of natural language that encode semantic
information, widely used in retrieval. SLM-based embedding retrieval, also known as dense retrieval, leverages deep lan-
guage understanding from pre-training to effectively address semantic challenges.H-ERNIE [56] features a hierarchical
model structure that encodes both the query and the document at various levels of granularity, such as character, word,
and phrase. This design addresses the ambiguous model understanding in web searches, exemplified by a search query
for "red panda" returning results related to "panda." The model includes an aggregation module that collects information
from finer-grained layers to construct the coarser-grained layers, enhancing the specificity and relevance of search
results. Implicit Interaction (𝐼3) [82] uses BERT [77] as a content encoder, generating implicit pseudo-queries from
passages to enable high online efficiency with offline caching of passage vectors. Similarly, Zou et al. [402] employs
BERT and ERNIE as encoders, adapting them for integration into retrieval systems through techniques like fine-tuning
for doc-query similarity tasks. To improve online service responsiveness, they suggest using knowledge distillation to
create lightweight service ranking models that preserve effectiveness while meeting latency demands.

However, ERNIE and BERT-style models overlook advancements in SLMs like context length extension. Thus, Wang
et al. [318] employs the improved Mistral-7B [143] and fine-tunes it on synthetic data across 93 languages generated
by GPT-4 [2] to enhance embeddings. These enhanced embeddings show competitive performance on the BEIR [298]
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and MTEB [222] benchmarks, improving by a notable margin (+2%). They also effectively handle personalized passkey
retrieval for inputs up to 32k tokens by modifying the rotation base of position embeddings, extending the context well
beyond the usual 512-token limit. Peng et al. [241] employs LLaMa-7B [301] and Vicuna-7B [53] as semantic encoders for
embedding retrieval, demonstrating improved performance through soft prompt tuning. CoCondenser [98] addresses
sensitivity to noisy data and large batch requirements during dense retriever training. Using the Condenser architecture
with Transformer blocks, the model condenses information into dense vectors effectively. CoCondenser applies an
unsupervised contrastive loss, minimizing data manipulation and batch size needs. Tests on MS-MARCO [22], Natural
Questions [159], and Trivia QA [147] demonstrate its robustness and efficacy.

SLM as a Ranker. The reranking task, the following retrieval, improves the order of multiple candidates to enhance
retrieval quality because rerankers are more accurate than embedding retrievers. InPars (Inquisitive Parrots for
Search) [32] introduces a retrieval framework that employs the T5 base 220M [250] as a re-ranker to enhance the
BM25 retriever [258]. Initially, BM25 selects 1,000 candidates, which are then re-ranked using a fine-tuned T5 model,
called monoT5. This T5 model is adapted as a binary classifier to predict the relevance of a document to a query. The
training data, generated by GPT-3 [33], creates queries for specific documents and selects negative examples randomly.
Experimental results demonstrate that this specifically fine-tuned SLM-enhanced retriever significantly outperforms
the version utilizing GPT-3 [33]. For instance, performance on the TREC-DL 2020 dataset [63] shows that retrieval with
monoT5-220M achieves a 0.3599 MAP score, surpassing that of GPT-3 (175B), which scores 0.3163.

SLM as a Rewriter. The query to the retriever, often in the form of several keywords, may expose a knowledge
gap between the actual query and the knowledge required for effective querying, limiting retrieval performance. For
instance, in the retrieval-augmented generation, this gap places a burden on prompt engineering to the downstream
LLMs. To address this, the "rewrite-retrieve-read" framework [208] employs T5-large [250] as a rewriter to bridge the
gap between queries and necessary knowledge by rewriting inputs. A specialized, trainable language model, known
as the "rewriter," is used for this task. It is trained via reinforcement learning, with downstream LLM performance as
a reward, to better adapt queries for downstream tasks. Experimental results show that this trainable SLM rewriter
exceeds the performance of general LLM rewrites. For example, on HotpotQA, the rewrite-retrieve-read framework
achieves a 45.97 F1 score, surpassing the generic LLM’s 43.85 F1 score.

4.1.5 SLM Applications in Mobile-device. The use of cloud-based LLMs on devices has raised privacy concerns, with
their large size limiting practicality on mobile devices and hindering real-time responses in urgent scenarios such as
medical emergencies. To address these limitations, researchers are developing smaller, domain-specific models that
deliver accurate results, making SLMs a viable alternative. This subsection introduces SLM applications on mobile
devices, categorizing works into three aspects: software API calls, mobile control, and basic NLP applications on devices.

SLM for Software API Call. Integrating LLMs with external APIs enhances their capabilities by accessing up-
to-date information and specialized functionalities, but fine-tuning them for API calls incurs significant training
costs. Consequently, there is a trend toward developing smaller, task-specific language models that preserve essential
functionality while reducing training costs. Nonetheless, these smaller models pose increased risks of errors and
precision issues, which are critical for solving various tasks. In response, Octopus [44] crafts a diverse dataset from
over 30,000 widely-used APIs and implements curriculum learning strategies [194] to enhance accuracy in selecting
the appropriate API functions. This approach has been applied in models such as Codellama-7b [260] and Google’s
Gemma series [295], significantly improving API call performance. For instance, Octopus-gemma2B achieves a function
accuracy of 93% compared to ChatGPT’s 50% and closely approaches GPT-4’s 96% on their crafted dataset.
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Fig. 14. An example workflow for an automated execution tool [80]. The
screenshot in the left is taken from [80].

SLM for Mobile Control. LLM agents facil-
itate user-device interactions through taps, ges-
tures, and text, automating tasks and enhancing
user hands-free convenience. Unlike traditional
developer-based approaches that require extensive
developer effort to design interfaces and trans-
late commands into API calls, LLMs offer scal-
able automation via GUI-based text contents.Mo-
bileAgent [80] integrates instructions and Stan-
dard Operating Procedures (SOP) to enhance SLM
performance in mobile control applications. An ex-
ample, as shown in Figure 14, begins with the AI
agent receiving a goal, such as booking a dental
appointment. It analyzes the mobile screen and query, processes prior actions and environmental factors like UI
elements, and forms a prompt. The agent then generates an output—choosing an appointment—and executes actions by
identifying relevant UI elements on the mobile interface, such as text and XPath. They fine-tune the Qwen-7B model [21]
on a dataset from the AIA medical application, evaluating it on the AitW benchmark [257], where it demonstrates
superior performance to GPT-4 [2] without additional inference costs. AitW is recognized for its relevance in mobile
operations. Carreira et al. [37] addresses privacy and latency concerns of LLMs by running a small model offline on
mobile devices. This model, fine-tuned with data generated by ChatGPT-3.5, achieves text-to-action capabilities for
tasks such as making calls and conducting web searches. The RedPajama-INCITE-Chat-3B-v1 1 model is chosen for its
size and chatting capabilities, employing native code and model quantization techniques. Despite hardware constraints,
it delivers adequate performance on 6GB Android devices and operates on 4GB devices.

Fig. 15. An illustration of Vicuna-7B-powered mobile task automa-
tion [37] shows a user asking to be reminded about doing laundry
on Aug 17. The figure is taken from [37].

AutoDroid [333] is developed to enhance Android
app interactions through a GUI. Figure 15 shows an ex-
ample of LLM-powered mobile task automation [37] that
a user asking to be reminded about doing laundry on
Aug 17. The process involves four steps: (1) clicking ’New
Event’, (2) entering ’laundry’ in the ’Title’ field, (3) click-
ing ’Save’, and (4) completing the task. The agent uses the
phone GUI, guided by Vicuna-7B and the app’s domain
knowledge, to complete the task. AutoDroid dynamically
integrates SLM-derived commonsense and app-specific
knowledge, using it to generate privacy-filtered prompts that drive app interactions based on user commands. Its
effectiveness is validated on the proposed DroidTask benchmark, showcasing superior performance over GPT-3.5
and GPT-4 [2]. For example, their Vicuna-7B AutoDroid achieves 57.7%, outperforming ChatGPT’s 34.7% and GPT-4’s
54.5% [2]. These studies illustrate the potential of customizing smaller, domain-specific SLMs in mobile environments,
addressing traditional memory limitations while maintaining essential functionalities.

1https://huggingface.co/togethercomputer/RedPajama-INCITE-Chat-3B-v1
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Fig. 16. Overview of the framework for fine-tuning LLMs using
synthesized and user-generated data [247]. Fine-tune LLMs using
data from data selection and following data generation. The pro-
cess involves Data Synthesis, where prompts are used to generate
semantically similar text, creating new dialogue sets. Data Selec-
tion follows, where user-generated data is processed, and tagged
with domain labels, and metrics such as EOE, DSS, and IDD are
calculated. The selected data is used to fine-tune the LLM, with
user annotations guiding the process. The framework continuously
refines LLMs based on this iterative data generation and selection.

SLM for Basic NLP Applications on Devices To
enable personalization on mobile devices while ensuring
privacy, performing basic NLP tasks such as text rewriting
directly on the device is essential, avoiding data transfer
to the cloud. Qin et al. [247] introduces a framework that
utilizes self-supervised data selection and synthesis for
on-device fine-tuning, leveraging sparse annotations and
limited storage effectively. This approach, demonstrated
in Figure 16, employs the Llama-3B model [301] and the
LoRA fine-tuning method [127], enhancing personaliza-
tion by efficiently managing data through metrics like
embedding entropy and domain-specific scores. In ad-
dressing mobile text rewriting, Zhu et al. [399] train the
compact Palm 2-XXS model [13] using data generated by
the larger Palm 2-L to ensure user privacy and accommo-
date device constraints. Their new evaluation benchmark,
MESSAGEREWRITEEVAL, demonstrates that this mobile
model surpasses the performance of traditional LLMs
such as LLaMA [301] and Alpaca-7B [292]. For example,
the BLEU score of the proposed SFT Palm 2-XXS is 34.59,
outperforming the 16.65 achieved by LLaMa 7B [301]. Performance benchmarks on devices like the Samsung S23
and Pixel 7 Pro show significantly lower latency (36.2ms and 59.8ms, respectively) compared to tests conducted on
a MacBook M1 Pro with a 4-bit quantized Llama 7B model (18-22 tokens/second), validating the effectiveness and
practicality of this mobile-centric approach in text rewriting tasks.

Insights:We draw several key insights from the development of task-specific SLMs:

• There is considerable potential in enhancing the efficiency and effectiveness of small models by integrating
self-adaptive techniques with further fine-tuning and optimization of RAG-based methods.

• The growing relevance of SLMs in coding highlights their cost-effectiveness and efficiency as alternatives to
LLMs, providing quick processing and easy fine-tuning for specialized tasks; while LLMs handle complex
tasks well, SLMs, optimized and fine-tuned on specific data, are increasingly essential in resource-limited
settings.

• SLMs significantly enhance recommendation systems due to their robust generalization, reasoning abilities,
and in-context learning, addressing key challenges such as cold-start problems and distribution biases. They
support long-term planning, replace traditional encoders, and use parallel low-rank parameters to inject
personalized user knowledge effectively.

• SLMs play a crucial role in web search such as document encoding, text reordering, and query rewriting, often
outperforming LLMs through techniques such as supervised fine-tuning, soft prompt tuning, unsupervised
contrastive loss, and reinforcement learning, thereby enhancing adaptability and efficiency.
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• SLMs are utilized on mobile devices primarily for privacy and memory constraints, with applications in
API calls and mobile control; they are typically developed by generating data with LLMs and fine-tuning
with SLMs, or by using local SLMs to handle privacy with LLMs boosting performance, and their training
involves innovative techniques like learning from data streams and managing non-IID time series data.

Table 7. On-device Deployment Optimization Techniques

Aspect Representative Work Key Point

Memory
Efficiency
Optimization

EDGE-LLM [368] Edge LLMs use LUC and adaptive tuning for efficiency
LLM-PQ [390] Optimize quantization and layer partitioning for complex setups.
AWQ [184] Preserve keyweights based on activation distribution, not weight distribution
MobileAIBench [225] Evaluation
MobileLLM [199] Evaluation
EdgeMoE [364] Load experts on activation, tripling memory savings.
GEAR [148] Enhance KV cache quantization by integrating error-reduction techniques.
DMC [228] Adaptively compress KV cache, optimizing storage efficiency.
Transformer-Lite [171] Optimize KV cache to reduce redundancy and memory use.
LLMaaS [365] LLMaaS manages apps via chunk-wise KV cache optimization on mobiles.

Runtime
Efficiency
Optimization

EdgeMoE [364] Predict expert needs, boosting inference speed and reducing latency.
LLMCad [348] Use SLM for fast token generation and cloud verification.
LinguaLinked [389] Optimize data flow and load, enhancing multi-threading efficiency.

4.2 SLM Deployment on Mobile and Edge Devices

On-device applications benefit uniquely from the memory-saving efficiency and rapid runtime performance of SLMs,
which offer advantages over LLMs. However, devices with extremely limited resources may still struggle with the
parameter sizes of SLMs. To ensure both memory and runtime remain within acceptable range while still maintaining
performance, it is crucial to integrate technologies that facilitate the deployment of SLMs on resource-constrained
devices. The primary challenge for memory-efficient technologies arises from the inherent size of the SLMs and their
associated caches. To address this, we survey existing works focused on compressing SLMs and their caches. Additionally,
the large size of models significantly impacts runtime efficiency due to the extensive computing workload and potential
weight transfers between the memory buffer and RAM/GPU memory. Other challenges include switching the Mixture
of Experts between CPU and GPU memory and managing resource scheduling when deploying SLMs across multiple
local devices. Therefore, in this subsection, we review representative works that address these challenges under two
aspects: memory efficiency optimization and runtime efficiency optimization, as systematically compiled in Table 7.

4.2.1 Memory Efficiency Optimization. Memory efficiency involves minimizing the memory usage of both the model
and the KV cache during deployment. This is typically achieved through model compression techniques such as
quantization [184, 251, 368, 390], the cache of MoE experts [364], and KV cache compression [148].

Quantization.Quantization, a prevalent and efficient approach in designing and deploying SLMs, reduces themodel’s
numerical precision to significantly save memory while maintaining accuracy. We outline quantization strategies in
Sections 2.3.3 and 3.5. Here we focus on representative quantization works related to edge devices and their evaluations
of memory usage. Regarding quantization works related to edge devices, the EDGE-LLM framework [368] adapts
LLMs for edge devices using a Layer-wise Unified Compression (LUC) method that combines layer-specific pruning and
quantization to reduce computational demands and an Adaptive Layer Tuning and Voting scheme to optimize memory
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use while ensuring performance. Meanwhile, LLM-PQ [390] addresses quantization and model layer partitioning for
heterogeneous clusters, incorporating a Cost Model and an Indicator Generator to optimize bit-width assignment and
layer partitioning through integer linear programming, enhancing quantization for complex computational setups.
Activation-aware Weight Quantization (AWQ) [184] is a hardware-friendly, low-bit, weight-only quantization
method for on-device LLMs that preserves key weights based on activation distribution, not weight distribution, to
minimize quantization loss. AWQ uses per-channel scaling to optimize quantization error reduction without relying on
backpropagation, thus maintaining LLMs’ generalization across different domains and modalities without overfitting.

Regarding the quantization evaluations of memory usage, MobileAIBench [225] evaluates the impact of different
quantization levels, including 3-bit, 4-bit, 8-bit, and 16-bit, on large language and multimodal models on iPhone 14.
Firstly, it shows that quantization can significantly reduce disk usage while maintaining performance, e.g., Llama 2 7B’s
disk usage decreases from 13 GB at 16-bit to 3.6 GB at 4-bit, while the F1 score in HotpotQA [360] only drops from 0.21
to 0.198. Secondly, while 4-bit quantization generally preserves effective performance, reducing to 3-bit significantly
impairs model accuracy. For instance, Mobile-VLM-1.7B [337] shows a marked decrease in accuracy on the VQA-v2
[103] benchmark, dropping from 0.622 at 16-bit to 0.607 at 4-bit, and plummeting to 0.076 at 3-bit. This highlights
that while more aggressive quantization levels can yield greater memory savings, they may drastically reduce model
accuracy. Rahman et al. [251] evaluates MobileBERT [286] on Raspberry Pi 3B edge devices using TensorFlow-Lite at
8-bit, 16-bit, and 32-bit quantizations. The evaluation uses crafted tweet data and a reputation polarity classification task.
Results show 32-bit consumes 74.9 W/sample with 1.66s latency, while 8-bit reduces consumption to 47.49 W/sample
and latency to 1.06s. Accuracy is nearly identical, at 0.685 for 32-bit and 0.684 for 8-bit. Memory usage is 64.1% for 32-bit
and 66.1% for 8-bit. Quantization significantly reduces latency and energy consumption by approximately 1.5 times
while maintaining performance levels. However, memory usage is not optimized due to the need for dequantization
during inference. MobileLLM [199] applies quantization to its MobileLLM and MobileLLM-LS models, which have 125M
and 350M parameters respectively, resulting in a modest accuracy reduction of less than 0.5 points.

Cache of MoE Experts. Beyond standard quantization, which reduces storage for all model parameters, another
strategy involves caching a mixture of experts (MoE). Driven by the fact that memory storage is more cost-effective and
scalable than computing capacity, the MoE architecture [137] boosts performance while minimizing computational
costs by activating only portions of the LLM as needed. However, this approach incurs significant memory overhead,
making it impractical for edge device memory constraints. For example, Switch Transformers [89], with 32 experts per
layer, require 54GBs of memory for inference, exceeding the capacity of most edge devices. Yi et al. [364] notes that in
the Switch Transformers model, although most of the model weights (86.5%) are attributed to experts, these weights
account for only a small fraction (26.4%) of the computations. To address this, EdgeMoE [364] introduces a method
where experts are loaded into an expert memory buffer only when activated, achieving approximately 3× memory
savings compared to the baseline where all weights are held in memory.

KV Cache Compression. When serving LMs for inference, using a KV cache is common practice to avoid intensive
recalculations and speed up generation [245]. However, cache memory consumption escalates with model size and
sequence length, posing a challenge for edge devices. To manage this, offloading techniques transfer KV caches to CPU
memory or storage [11, 272], although this can introduce significant overhead due to the switching costs between GPUs
and CPUs. An alternative approach, token dropping, compresses the cache size by retaining only the most important
tokens, based on the commonly low attention scores [99, 197, 387]. Yet, such methods struggle with complex tasks
requiring long responses or chain-of-thought (CoT) reasoning, as performance declines at high compression levels due
to increased estimation errors—the disparity between the original and compressed KV values. To address these issues,
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GEAR [148] enhances KV cache quantization by integrating error-reduction techniques. This approach includes: (i)
quantizing the majority of caches of similar magnitudes to ultra-low precision, (ii) using a low-rank matrix to efficiently
approximate the quantization residuals, and (iii) employing a sparse matrix for a negligible ratio of entries of large
magnitudes to correct individual errors from outliers. This composite approximation strategy separates the coherent
from the incoherent parts of the approximation error: the low-rank matrix captures the majority of the coherent basis
of the quantization error, while the sparse matrix addresses the inconsistencies present in individual outliers. This
optimization enables near-lossless KV cache compression, achieving a peak memory reduction of up to 2.29×. Dynamic
Memory Compression (DMC) [228] adaptively compresses the KV cache by choosing either to add the current
key and value representations directly to the cache or to blend them with the top item in the cache using a weighted
average. Evaluations on Llama 2 [302] models with 7B, 13B, and 70B parameters demonstrate that DMC enables LLMs
to maintain downstream performance on benchmarks such as MMLU [120] and HumanEval [42] close to that of the
original LLM. For instance, DMC Llama 2 7B with a 4× compression ratio achieves an MMLU accuracy of 43.9, nearly
matching the original model’s 44.6. Besides, Transformer-Lite [171] addresses a specific issue where model inputs
and outputs redundantly store the KV cache twice, significantly increasing memory usage despite the content being
largely identical. To optimize this, they refine KV cache storage by allocating a suitably large tensor for each input KV
cache based on the maximum sequence length required for the inference task. Sub-tensors are then generated from
this main tensor at varying address offsets, serving as model input and output KV caches. This approach allows the
new KV caches to be written directly to the correct locations during model inference, thereby eliminating the need for
additional copying processes. LLMaaS [365] introduces the concept of a Large Language Model as a Service on mobile
devices, enabling LLMs to manage all device applications. LLMaaS proposes LLMS, which uses chunk-wise KV cache
compression and swapping to facilitate context switching across apps within a limited memory budget. By dividing the
KV cache into independently compressed and swapped chunks, LLMS optimally balances device memory use and I/O
bandwidth, outperforming token-level or context-level management.

4.2.2 Runtime Efficiency Optimization. Runtime efficiency involves minimizing inference latency by reducing com-
puting workload, decreasing the transfer of weights between GPU and CPU memory in MoE, and distributing LLM
weights across multiple trusted devices.

Reducing Computing Workload. The goal of decreasing computing workload aligns with enhancing memory
efficiency through methods such as quantization and KV cache compression, as mentioned in the previous section. Less
model weight precision or fewer model weights naturally reduce latency. For example, quantization on an RP 3B device
can achieve an inference time of 1.06 seconds per sample at 8-bit, compared to 1.66 seconds per sample at 32-bit [251].
Additionally, DMC demonstrates that 4× compression can result in a 3.4× acceleration on Llama 2 7B, and on an A100,
the generation of 1K tokens with 3K tokens of context [228].

Beyond quantization and KV cache compression, model collaboration, deploying smaller SLMs on devices with
cloud-based LLM support, enhances runtime efficiency. Large LLMs will increase latency when directly deployed via
mobile engines like llama.cpp due to a large number of computing operations. LLMCad [348] addresses this by using a
real-time, memory-resident SLM for simple tokens such as determiners and punctuation. This SLM generates tokens,
while a larger cloud-based LLM verifies and corrects them, speeding up the process. LLMCad boosts token generation
by up to 9.3×, for instance, by utilizing Llama 2 7B as the memory-resident LLM and Llama 2 13B as the cloud-based
LLM, reducing latency from 16.2 seconds to 3.9 seconds on the Xiaomi Pro during TruthfulQA [185] tasks.
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Reducing MoE Switching Time. To reduce latency in MoE architectures caused by frequently switching experts
in limited device memory, EdgeMoE [364] enhances runtime efficiency by preemptively predicting which expert will be
needed, based on the observed long-tail distribution of unbalanced expert activations. It utilizes a statistical model, built
offline, to estimate expert activation probabilities in transformer layers from previous activations. During inference,
EdgeMoE preemptively loads the most likely needed expert, accelerating inference by 1.11× to 2.78× and significantly
reducing latency. For instance, in a switch transformer model with 8 experts, latency drops from approximately 0.7s to
0.3s, outperforming the baseline method that preloads experts based on hit ratios.

Reducing Latency in Distributed SLMs. Distributing an SLM across smaller devices reduces the need for extensive
model compression while preserving accuracy. However, this approach faces challenges that incur latency such as
managing diverse device capabilities, handling data dependencies between model segments, and adapting to dynamic
resource availability. To address these issues, LinguaLinked [389] addresses these issues by optimizing model assignment
to match device capabilities and minimize data transmission, implementing runtime load balancing to redistribute
tasks and prevent bottlenecks, and enhancing communication for efficient data exchange between segments. With
multi-threading, the system improves, achieving acceleration rates between 1.73× and 2.65× for both quantized and
full-precision models.

Insights:We draw several key insights from the deployment of SLMs:

• Model size remains a bottleneck for both memory and runtime efficiency. A common solution is model
quantization, which reduces model precision to save memory and lessen computing workload, thereby
boosting inference speed [184, 199, 225, 251, 368, 390]. Similarly, KV cache compression also helps achieve
these efficiency gains [148, 171, 228, 365].

• Mixture of Experts (MoE) is commonly used in SLMs to enhance performance using the same computing
resources, but it results in increased memory usage. To address this, only activated experts are loaded into
the memory buffer while the majority are stored cold on disk. However, the cost of switching can slow down
inference. Designing a preemptive expert pre-load strategy could therefore accelerate the inference [364].

• Model collaboration between local SLMs and cloud-based LLMs enhances bothmemory and runtime efficiency
by using smaller models on local devices, which are then verified by cloud LLMs to ensure performance
is maintained. Using SLMs locally reduces memory usage and shortens the inference time from the local
model. However, internet latency and delays in cloud LLM inference can still introduce latency. Verifying
SLM outputs every 𝑁 tokens using LLMs can effectively mitigate this latency [348].

• One deployment approach involves deploying SLMs/LLMs across multiple trusted local devices to maintain
original performance while only loading a fraction of the model weights. However, this method can incur
latency due to varying device capabilities and resource scheduling challenges. To address these issues,
optimizing model assignment to align with device capabilities and minimizing data transmission are effective
strategies [389].

5 GENERIC, TASK-SPECIFIC, AND DOMAIN-SPECIFIC SMALL LANGUAGE MODELS

This section investigates small language models (with fewer than 7 billion parameters) in both general and specific
domains. It details the methods of obtaining these small language models, the datasets, and the evaluation tasks,
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Model Specs
: Meta AI
: 1.23B
: 9/25/2024
: Llama 3.2 Community License
: Commercial and Research use 
: EN, DE, FR, IT, PT, HI, ES, TH
: Text
: Transformer                    
: 16
: 2048
: GQA
: 32
: SiLU
: Shared Embeddings
: TikToken-based
: 128K
: 128256
: Yes
: https://huggingface.co/meta-
llama/Llama-3.2-3B 

Model Specs
Developer
Params
Release Date
License
Intended Use
Language
Input Modality
Architecture
Layer Number 
Hidden Size
Attention
Attention Heads  
Activation
Architectural Tech
Tokenizer
Context length
Vocab Size 
Open Source?
Code

Llama 3.2 1B Model
Dataset Specs
Open Training Dataset?
Training Data
Training Data (tokens)
Data Freshness
Training Specs
Pre-text tasks
Pre-training methods:

Hardware
GPU Hours
Post-training methods:
Evaluation Specs
Benchmark
Motivation
Metric
Performance
Responsibility
Safety
Evaluations

Dataset Specs
: No
: Unk
: 9T
: December 2023
Training Specs
: Knowledge Distillation
: Pruning-based initialization
 KD from Llama 3.1 8B & 70B
: H100-80GB
: 370K
: SFT, RS, DPO
Evaluation Space
: MMLU (English)
: Test Multi-subject Knowledge
: Macro Avg
: 32.2
Ethical Consideration
: Red Teaming, Llama safeguards 
: Red Teaming, CBRNE, 
  Child Safety, Cyber Attacks

Fig. 17. Llama 3.2 1B model card

exploring the techniques for acquiring SLMs through compression, fine-tuning, or training from scratch. Additionally,
we summarize the representative small language models, as detailed in Table 8 and 11.

5.1 Generic-domain SLMs

Overview. “The bigger, the better” dominates LLM development, yet these models struggle with on-device processing
and energy efficiency, which are vital for privacy, customization, and sustainability. Small language models (SLMs),
with fewer parameters, improve computational efficiency in pre-training, fine-tuning, and inference, reducing memory
and energy demands—crucial in resource-limited settings. The localized and compact characteristics of SLMs enhance
privacy, personalization, and response times, making them suitable for low-power edge devices. Therefore, SLMs are
attracting increasing attention, and various models are being developed. Table 8 summarizes current representative
generic-domain 40 SLMs/SLM families. Although all chosen SLMs have similar architectures, they vary in specific
training datasets and techniques, with some datasets not being openly available. Taking the latest Llama 3.2 1Bmodels [7]
in Figure 17 as an example, its parameter size and use of filtered high-quality training data, pruning-based initialization,
knowledge distillation pre-training tasks, and training techniques such as Supervised Fine-Tuning (SFT), Rejection
Sampling (RS), and Direct Preference Optimization (DPO) distinguish it from others.

From Table 8, we observe several trends in component choices for SLMs: (i) Recent SLMs frequently employ Grouped
Query Attention (GQA) in self-attention mechanisms because it can reduce computational complexity. GQA achieves
this by sharing query representations across multiple heads while keeping key and value representations separate.
This approach aligns with the goals of SLM to enhance efficiency without compromising functionality. (ii) SiLU and
SwiGLU are preferred over ReLU as activation functions due to their superior capabilities. SwiGLU’s parameters are
learned during training, allowing the model to dynamically adapt to various tasks and datasets, enhancing its flexibility
and establishing it as a state-of-the-art choice. Conversely, SiLU is favored in small language models mainly for its
computational efficiency, as it introduces no extra parameters. (iii) RMS normalization is more commonly used than
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Table 8. High-level Overview and Training Details of Generic-domain Small Language Models. #Params means Parameter amounts.

Model #Params Date Paradigm Domain Training Datasets Training Techniques

Llama 3.2 2 1B; 3B 2024.9 Pre-train Generic no release (9T tokens) GQA, SiLU, Multilingual Text and code, Shared embedding, Prun-
ing, Distillation, SFT, RLHF, RS, DPO

Qwen 1 [21] 1.8B; 7B; 14B; 72B 2023.12 Pre-train Generic no release MHA; RoPE; SwiGLU; RMSNorm

Qwen 1.5 [21] 0.5B; 1.8B; 4B; 7B;
14B; 32B; 72B

2024.2 Pre-train Generic no release MHA; RoPE; SwiGLU; RMSNorm; Multilingual support

Qwen 2 [352] 0.5B;1.5B; 7B; 57B;
72B

2024.6 Pre-train Generic no release GQA; RoPE; SwiGLU; RMSNorm; Multilingual support

Qwen 2.5 [352] 0.5B; 1.5B; 3B; 7B;
14B; 32B; 72B

2024.9 Pre-train Generic no release GQA; RoPE; SwiGLU; RMSNorm; Multilingual support; Larger
corpus

Gemma [295] 2B; 7B 2024.2 Pre-train Generic Unknown MHA, RoPE, GELUtanh
Gemma 2 [296] 2B; 9B; 27B 2024.7 Pre-train Generic Unknown GQA; RoPE; GELUtanh ; Alternating Local and Global Attention;

Logit Soft-Capping; RMSNorm for Pre and Post-Normalization

H2O-Danube3 [243] 500M; 4B 2024.7 Pre-train Generic Unknown Three different training stages with different data mixes

Fox-1 [297] 1.6B 2024.6 Pre-train Generic Unknown (3T tokens) GQA; Deep architecture

Rene 3 1.3B 2024.5 Pre-train Generic Dolma-1.7 [279] Mamba-2 layers, sliding-window attention (SWA)

MiniCPM [128] 1.2B; 2.4B 2024.4 Pre-train Generic Dolma [279]; C4 [250]; Pile [78]; stack [156];
StarCoder [173]; UltraChat [79]; OssInstruct
[330]; EvolInstruct [346]

Warmup-Stable-Decay (WSD) learning rate scheduler

OLMo [104] 1B; 7B 2024.2 Pre-train Generic Dolma [279] 4 SwiGLU; RoPE, Non-parameteric Layer Norm

TinyLlama [382] 1B 2024.1 Pre-train Generic SlimPajama [278] and StarCoder [173] GQA, SiLU, Fully Sharded Data Parallel (FSDP), Flash Attention
[67], xFormers [164]

Phi-1 [107] 1.3B 2023.6 Pre-train Coding CodeTextBook [107] 5 MHA, GELUtanh , RoPE, FlashAttention

Phi-1.5 [178] 1.3B 2023.9 Pre-train Generic CodeTextBook [107]; Synthetic Datasets (20B) MHA, GELUtanh , RoPE, FlashAttention, Deep ZeRO Stage 2

Phi-2 [138] 2.7B 2023.12 Pre-train Generic CodeTextBook [107]; Synthetic Datasets (20T) MHA, GELUtanh , RoPE, FlashAttention, Deep ZeRO Stage 2

Phi-3 [1] 3.8B; 7B; 14B 2024.4 Pre-train Generic Scaled-up dataset from phi-2 MHA, SiLU, RoPE, FlashAttention, Deep ZeRO Stage 2

Phi-3.5 [1] 3.8B; 4.2B; 6.6B 2024.4 Pre-train Generic more multilingual and long-text data Multilingual; Vision; MHA, SiLU, RoPE, FlashAttention, Deep
ZeRO Stage 2

OpenELM [214] 270M; 450M; 1.1B; 3B 2024.4 Pre-train Generic RefinedWeb [239], deduplicated PILE [97], a
subset of RedPajama [61], and a subset of
Dolma v1.6 [279]

No biases in FC layers; Pre-norm: RMSNorm; Pos encoding:
RoPE; Attention: GQA; FFN: SwiGLU; Tokenizer: LLaMA-style

MobiLlama [299] 0.5B; 0.8B 2024.2 Pre-train Generic LLM360 Amber (Arxiv, Book, C4, Refined-
Web, StarCoder, StackExchange, and
Wikipedia)

GQA; SwiGLU; Parameter-sharing

MobileLLM [199] 125M; 350M 2024.2 Pre-train Generic Unclear (1T tokens) SwiGLU FFN, deep and thin architectures, embedding sharing,
and grouped query attention

StableLM [303] 3B; 7B 2023.4 Pre-train Generic RefinedWeb [239], subsets of the Pile [97],
RedPajama [61] and the Stack [156], Open-
WebText [101], OpenWebMath [238], and
parts of CulturaX [229]

MHA; SiLU; Fine-tuning; DPO; Self-knowledge; RoPE; Layer-
Norm; no Biases

StableLM 2 [24] 1.6B 2024.2 Pre-train Generic

Cerebras-GPT [78] 111M - 13B 2023.4 Pre-train Generic Pile [97] MHA; GELU; Maximal Update Parameterization

Pythia [27] 70M - 12B 2023.4 Pre-train Generic Pile [97] MHA; GELU; Flash Attention [68]; RoPE [282]; ZeRO [252]

BLOOM,
BLOOMZ [162]

560M; 1.1B; 1.7B; 3B;
7.1B; 176B

2022.11 Pre-train Generic ROOTS [161] and 13 programming languages MHA; GELUtanh ; ALiBi Positional Embedding [246], Embed-
ding LayerNorm [74]

Galactica [293] 125M; 1.3B; 6.7B; 30B;
120B

2022.11 Pre-train Scientific Open-access scientific materials (106B tokens)
but not released

MHA; GeLU; Learned Positional Embeddings

OPT [383] 125M; 350M; 1.3B;
2.7B; 5.7B

2022.5 Pre-train Generic Pile [97] and PushShift.io Reddit [23] MHA; ReLU

XGLM [186] 1.7B; 2.9B; 7.5B 2021.12 Pre-train Generic CC100-XL -

GPT-Neo [29] 125M; 350M; 1.3B;
2.7B

2021.5 Pre-train Generic Pile [97] -

Megatron-gpt2 [274] 355M; 2.5B; 8.3B 2019.9 Pre-train Generic Wikipedia [77], CC-Stories [304], RealNews
[373], OpenWebtext

-

MINITRON [224] 4B; 8B; 15B 2024.7 Pruning
and Distil-
lation

Generic - LR Scheduler: WSD; Pruning

Orca 2 [219] 7B 2023.11 Distillation Generic Orca 2 dataset LLaMA-2-7B based; prompt erasing

Orca [223] 13B 2023.6 Distillation FLAN-v2 [201] Teachers are ChatGPT, GPT4, Explanation tuning; Progressive
Learning

Dolly-v2 [62] 3B; 7B; 12B 2023.4 Instruction
tuning

Generic Databricks-dolly-15k [62] -

LaMini-LM [153] 61M-7B 2023.4 Distillation Generic LaMini instruction dataset -

Specialized FlanT5
[94]

250M; 760M; 3B 2023.1 Instruction
Tuning

Generic
(math)

GSM8K Base model is FlanT5

FlanT5 [57] 80M; 250M; 780M; 3B 2022.10 Instruction
Tuning

Generic Muffin, T0-SF, SNI and CoT Base model is T5

T5 [250] 60M; 220M; 770M; 3B;
11B

2019.9 Pre-train Generic C4 [250] Encoder-decoder; Multilingual; No bias in LayerNorm; Layer-
Norm external to residual path
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traditional layer normalization due to its reduced computational demands. A basic introduction to these options is
provided in Section 2.

Apart from component choices, there are notable innovations in architecture for SLMs:

• The deep and thin architecture [199] highlights that deeper models are more effective than wider ones for improving
performance.

• Embedding sharing [383] is significant because embedding layers make up a large part of the model’s parameters. For
instance, with an embedding dimension of 512 and a vocabulary size of 32k, the input and output embedding layers
contain 16 million parameters each. These layers account for over 20% of the total parameters in a 125M-parameter
model. In sub-billion scale models, there is a return to the concept of sharing embeddings between the input and
output layers, using the same weights for both, which makes the model more efficient and compact.

• Layer sharing [199] is advantageous for small Transformer models, increasing the number of hidden layers without
extra storage costs.

• Shared FFNs [299] makeup about 65% of all trainable parameters, with attention mechanisms and heads accounting
for the rest. Sharing FFN parameters across all transformer layers of an SLM is proposed to increase efficiency.

A detailed description of these architectural designs can be found in Section 3.1.

5.1.1 Training Datasets. From Table 8, we can observe a set of widely used training datasets in SLM development. We
provide the details below

• Pile [97]: It comprises 22 smaller, high-quality diverse corpora from various domains, such as Pile-CC, PubMed
Central, ArXiv, GitHub, and FreeLaw, designed to offer a comprehensive foundation for language model training.
The dataset contains 207 billion tokens and totals 825 GiB.

• C4 (Colossal Clean Crawled Corpus) [250]: This dataset includes 350 billion tokens, representing a cleaned version
of the Common Crawl web corpus, intended to capture a wide snapshot of the internet 6.

• The Stack [156]: It contains 6 trillion tokens of source code from over 300 programming languages, useful for
developing code-centric AI applications.

• StarCoder [173]: It features 35 billion tokens, predominantly Python code, aimed at programming language under-
standing and generation.

• RedPajama [61]: This dataset encompasses 1.2 trillion tokens derived from over 100 billion text documents, processed
using the CCNet pipeline to ensure a rich collection of web texts.

• RefinedWeb [239]: This dataset includes 5 trillion tokens of high-quality, extensively filtered web data, offering a
valuable resource for training web-aware models.

• PushShift.io Reddit [23]: A around 5 billion tokens resource for social media data collection, analysis, and archiving,
specifically of Reddit data, aiding research into social media dynamics.

• CulturaX [229]: It comprises 6.3 trillion tokens across 167 languages, supporting the development of models with
extensive linguistic and cultural understanding.

From the analysis of these datasets, we can derive several critical insights regarding the development of SLMs: (i) Data
Quality: Data quality is paramount in training effective SLMs. Most pre-training routines incorporate sophisticated
filtering processes to exclude low-quality content, which may involve removing duplicates or irrelevant samples based
on another LLM. For instance, the TinyStories corpus [86] is specifically curated to be simple and clear, resembling

6Available at https://commoncrawl.org
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language suited for a three-year-old child, thereby facilitating the training of models that can comprehend and generate
uncomplicated narratives effectively. RedPajama-V2 [61] is processed via the CCNet pipeline, including 30B documents
with quality signals, and provides IDs for deduplicating documents to create a 20B deduplicated dataset. (ii) Code
Data: Source code constitutes a significant component of valuable data for training models, particularly because of its
structured nature and logical content. Training on code data enhances a model’s reasoning capabilities and supports its
ability to generalize across multiple natural languages, which is crucial for applications requiring robust problem-solving
and interpretation skills in diverse coding environments [15, 93, 107, 211]

5.1.2 Training Algorithms. To enhance the alignment of SLMs with desirable properties such as safety and reasoning,
training algorithms, particularly during the fine-tuning phase, are crucial in evolving pre-trained SLMs.

• Direct Preference Optimization (DPO) [249] introduces a novel methodology for optimizing language models
based on human preferences, providing a simpler alternative to Reinforcement Learning from Human Feedback
(RLHF). Unlike RLHF, DPO does not employ explicit reward modeling or reinforcement learning techniques. Instead,
it uses a dynamic weighting mechanism to modify the log probabilities of preferred versus non-preferred responses.
This approach helps to avoid model degradation issues commonly encountered with methods that rely solely on
probability ratio targets. The DPO loss function is as follows:

L𝐷𝑃𝑂 (𝜋𝜃 ;𝜋ref) = −E(𝑥,𝑦𝑤 ,𝑦𝑙 )∼𝐷
[
log𝜎

(
𝛽 log

𝜋𝜃 (𝑦𝑤 | 𝑥)
𝜋ref (𝑦𝑤 | 𝑥) − 𝛽 log

𝜋𝜃 (𝑦𝑙 | 𝑥)
𝜋ref (𝑦𝑙 | 𝑥)

)]
Here, 𝜋𝜃 is the policy being optimized, and 𝜋ref is the reference policy. The expectation is taken over a dataset 𝐷 ,
comprising tuples (𝑥,𝑦𝑤 , 𝑦𝑙 ), where 𝑥 is the input and𝑦𝑤 ,𝑦𝑙 are the preferred and non-preferred outputs, respectively.
The sigmoid function 𝜎 , and the scaling factor 𝛽 adjust the log-ratio of probabilities from 𝜋𝜃 and 𝜋ref, guiding the
model towards producing outputs aligned with human preferences.

• Reinforcement Learning fromContrast Distillation (RLCD) [354] is designed to calibrate generative SLMs/LLMs
towards embodying harmless and beneficial characteristics. The process commences with an unaligned LM and a
series of initial prompts. The prompts are systematically modified into two variants 𝑝+ and 𝑝−, which are intended
to promote and suppress, respectively, specific attributes such as helpfulness and harmlessness. Upon inputting
these altered prompts into the LM, outputs 𝑜+ and 𝑜− are generated, with 𝑜+ automatically marked as the preferred
response. This automation expedites the training process by eliminating the requirement for subsequent evaluative
scoring. The subsequent training adheres to the conventional Reinforcement Learning from Human Feedback (RLHF)
framework. The model is trained on this artificially constructed paired preference data to cultivate a preference
model. Subsequently, a reward model is extracted from this preference model. Proximal Policy Optimization (PPO)
is then employed to refine the alignment of the original LM, ensuring that its outputs more closely reflect human
values and expectations. This method effectively fine-tunes the model’s responses, confirming their compliance with
established ethical norms and user preferences.

• Conditioned Reinforcement Learning Fine-Tuning (C-RLFT), proposed by OpenChat [315], aims to improve
model performance by effectively incorporating low-quality data during SFT. Data quality plays a crucial role in model
outcomes; for instance, OpenChat 6k [314] uses 6k high-quality ShareGPT data annotated by GPT-4 [2], excluding
GPT-3.5 annotations, and outperforms Vicuna [53], which uses the full 70k ShareGPT dataset, and Alpaca [292] with
50k self-instruct samples. However, OpenChat 6k overlooks the potential of low-quality data, which can contribute
knowledge and help the model distinguish between varying quality levels. C-RLFT addresses this by leveraging
mixed-quality data with simple, coarse-grained reward labels that differentiate data quality—e.g., expert data with 1
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credit and sub-optimal data with 0.1 credits. To mitigate imperfect reward signals, C-RLFT conditions data sources
with distinct prompt tokens recognized by the model itself. Additionally, C-RLFT supports reward-free training and
eliminates the need for costly human feedback, making it a flexible and efficient fine-tuning method for SLMs/LLMs.
A similar strategy, Data Mix [243], involves training on English text in three stages, each with a different mix of
data. In each stage, the proportion of noisy web data is gradually reduced in favor of higher-quality data.

• Explanation Tuning, proposed by Orca [223], addresses the limitations of standard instruction-based fine-tuning,
which often restricts SLMs to style imitation rather than reasoning. It uses system prompts with instructions to
direct GPT-4 to produce detailed explanations or perform step-by-step reasoning. The resulting instructions and the
responses are used as a dataset for fine-tuning SLMs to have better ability of reasoning. Specifically, Orac adopts the
training dataset sourced from FLAN-v2 [201], which includes five subsets covering various datasets. Five million
questions from FLAN-v2 are initially processed through ChatGPT, and one million of these responses are further
refined by GPT-4 to create the training set. Many models such as Orca 1 [223], StableBeluga [212] and Dolphin 7 have
benefited from Explanation Tuning, showing substantial improvements over traditional instruction-tuned models.

• Progressive Learning, proposed by Orca [223], aims to bridge the capability gap between Orca and the more capable
GPT-4. It starts with training on five million data points from ChatGPT, followed by one million from GPT-4. Research
suggests that an intermediate-level teacher can improve distillation effects, enabling a stepwise learning approach
where students start with simpler examples and gradually move to more complex ones, receiving improved reasoning
and explanations from a more advanced teacher.

• Prompt Erasing introduced by Orac 2 [219], is a distillation strategy designed to enhance the independent reasoning
capabilities of student SLMs. In this approach, a more capable teacher LLM is given intricate prompts intended to
elicit specific strategic behaviors and more precise outcomes. During the training phase, the SLM is exposed only to
the task instruction and the resulting behavior, without access to the original intricate prompts that initiate such
responses. This technique, known as Prompt Erasing, positions the student model as a cautious reasoner because it
not only learns to perform specific reasoning steps but also develops strategies for approaching tasks at a higher level.

• Maximal Update Parameterization (𝜇P) optimizes control initialization, layer-wise learning rates, and activation
magnitudes to ensure stable training regardless of model layer widths. This method enhances training stability and
allows the same optimizer settings, especially learning rates, to be used across different model scales. For instance,
Cerebras-GPT [278] employs 𝜇P to train its models efficiently.

5.1.3 Model Performance. To compare the performance of SLMs, we have extracted experimental results from two
recent and concurrent studies published in June 2024, OLMo [104] and MobiLlama [299], and the recently proposed
edge-device Llama 3.2 1B & 3B in September 2024 8. The extracted results are merged and shown in Table 9. From the
table, we can find that the following evaluation benchmarks are commonly used:

(1) MMLU [120]: Evaluate broad knowledge across diverse fields such as humanities, science, technology, engineering,
and management. It includes multiple-choice questions covering 57 tasks ranging from elementary mathematics to
US history, computer science, law, and beyond, with a total of 14K test samples.

(2) HellaSwag [372]: Assesses the model’s ability to select the correct ending to scenarios from multiple options,
testing common sense reasoning, including 10K test samples.

7https://huggingface.co/datasets/cognitivecomputations/dolphin
8https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
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Table 9. Comparative Performance of Various Models on Common Benchmarks: data fromMobiLlama [299], OLMo [104], and
Llama 3.2.

Model Size Range Model MMLU HellaSwag ARC PIQA Winogrande

<1B

gpt-neo-125m 26.0 30.3 23.0 62.5 51.8
tiny-starcoder-170M 26.8 28.2 21.0 52.6 51.2
cerberas-gpt-256m 26.8 29.0 22.0 61.4 52.5
opt-350m 26.0 36.7 23.6 64.7 52.6
megatron-gpt2-345m 24.3 39.2 24.2 66.9 53.0
LiteLlama 26.2 38.5 24.9 67.7 49.9
gpt-sw3-356m 25.9 37.1 23.6 64.9 53.0
pythia-410m 27.3 40.9 26.2 67.2 53.1
xglm-564m 25.2 34.6 24.6 64.9 53.0
Lamini-GPT-LM 0.59B 25.5 31.6 24.2 63.9 47.8
MobiLlama 0.5B 26.5 52.5 29.5 72.0 57.5
MobiLlama 0.8B 26.9 54.1 30.2 73.2 57.5

1B-3B

StableLM 1.6B - 68.2 43.8 74.0 -
Pythia 1B - 44.7 33.1 69.1 -
TinyLlama 1.1B - 58.7 34.8 71.1 -
OLMo-1B - 62.5 34.5 73.7 -
OLMo 1.2B 25.9 62.5 34.5 - 58.9
Boomer 1B 25.4 31.6 22.3 - 51.0
Pythia-Dedup 1B 24.3 49.6 29.1 - 54.0
Falcon-RW 1B 25.4 63.1 35.1 - 61.9
Cerebras-GPT 1.3B 26.7 38.5 26.1 - 53.6
Lamini 1.3B 28.5 38.1 26.6 - 50.6
OPT 1.3B 24.6 54.5 29.6 - 59.7
GPT-NEO 1.3B 24.8 48.5 31.3 - 57.1
Pythia-Deduped 1.4B 25.5 55.0 32.6 - 56.9
MobiLlama 1.2B 24.8 63.0 34.6 - 62.0
Gemma 2 2B 57.8 61.1 76.7 - -
Llama 3.2 1B 49.3 41.2 59.4 - -
Llama 3.2 3B 63.4 69.8 78.6 - -

>3B

Phi-3.5-mini 3.8B 69.0 81.4 87.4 - -
Pythia 6.9B - 63.8 44.1 75.1 -
Falcon-7B - 75.9 47.5 78.5 -
LLaMA 7B - 76.2 44.5 77.2 -
Llama 2 7B - 76.8 48.5 76.7 -
MPT-7B - 77.6 46.5 77.3 -
RPJ-INCITE-7B - 70.3 42.8 76.0 -
OLMo-7B - 76.4 48.5 78.4 -

(3) ARC [58]: The AI2’s Reasoning Challenge (ARC) dataset features multiple-choice science exam questions for
grades 3 to 9, divided into Easy and Challenge partitions, with the latter containing more complex questions
necessitating reasoning. Most questions offer four answer choices. ARC includes a supporting knowledge base of
14.3M unstructured text passages, with 1.17K test samples in ARC_Challenge and 2.25K in ARC_Easy.

(4) PIQA [28]: A commonsense reasoning dataset designed to evaluate the physical knowledge of NLP models. It
presents questions (goals) that require physical commonsense for correct resolution, alongside two detailed response
options (sol1 and sol2). The dataset comprises 3,000 test samples.

(5) Winogrande [262]: a dataset structured as a fill-in-the-blank task with binary options, designed to assess common-
sense reasoning. The dataset includes 1,767 test samples by default splits.
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Table 10. Comparison of MobiLlama 0.5B with large-base 1.2B, Llama2 7B, and Phi2-2.7B in terms of efficiency and resource
consumption on low-end hardware devices [299].

Platform Model #Params Precision Avg
Tokens/Sec

Avg Memory
Consumption

Avg Battery
Consumption
/1k Tokens

CPU
Utilization

RTX2080Ti

Llama2 7B bf16 14.85 27793 MB 135.51 mAH 31.62%
Phi2 2.7B bf16 32.19 12071 MB 59.13 mAH 24.73%

large-base 1.2B bf16 50.61 6254 MB 18.91 mAH 18.25%
MobiLlama 0.5B bf16 63.38 3046 MB 8.19 mAH 14.79%

CPU-i7

Llama2 7B 4bit 5.96 4188 MB 73.5 mAH 49.16%
Phi2 2.7B 4bit 22.14 1972 MB 27.36 mAH 34.92%

large-base 1.2B 4bit 29.23 1163 MB 10.81 mAH 30.84%
MobiLlama 0.5B 4bit 36.32 799 MB 4.86 mAH 24.64%

Snapdragon-685

Llama2 7B 4bit 1.193 4287 MB 10.07 mAH 77.41%
Phi2 2.7B 4bit 2.882 1893 MB 14.61 mAH 56.82%

large-base 1.2B 4bit 6.687 780 MB 6.00 mAH 17.15%
MobiLlama 0.5B 4bit 7.021 770 MB 5.32 mAH 13.02%

Accuracy is used as the evaluation metric in the table. Open Language Model (OLMo) [104] is publicly available
with its training data and code 9. MobiLlama [299] is a general-purpose SLM designed from scratch, available in
0.5B and 0.8B versions. It adopts a unique approach by using a shared FFN across all transformer blocks, enhancing
efficiency.MobiLlama also show high efficiency on diverse hardware (Table 10). From Table 9, we can conclude that:
(1) MobiLlama 0.5B and 0.8B demonstrate that a shared FFN design can facilitate excellent performance in SLMs with
fewer than 1B parameters, even rivaling some models in the 1B-3B range. (2) The performance of MobiLlama 1.2B and
OLMo 1.2B illustrates that advanced SLM architectures incorporating high-quality data, SwiGLU, non-parametric layer
normalization, RoPE, BPE tokenization, and a shared FFN design can achieve competitive results among models with
1B-3B parameters. (3) MobiLlama demonstrates that SLMs can significantly reduce resource consumption on low-end
hardware devices, achieving comparable performance while using a smaller proportion of battery power, memory, and
GPU utilization. (4) Popular techniques such as pruning, quantization, distillation, SFT, and DPO, utilized in Llama 3.2,
have substantially enhanced SLM performance.

Insights: We draw several key insights from the development of generic-specific SLMs:

• Typical SLM architectures generally incorporate features such as GQA, gated FFN with SiLU activations,
RMS normalization, deep and thin architectures, embedding sharing, layer sharing, and shared FFNs.

• Although these components are widely used, current research has not yet thoroughly explored their specific
contributions within SLMs.

• The importance of data quality in SLM research is increasingly emphasized, often considered more critical
than the quantity of data and model architectural configurations. For example, the Dolma project enhances
data quality through multi-stage data filtering processes.

• Post-pretraining, meticulous fine-tuning is often required to enhance the safety of SLMs, involving strategies
to better distill capabilities from LLMs. Common strategies include explanatory tuning, progressive learning,
and prompt erasing.

9https://allenai.org/olmo
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Table 11. High-level Overview and Training Details of Specific-domain Small Language Models

Model #Params Date Base Models Domain Training
Datasets

Train Techniques

Hippocrates [3] 7B 2024.4 Instruction Tuning
(LLaMA2 [302], Mistral
[143])

Healthcare Medical Guide-
lines, PMC-
Patients [394],
and PubMedQA-
contexts [146]

Continual pre-
training, instruction
tuning, RLHF

BioMedLM [30] 2.7B 2024.3 From scratch and Fine-
tuning

Healthcare PubMed [97] FSDP

BioMistral [160] 7B 2024.2 Mistral [143] Biomedicine PubMed [97] Continual pretraining

MentaLLaMA
[355]

7B; 13B 2023.9 Instruction Tuning
(LLaMA2 [302])

Healthcare IMHI dataset RLHF; PEFT

AdaLM [362] 34M 2021.6 Distillation (BERT [77] or
MiniLM [321])

Healthcare PubMed [97] Continual pretraining,
Adapt-and-Distill

Rho-1 [187] 1B, 7B 2024.4 TinyLlama-1.1B [382],
Mistral-7B [143]

Science
(Mathemat-
ics)

OpenWebMath
[238]

Continual pretraining

ChemLLM [379] 7B 2024.4 Instruction Tuning (In-
ternLM2)

Science
(Chemistry)

ChemData Continual training
and fine-tuning

SciGLM [378] 6B 2024.3 Instruction Tuning
(ChatGLM-6B)

Science SciInstruct Self-reflective instruc-
tion annotation

Llemma [20] 7B 2023.10 Code Llama 7B Science
(Mathemat-
ics)

Proof-Pile-2 [20] Continual pre-
training

OceanGPT [26] 2B, 7B,
14B

2023.10 LLaMA2 [302] Science
(Ocean)

Open-access
literature, DoIN-
STRUCT

Continual pre-
training, Instruction
tuning

AstroLLaMA
[230]

7B 2023.9 Tuning (LLaMA-2-7B) Science (As-
tronomy)

arXiv abstracts
from Kaggle

Continual training

DARWIN [344] 7B 2023.8 LLaMa 7B Science
(physics,
chemistry,
and material)

SciQ [332], Scien-
tific paper[344],
FAIR [344]

Fine-tuning

MindLLM [359] 1.3B, 3B 2023.10 From-scratch and Super-
vised Fine-tuning

Law, Finance Pile [97], Wudao
[369], CBooks

Train on Bilingual
Mixture Data, SFT

5.2 Domain-Specific SLMs

Overview. The capability of LLMs to generate human-like text has significantly captured public interest, highlighting
their potential in the field of general artificial intelligence. However, inefficiencies persist when integrating LLMs into
specialized applications due to resource constraints. Unlike the need for extensive general knowledge and capabilities,
domain-specific SLMs should focus on well-defined tasks and expertise pertinent to specific fields. For instance, special-
ized models can significantly impact biomedical research and healthcare by fine-tuning LLMs for interpretable mental
health analysis, or assisting humans in legal dialogues and financial tasks through instruction tuning, showcasing their
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potential transformative influence. Given the limited number of SLMs specialized in specific domains, we demonstrate
some existing SLMs individually across healthcare, science, finance, and law domains.

5.2.1 SLMs for Healthcare. Hippocrates [3] is an open-source framework designed for the medical domain, offering
unrestricted access to its training data, codebase, checkpoints, and evaluation protocols 10. It integrates specialized med-
ical knowledge through an extensive pre-training corpus from three datasets: Medical Guidelines, PMC-Patients [394],
and PubMedQA-contexts [146]. This corpus, with around 300 million training tokens, ensures the model’s proficiency
in medical terminology and practices. The Hippo series, a customized 7B model, undergoes continuous pre-training,
instruction tuning, and reinforcement learning from human and AI feedback. It has specific datasets for instruction
tuning and preference learning. Fine-tuned on Mistral and LLaMA2, Hippo surpasses existing 7B and 13B models,
matching or exceeding 70B models in some cases. For example, Hippo-Mistral 7B can achieve 59.9% accuracy on
MedQA, outperforming Meditron 70B [47] whose performance is 58.5%. It is evaluated on six medical downstream tasks
including MedMCQA [237], PubmedQA [146], MedQA [145], and the USMLE-step1, USMLE-step2, and USMLE-step3
exams [145].

BioMedLM [30] introduces a 2.7 billion parameter GPT-style autoregressive model, trained exclusively on PubMed
abstracts and full articles [97]. After fine-tuning, BioMedLM achieves robust biomedical question-answering performance,
comparable with larger models, scoring 57.3% on MedMCQA (dev) and 69.0% on the MMLU medical genetics exam.
It is also fine-tuned to provide useful answers to patient queries, demonstrating the potential of smaller models as a
transparent, privacy-conserving, cost-effective, and environmentally-friendly foundation for specific NLP applications
like biomedicine. The model is available on Hugging Face Hub 11.

AdaLM [362] develops small, fast, and effective domain-specific pre-trained language models. This approach
continues the training of a medical domain-specific SLM atop an existing pre-trained model. To address domain
distribution shifts, four combined strategies of domain adaptation and compression were tested: direct domain-specific
pretraining, distillation followed by adaptation, adaptation followed by distillation, and simultaneous adaptation of both
large and small models during initial distillation (adapt-ant-distill). For biomedical applications, a 16GB corpus from
PubMed 12 abstracts was used to adapt a BERT_base model (12 layers, 768 hidden size) [77]. The model was evaluated
on three downstream tasks: JNLPBA [60], EBM PICO [233], and ChemProt [157], demonstrating that adaptation and
distillation are optimal for developing task-agnostic, domain-specific small models.

MentalLLaMA [355] models explainable mental health analysis as a text generation task and establishes the first
IMHI dataset with 105K samples for instruction tuning of LLMs. It compiles data covering eight tasks from ten sources
and uses expert-designed prompts with ChatGPT for explanations. The data undergo rigorous automatic and manual
evaluations for accuracy and quality. Based on LLaMA2, MentaLLaMA includes a 7B variant and is the first open-source
LLM for explainable mental health analysis on social media. Evaluated on the IMHI benchmark, MentaLLaMA matches
state-of-the-art methods in accuracy and produces human-level explanations, showing strong generalizability on unseen
tasks. The project code is available at 13.

5.2.2 SLMs for Science. SciGLM [378] is a scientific language model capable of collegiate-level scientific reasoning.
Central to this method is a novel self-reflective instruction annotation framework addressing data scarcity in science.
This framework uses GPT-4 [2] to generate step-by-step reasoning for unlabeled scientific problems, followed by
10https://cyberiada.github.io/Hippocrates/
11https://huggingface.co/stanford-crfm/BioMedLM
12https://pubmed.ncbi.nlm.nih.gov/
13https://github.com/SteveKGYang/MentaLLaMA
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Table 12. Prompts for self-reflective instruction annotation framework

Chain-of-Thought [Prompt 1] The following input consists of a science problem, please generate an elaborate step-
by-step solution to the problem.

Reflective Generation [Prompt 2] The following input comprises a science problem and a corresponding solution.
However, this solution is incorrect, please reflect on its errors and then generate a correct step-by-
step solution to the problem.

Prompt Answer [Prompt 3] The following input consists of a science problem, a corresponding solution, and the
real answer. The given solution is incorrect, please reflect on its errors and then generate a correct
step-by-step solution to the problem based on the real answer.

self-reflective critique and revision. Self-reflective critique is a method for annotating scientific questions that involve
three steps with designed prompts in Table 12: (i) employing a Chain of Thought (CoT) prompt, (see Prompt 1 in the
table), to generate step-by-step answers; (ii) using a reflective prompt, (see Prompt 2), for responses with incorrect
solutions, aiding GPT-4 in generating correct answers by analyzing its previous errors; and (iii) incorporating the actual
answer directly into the prompt (see Prompt 3) to further assist in resolving the question. To eliminate low-quality
questions and answers resulting from incomplete OCR, an instruction-quality classifier is trained and applied for further
revisions. Leveraging this, the SciInstruct dataset is curated, encompassing physics, chemistry, mathematics, and formal
proofs, enhancing the scientific and mathematical reasoning abilities of the ChatGLM-6B [83] language model. Notably,
SciGLM enhances the performance of the base model (ChatGLM3-6B-Base) by 3.06% in average scientific QA accuracy
across CEval-Hard [134], CEval-Sci [134], MMLU-Sci [120], SciEval [283], and SciBench [322]. For broader community
benefit, SciInstruct, SciGLM, the self-reflective framework, and fine-tuning code are available at 14.

Llemma [20], an SLM tailored for mathematical reasoning, evolves from the Code Llama framework [260]. Trained
using a standard auto-regressive language modeling objective, Llemma’s 7B model processes 200B tokens, including a
55B-token subset from the proposed Proof-Pile-2 dataset. This dataset comprises a rich mix of scientific papers, web data
on mathematics, and mathematical code, with a content cutoff in April 2023. By continual pre-training on Proof-Pile-2,
Llemma significantly enhances its few-shot performance across key mathematical benchmarks: MATH [120], GSM8k
[59], OCWCourses [166], MMLU-STEM [120], and SAT. This continual training enables Llemma to outperform all
comparable open-weight language models. For instance, it achieves a 71.9% accuracy on the SAT, significantly higher
than Code Llama’s 40.6%, underscoring the profound impact of targeted continual pre-training in boosting mathematical
problem-solving capabilities.

ChemLLM [379] introduces a language model framework for chemistry. It incorporates ChemData, a dataset
crafted for instruction tuning. This dataset transforms structured chemical data into dialogue formats suitable for
training. Additionally, it includes ChemBench, a robust benchmark consisting of 4,100 multiple-choice questions.
These questions span nine fundamental chemical tasks and aim to minimize linguistic style bias in model outputs. It is
trained on the InternLM2-Base-7B model [35], initially enhancing general language ability with a multi-corpus of 1.7
million Q&A pairs from Hugging Face. In the second phase, it is fine-tuned using a mix of ChemData for chemical
knowledge and the multi-corpus to retain general functionality. As a result, ChemLLM excels in various interdisciplinary
chemical tasks through fluid dialog interactions, achieving core chemical task results comparable to GPT-4 [2] and
showing competitive performance with similar-sized LLMs. For instance, in the Mol2caption task, ChemLLM achieves a
score of 92.6, outperforming GPT-3.5 and slightly below the score attained by GPT-4 [2].

14https://github.com/THUDM/SciGLM
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AstroLLaMA [230] effectively addresses the gap in the performance of LLMs in specialized fields like academic as-
tronomy by introducing a domain-specific model. This 7-billion-parameter model, fine-tuned on over 300,000 astronomy
abstracts from arXiv available on Kaggle 15 using LLaMA-2 [302], adheres to causal language modeling objectives from
its pre-training phase. It achieves a perplexity 30% lower than Llama2, indicating substantial domain adaptability. Despite
fewer parameters, AstroLLaMA surpasses standard foundational models in generating insightful and scientifically
relevant outputs. With its significant potential for further fine-tuning, AstroLLaMA is publicly available 16, enhancing
research in astronomy through tasks like automated paper summarization and conversational agent development.

5.2.3 SLMs for Finance and Law. MindLLM [359] introduces a series of bilingual, lightweight language models,
developed from scratch, with configurations of 1.3 billion and 3 billion parameters. It incorporates experiences from
large model development, covering data construction, model architecture, evaluation, and applications. The primary
English pre-training data is sourced from the Pile dataset [97], and the Chinese pre-training data combines resources
from WuDao [369], CBook 17, and various Chinese websites. MindLLM consistently matches or surpasses other large
models in public benchmarks. Bilingual training from scratch is advocated as a superior method for capacity learning
and avoiding catastrophic forgetting, featuring a specialized instruction tuning framework designed to enhance smaller
models’ capabilities effectively. Additionally, supervised fine-tuning in law and finance explores specific vertical domains.
In law, publicly available legal data, scenario-based Q&A, legal references from LaW-GPT [124], and NLP-based legal
tasks from DISC-LawLLM [371] are used. Due to the absence of public objective benchmarks in the legal field, the
robust ChatGPT model serves as an evaluator for reasoning on manually constructed data. In finance, EastMoney
18 is selected as the data source. Financial sentiment data is formatted into a text classification task, where inputs
include financial news and outputs are labels for five categories: positive, negative, neutral, very negative, and very
positive. MindLLM-1.3B and 3B models demonstrate superior performance, achieving accuracy rates of 47.79% and
46.40%, respectively, to similar-sized models and outperform ChatGLM2-6B (45.79%) and Open-LLaMA-7B (28.38%)
after fine-tuning.

Insights:We draw several key insights from the development of domain-specific SLMs:

• Adapting SLMs to domain-specific data is a common practice for acquiring domain-specific SLMs, prompting
many to create their datasets [230, 355, 378, 379]. These datasets are often annotated using LLMs like GPT-
4 and used to train or fine-tune general models such as LLaMa-2-7B [3, 30]. To ensure the data quality,
specialized annotation frameworks are developed, such as Zhang et al. [378].

• In domains with abundant corpora, training a general model from scratch and fine-tuning it using SFT [359]
is practical. Bilingual settings during training can prevent catastrophic forgetting.

• Distilling general capabilities from LLMs while integrating domain-specific knowledge from corpora is
another method for developing domain-specific SLMs [362].

15https://www.kaggle.com/Cornell-University/ arxiv
16https://huggingface.co/universeTBD/astrollama
17https://github.com/FudanNLPLAB/CBook-150K
18https://www.eastmoney.com/default.html
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Fig. 18. Architectures of Enhancing Calibration and Hallucination Detection of LLMs.

6 SLMS FOR LLMS

In this section, we provide a comprehensive review of how SLMs enhance LLMs. While LLMs are robust, they face
challenges such as latency during inference, labor-intensive fine-tuning, noise filtration issues in retrieval, suboptimal
zero-shot performance, copyright infringement risks, and evaluation difficulties. SLMs can help LLMs to alleviate these
issues. Research in this field can be categorized into five primary areas: (i) using SLMs for reliable LLM generation; (ii)
extracting prompts for LLMs using SLMs; (iii) fine-tuning LLMs with SLMs; (iv) applying SLMs in LLM applications;
and (v) evaluating LLMs using SLMs. A summary of representative work in each category along with their key point is
given in Table 13. Next, we introduce each category in detail.

6.1 SLM for Reliable LLM Generation

Although LLMs generally produce fluent and convincing text, they can occasionally generate erroneous responses
[142, 310]. Additionally, LLMs are susceptible to privacy breaches from untrusted data collection, which can erode user
trust or cause harm. To address these issues, recent studies have focused on using SLMs to calibrate LLM confidence,
detect hallucinations, and improve retrieval-augmented LLMs and their reasoning capabilities.

Enhancing Calibration and Hallucination Detection of LLMs As illustrated in Figure 18 (a), to calibrate
LLMs, an SLM processes both questions and LLM-generated answers to predict calibrated confidence. This training
involves minimizing the discrepancy between estimated calibration error and predicted confidence score. For instance,
APRICOT [306] uses an auxiliary DeBERTaV3 model [117] to assess LLM confidence in open-question scenarios, aiming
to improve uncertainty expression and response adjustment. Similarly, Zhao et al. [392] has developed a self-supervised
approach that generates risk scores for each response to calibrate LLM confidence, utilizing a small BERT model [77] to
synchronize LLM outputs with other weak supervision sources. As shown in Figure 18 (b), for hallucination detection,
an SLM analyzes LLM internal states to output the likelihood of hallucination. This process uses supervised data
obtained by testing the knowledge boundaries of the LLM. In neural machine translation, Xu et al. [349] develop a
lightweight detector that analyzes token contributions to hallucinations, outperforming both model-free baselines and
quality estimation classifiers. Furthermore, SAPLMA [19] found that LLM internal states can signal the truthfulness of
statements, with a small BERT classifier trained to differentiate correct from incorrect predictions achieving accuracies
of 71% to 83%.

SLM

LLM
SLM Heuristic 

Answers

Retrieval Necessity
Judgement Model

known

unknown
Search 
Engine

Question LLM 
Answers

Retrieval 
Docs

Fig. 19. Architecture of SLM as a Heuristic RAG Prober.

Enhancing Retrieval-Augmented Generation Gener-
ally, as shown in Figure 19, SLMs can also serve as proxy models

to evaluate the familiarity of LLMs with user queries, determin-

ing whether LLMs need to retrieve additional information or

can respond directly. For example, SlimPLM [289] is a small
proxy model that assesses the necessity for LLM retrieval by
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Table 13. SLMs help LLMs in different aspects

Aspect Representative work Key point

SLM for reliable
LLM generations

APRICOT [306] Trains a small auxiliary model to predict LLM’s confidence using
only textual inputs and outputs.

POLAR [392] Uses a small BERT model to calibrate LLM responses and assign risk
scores.

Hallucination Detector in NMT
[349]

Uses lightweight classifiers to detect hallucinations in Neural Ma-
chine Translation.

SAPLMA [19] Uses a BERT Small Language Model as a classifier to assess the
truthfulness of statements accurately.

Question Decomposer [339] Distilled SLM decomposes complex questions to aid reasoning.
SuperICL [347] SLM Plug-ins provide confidence and prediction for contextual ex-

emplars to aid in-context learning.
SuperContext [357] Specific SLM enhances ICL by providing confidence and predictions

to overcome out-of-domain challenges.
Self-RAG [16] A proxy model labels special tokens during RAG data generation

for fine-tuning.
SKR [324] Trains a small model to detect its self-knowledge for better use of

external knowledge.
SlimPLM [289] Detects missing knowledge in LLMs with a slim proxy model, en-

hancing the LLM’s knowledge integration.
In-Context RALM [254] Trains a RoBERTa-based reranker for top-k BM25 documents using

LM signals to enhance LM gains.
CRAG [351] Trains a lightweight evaluator to assess document quality and trig-

gers actions based on confidence levels.

SLM for
extracting LLM
prompts

Prompt Extraction [386] Small model trained to predict confidence of extracted system
prompt from adversarial prompts.

Prompt Stealing Attacks [266] Uses small models fine-tuned as parameter extractors to facilitate
hierarchical prompt reconstruction.

Output2prompt [376] Uses a sparse encoder-decoder-based T5 small model to reverse-
engineer LLM inputs from outputs.

Model Purifying [175] Uses SLMs to ensemble with LLMs, mitigating negative effects from
uncurated data.

SLM for
Fine-tuning
LLMs

LP [215] Learning Percentage as a difficulty metric.
Emulated Fine-tuning [218] Emulates pre-training and fine-tuning at different scales by summing

base log probabilities with behavior deltas.
CROSSLM [73] SLMs enhance LLMs by generating task-specific high-quality data.

SLM for LLM
applications

SLCoLM [290] Uses SLM predictions to guide the LLM generation process in Chi-
nese Entity Relation Extraction.

HEF [361] Uses SLMs as flexible plugins to improve LLM’s nuanced under-
standing.

Contrastive decoding [176] Enhances text quality by maximizing the difference between expert
and amateur log probabilities.

SLM for LLM
evaluation

SLIDE [391] Utilizes SLMs trained via contrast learning to distinguish and score
responses in dialogue scenarios effectively.

generating heuristic answers. High-quality responses indicate that LLMs can handle queries independently, whereas
lower-quality outputs require further retrieval. Additionally, Self-Knowledge Guided Retrieval (SKR) [324] enables
SLMs to autonomously decide when LLMs should operate independently, based on their self-assessment of knowledge
limitations. Further, SELF-RAG [16] improves the factual accuracy and quality of LLM outputs through on-demand
retrieval and self-reflection. This method employs a small critic language model to issue reflective markers and make
binary decisions regarding the need for further information retrieval. Moreover, some studies utilize SLMs to evaluate the
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relevance of retrieved documents. LongLLMLingua [144] employs SLMs to calculate the relevance of documents to a
query 𝑥𝑞𝑢𝑒 using perplexity, as formalized by the equation:

𝑟𝑘 = − 1
𝑁𝑐

∑︁
𝑖

log𝑝SLM (𝑥𝑞𝑢𝑒
𝑖

|𝑥𝑑𝑜𝑐
𝑘

), 𝑘 ∈ {1, 2, . . . , 𝐾} (6)

where 𝑥𝑞𝑢𝑒
𝑖

is the 𝑖-th token in the query sequence, 𝑥𝑑𝑜𝑐
𝑘

is the retrieved document, and 𝑁𝑐 is the total number of
tokens in the query. 𝑝SLM represents the probability generated by an SLM. CRAG [351] employs SLMs as evaluators
of document relevance in the same way. In addition, other research employs SLMs as re-rankers to refine the order of

documents provided by initial retrieval efforts such as BM25 [258]. In-Context RALM [254] positions SLMs as rankers,
optimizing the document sequence with a fine-tuning process on RoBERTa [195] as defined by the loss function:

min
𝑟𝑎𝑛𝑘𝑒𝑟

𝑘∑︁
𝑖=1

− log 𝑝rank (𝑑𝑖 |𝑥≤𝑠 𝑗 ) · 𝑝𝜃 (𝑦 |𝑑𝑖 ;𝑥≤𝑠 𝑗 ) (7)

where 𝑥≤𝑠𝑖 is a prefix sampled from the training data, 𝑦 = 𝑥𝑠𝑖+1, . . . , 𝑥𝑠𝑖+𝑠 represents the text to be generated in the
next stride, 𝑝𝜃 (𝑦 |𝑑𝑖 ;𝑥≤𝑠𝑖 ) denotes the probability of the LLM generating 𝑦 given 𝑑𝑖 and 𝑥≤𝑠𝑖 , and 𝑝rank (𝑑𝑖 |𝑥≤𝑠 𝑗 ) is the
ranking score of 𝑑𝑖 .

SLM LLM

Question

Examples
Question | Predicted Label |
Confidence | Ground Truth

Question | Predicted Label |
Confidence

LLM 
Answers

Fig. 20. SLM transfers knowledge into ICL.

Enhancing Reasoning Capabilities of LLMs As
illustrated in Figure 20, SLMs enhance LLMs reasoning

by transferring task knowledge to in-context examples,

effectively reducing hallucinations. While In-context
Learning (ICL) generally handles few-shot learning
with 16 to 32 examples, it struggles when faced with extensive supervised data. SLMs, specialized in task-specific
training, complement the broader domain knowledge of extensively pre-trained LLMs. For example, SuperICL [347]
incorporates SLMs as plugins for efficiently executing supervised tasks. It predicts labels for contextual examples and
integrates these predictions with the input text and actual labels to enhance knowledge transfer, thereby boosting the
understanding and responsiveness of LLMs. SuperContext [357] tackles challenges that LLMs encounter with new
tasks and out-of-distribution data in natural language understanding by synergizing SLM outputs with LLM prompts
during inference. This integration merges model predictions with their confidence levels, effectively leveraging SLM
task-specific knowledge and LLM domain expertise. Furthermore, SLMs efficiently decompose complex reasoning by

breaking tasks into simpler components, as demonstrated in [339]. This strategy not only increases efficiency but also
reduces deployment costs when SLMs and LLMs are used collaboratively, transforming complex tasks into manageable
segments.

LLM

SLM

Ensemble

α

1-α

Fig. 21. Architecture of SLM-based Data Protection

AlleviateCopyright andPrivacy Issues
of LLMs As depicted in Figure 21, SLMs can
assist LLMs in addressing copyright and pri-
vacy concerns arising from online data collec-
tion. By training on selectively curated data
subsets, SLMs effectively reduce copyright in-
fringement and privacy risks, although they
are less effective than full-scale LLMs. To har-
ness the combined benefits of both models, Li et al. [175] integrates untrusted LLMs with benign SLMs using the CP-Δ
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Language model outputs +
Attack queries ①②③ …

LLMService
Provider 𝑀𝑀𝐿𝐿 

SLM

Extracted prompts ①②③ …

SLM-based
Estimation 𝑀𝑀𝑆𝑆

Extracted prompt ①

(a) Prompt Likelihood Estimation

Language model outputs

SLMParameter
Extractor 𝑀𝑀𝑆𝑆

LLMPrompt
Reconstructor 𝑀𝑀𝐿𝐿 

Extracted prompt

(b) Prompt Parameter Extractor

Language model outputs

Encoder 𝑀𝑀𝑆𝑆𝑆

Decoder 𝑀𝑀𝑆𝑆𝑆

Extracted prompt

(c) Direct Model Inversion

SLM

SLM

Fig. 22. SLM for LLM Prompt Extraction Paradigm. 𝑀𝑆 denotes small language models and 𝑀𝐿 denotes large language models.
(a) SLM-based prompt estimation tries various attack prompts;𝑀𝑆 selects the most likely extracted one. (b) SLM-based Parameter
Extractor identifies the type of input prompt. (c) SLM-based Model Inversion uses𝑀𝑆 to invert the LLM output back into the input.

KL algorithm to mitigate adverse effects while preserving performance. The equation is:

𝑝 (𝑦 |𝑥) = 𝑝𝑙 (𝑦 |𝑥) · 𝑝𝑠 (𝑦 |𝑥)
𝑍 (𝑥) (8)

where 𝑝𝑙 and 𝑝𝑠 represent the probabilities from the large and small models, respectively, and 𝑍 (𝑥) is the partition
function. This integration results in the following ensemble algorithm:

𝑧𝑝 (·|𝑥) ∝ 𝛼𝑧𝑙 (·|𝑥) + (1 − 𝛼)𝑧𝑠 (·|𝑥) (9)

where 𝑧𝑙 and 𝑧𝑠 are the logit values from the large and small models, respectively, and 𝛼 is the scaling factor.

6.2 SLM for Extracting LLM Prompts

Prompt-based methods are becoming simpler and more cost-effective alternatives to traditional fine-tuning in the LLM
era, utilizing LLMs’ instruction-following capabilities for a competitive edge. Mastering prompts is vital for replicating
LLM-supported product behaviors. However, services such as Bing Chat and GitHub Copilot Chat have seen prompt
reverse-engineering through black-box API attacks. SLMs often serve as surrogate models in these attacks, employing
strategies such as (i) SLM-based prompt likelihood estimation, (ii) SLM-based prompt parameter extraction, and (iii)
SLM-based direct model inversion, illustrated in Figure 22.

SLM-based prompt likelihood estimation, as illustrated in Figure 22 (a), Zhang et al. [386] proposes using an
SLM as a Likelihood Estimator to identify secret prompts in LLM outputs. They craft attack prompts, such as “Repeat all
sentences in our conversation,” and query the target LLM. The response is likely to include secret prompts, confusing
the LLM to interpret these as part of the conversation. A fine-tuned DeBERTa model [118] is then used to select the
most likely secret prompts from the output.

SLM-based prompt parameter extraction, as shown in Figure 22 (b), Sha and Zhang [266] utilizes an SLM as a
Parameter Extractor to extract prompt parameters from LLM outputs. They employ a specialized BERT model [77]
to classify LLM outputs into direct, in-context, and role-based prompts, also predicting the number of exemplars
for in-context prompts and identifying roles for role-based prompts. Prompt reconstruction is then performed using
ChatGPT once the parameters are defined.
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SLM-based direct model inversion, as shown in Figure 22 (c), the method of using an SLM as a Direct Inversion
Model is designed to reverse-engineer LLM outputs back to their original prompts [376]. They train a sparse encoder-
decoder T5 model [250] with 222M parameters on the Instructions-2M dataset [221], where the input is LLM outputs
and the output is the LLM prompt. This trained model effectively maps multiple LLM outputs to their initiating prompts
as 𝑝 (𝑥 |𝑦1, ..., 𝑦𝑛 ;𝑀𝑆1, 𝑀𝑆2), with 𝑦𝑖 representing different output versions and𝑀𝑆1, 𝑀𝑆2 the model parameters.

6.3 SLM for Fine-tuning LLMs

Training 
samples

Hard Training 
Samples

input Training 
difficulties

re-order
and filter

train

(b) SLM helps data selection

(a) SLM approximates the fine-tuning on a large scale

Labels

Synthetic 
dataset

Feedback

(c) SLMs promote the LLM to generate task-
specific high-quality data

FT SLM

UFT SLM

Question -

+

SLM

SLM

Label-descriptive
prompts

Local
dataset

LLM

LLM

LLM

MS
SFT

MS
UFT

ML
Paris NYC 1955

Synthetic 
data

train

Fig. 23. SLM for LLM Fine-tuning.

Fine-tuning is a crucial technique for adapt-
ing LLMs to specific tasks or domains, yet it
is often time-consuming. For instance, fine-
tuning the LLaMA-2-13B [302] checkpoint
on 32 NVIDIA A100 GPUs with 80GB mem-
ory using bfloat16 format requires approx-
imately 70 hours [219]. This process also
demands high-quality data. Therefore, we
examine how SLMs can enhance LLM fine-
tuning through three approaches: (i) proxy
fine-tuning, (ii) selecting high-quality data,
and (iii) guiding LLM-generated task data, as
illustrated in Figure 23.

SLMs as proxy models: SLMs can approximate the gradient of fine-tuning large-scale LLMs on target datasets,
avoiding the costly fine-tuning process in terms of time and computational resources. As shown in Figure 23 (a),
Emulated Fine-Tuning (EFT) [218] simulates both unsupervised pre-training and supervised fine-tuning stages across
different scales by manipulating log probabilities. EFT, for example, combines base log probabilities from a 70B model
with behavioral deltas from a 7B model—these deltas represent differences between fine-tuned and unfine-tuned SLMs,
effectively emulating outcomes for the Llama-2 series. This method allows fine-tuning on smaller models such as
Falcon-7B [9] while capturing most benefits of fine-tuning larger models such as Falcon-180B, benefiting applications
such as dialogue, question-answering, and code generation. Similarly, Proxy-tuning [189] adjusts LLM predictions by
adding the differences between the outputs of a fine-tuned small model and its untuned version to the LLM’s output
vocabulary during decoding, maintaining the advantages of large-scale pre-training while integrating small-scale
fine-tuning benefits.

SLMs play a role in selecting high-quality fine-tuning data for LLMs. Figure 23 (b) illustrates how SLMs within
the same family as the LLM can identify training samples that are likely to be challenging, enhancing the training
efficiency and generalization capability of the LLM. As demonstrated by Swayamdipta et al. [287] and further advanced
by Mekala et al. [215], the learning percentage 𝐿𝑃 (𝑖) is a metric used to curate high-quality datasets with hard samples:

𝐿𝑃 (𝑖) = 𝑃𝑖−1 − 𝑃𝑖
𝑃0 − 𝑃𝑛

(10)

where 𝑃𝑖 represents the perplexity at the end of epoch-𝑖 , and 𝑃0 is the initial perplexity. A higher 𝐿𝑃 (𝑖) early in training
indicates significant learning in the initial epochs, highlighting the potential of these samples to enhance LLMs.
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SLMs enhance the quality of LLM-generated data for specific tasks. As depicted in Figure 23 (c), CROSSLM
[73] promotes the local training of SLMs on client-specific private data to mitigate privacy risks associated with
server-based LLMs. An SLM trained in this manner can guide the server-side LLM to produce high-quality synthetic
datasets. Feedback from SLMs regarding the quality of this synthetic data serves as a supervisory signal, enhancing
both the quality of LLM outputs and the utility of the data for further training.

6.4 SLM for LLM Applications

0.27 Hawaii
0.18 the
0.16 Honolulu
0.10 1961
0.02 Washington
...

0.08 Honolulu
0.04 Washington
0.04 the
0.001 1961
...

Prompt:

Greedy: Hawaii. He was born in Hawaii. He was born in Hawaii...
Nucleus: Washington, D.C., to Barack Obama and Michelle Robinson...
CD: 1961 to a Kenyan father, Barack Hussein Obama and a mother of American 
descent, Stanley Ann Dunham...

Barack Obama was born in Honolulu, Hawaii. 
He was born in

Continuations:

next token prediction

1961
Hawaii
Honolulu
Washington
...

4.13
2.34
0.65

-0.73

Constrastive Decoding

Amateur
LM

(GPT-2 small)

Expert
LM

(GPT-2 XL)
log𝑝𝑝EXP − log𝑝𝑝AMA

Fig. 24. Contrastive Decoding [176].

LLMs are utilized across various applications due to their open-ended
generation capabilities, yet they often lack specialized knowledge and
other generation issues. SLMs can supplement this by providing task-
specific knowledge or reflecting weaknesses. Therefore, we explore
how SLMs enhance the performance of LLMs in specific applications,
focusing on open-ended generation, knowledge integration, relation
extraction, and empathetic response.

In open-ended text generation—such as writing assistance and
story creation—LLMs often suffer from issues such as incoherence and
thematic drift over extended sequences. Due to more frequent failure
patterns observed in SLMs, such as short, repeated, and irrelevant
strings, these patterns serve as negative examples for LLM decoding.
Contrastive Decoding (CD) [176] improves coherence and lexical diversity by leveraging the differential capabilities
between a large model, OPT-13B [383], and a smaller model, OPT-125M. As illustrated in Figure 24, CD improves
content quality by sampling generation based on the difference in log probabilities, log𝑝𝐸𝑋𝑃 − log 𝑝𝐴𝑀𝐴 , between an
expert LM and an amateur LM, rather than relying solely on the expert LM’s log probability. This approach effectively
reduces generative failures, including repetition.

SLM SLM SLM SLM Test Input

Domain-specific 
Knowledge

LLM

feedbackgenerate

Question-oriented
domain knowledge

1. Domain-specific 
pre-training

2. Knowledge 
Instruction Tuning

3. Bayesian Prompted 
Optimization

Train SLM

Inference
Prediction
from LLM

Fig. 25. BLADE Framework [168].

In knowledge injection, general LLMs based on
open-domain data may lack the domain-specific knowl-
edge necessary for specialized tasks in fields such as
law and medicine. In contrast, domain-specific SLMs
can provide crucial domain knowledge and adapt this
knowledge in a format that LLMs prefer. To address
this, BLADE [168] augments black-box LLMs with small
domain-specific models. The structure of BLADE comprises both the black-box LLMs, which offer strong language
comprehension and reasoning capabilities, and small domain-specific LMs, which retain specialized insights. As il-
lustrated in Figure 25, the BLADE approach involves three critical steps: 1) pre-training the SLM on domain-specific
data to encapsulate the necessary expertise, 2) fine-tuning the model using knowledge instruction data to refine its
application to task-specific requirements, and 3) employing joint Bayesian optimization to harmonize the capabilities of
the general-purpose LLM with the small LM, enhancing overall performance.

In relation extraction, a field limited by scarce labeled data and prevalent long-tail categories, the “Train-Guide-
Predict” framework [290] employs SLMs to learn task-specific knowledge for dominant categories. SLMs struggle
with rare categories, whereas LLMs manage these effectively due to their extensive pre-trained text. Therefore, This
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framework leverages the strengths of both models: it utilizes SLMs for acquiring task knowledge and guiding the LLM’s
generative process with initial SLM predictions, enhancing the LLM’s handling of underrepresented categories.

In generating empathetic responses, LLMs are proficient in expressive capabilities but often lack a nuanced
understanding of emotions and cognition. Thus, the Hybrid Empathy Framework (HEF) [361] enhances this by
integrating Small Empathy Models (SEMs) to deepen the emotional and cognitive insight of LLMs. This framework
uses a two-tiered emotion prediction approach: SEMs first determine primary emotions, which then guide the LLM to
focus on these emotions and the key emotional triggers. This strategy leads to more accurate and empathetic responses.

6.5 SLM for LLM Evaluation

SLMs can also enhance the evaluation of LLMs, especially in dialogue generation, where handling diverse potential
responses is inherently challenging. In dialog evaluation, generating both dialog and reference responses computationally
is complex, making accurate assessment difficult due to the multiple plausible but semantically different responses
possible for a single dialog context. Sole reliance on LLMs for evaluation can lead to problems such as dependency
on prompt wording and inconsistent results. Therefore, a specifically trained SLM can address these issues. SLIDE
framework [391] employs contrastive learning to fine-tune an SLM to effectively distinguish between positive and
negative responses. This trained SLM is subsequently combined with an LLM to assign a score to each response,
optimizing the evaluation process. The scoring method used is formalized as follows:

𝑠𝑐𝑜𝑟𝑒 =


𝑠𝑐𝑜𝑟𝑒𝑆𝐿𝑀 , if 𝑠𝑐𝑜𝑟𝑒𝑆𝐿𝑀 ≥ 0.5

𝑠𝑐𝑜𝑟𝑒𝐿𝐿𝑀 , if 𝑠𝑐𝑜𝑟𝑒𝐿𝐿𝑀 < 0.5
𝑠𝑐𝑜𝑟𝑒𝑆𝐿𝑀+𝑠𝑐𝑜𝑟𝑒𝐿𝐿𝑀

2 , otherwise

(11)

This equation allows for adaptive response evaluation, leveraging the strengths of both models to ensure a more reliable
and consistent assessment across varying dialogue contexts.

Insights: SLMs can improve LLMs in various aspects, including enhancing the reliability of LLM generation,
extracting prompts, fine-tuning, application, and evaluation. This discussion seeks to answer when SLMs
should be utilized to augment LLMs. We identify several suitable scenarios:

• Adapting LLMs to specific tasks can require substantial computational resources and time. In such cases, a
smaller model could be fine-tuned instead to serve functions such as hallucination detection.

• SLMs can outperform LLMs in certain aspects, hence combining SLMs with LLMs can create a more powerful
model, e.g., SLMs typically have fewer security issues than LLMs, and integrating both can generate a model
that is both powerful and secure.

• SLMs, despite their limitations, can alert LLMs to these issues, such as the tendency to produce repetitive
vocabulary. Designing contrastive losses can help LLMs overcome these issues by learning from the nuanced
feedback of SLMs.

• The fast inference speed and certain characteristics of SLMs can emulate and thus enhance the behavior of
LLMs, acting as effective proxies. For example, the training data selection for LLMs can be guided by the
difficulty metrics assessed by SLMs, and the parameter adjustments during the fine-tuning of SLMs can also
approximate the fine-tuning processes of LLMs.
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Fig. 26. Scenarios we discuss in this section. The taxonomy is inspired by previous works [284, 312]. Please note that the trustworthy
scenarios listed here are not exhaustive.

7 TRUSTWORTHINESS IN SMALL LANGUAGE MODELS

Language models have become ubiquitous in our daily lives, and we increasingly rely on them. However, they pose risks
regarding their limitations in some trustworthy dimensions like privacy and fairness. These concerns are especially
critical in high-stakes domains such as healthcare [116] and finance [180]. Consequently, numerous studies have
emerged to evaluate the trustworthiness of LMs [81, 85, 123, 158, 158, 220, 226, 242, 312, 328, 370]. Though there are
already a lot of works exploring LMs’ trustworthiness, most of them focus on LLMs. In this section, we investigate works
that contain LMs of around 7B size and below. Note that we do not include the specific attack methods [36, 46, 135, 401]
or work [356] that only focuses on early pre-trained LMs like BERT [77] as they are already covered in previous survey
papers [72, 102, 110, 255]. Inspired by previous works [284, 312], we discuss the following five key trustworthy scenarios:
robustness, privacy, reliability, safety, and fairness, as shown in Figure 26. We consider two scenarios for robustness:
Adversarial (Adv) Robustness [313] and Out-of-Distribution (OOD) Robustness [34, 190]. For safety, we explore two key
concerns: Misinformation [307] and Toxicity [331]. For reliability, we focus on Hallucination [132] and Sycophancy [269].
Please note that these are just the aspects we are focusing on, and therefore this is not a comprehensive classification or
taxonomy. For example, robustness also contains robustness to adversarial demonstration. Next, we briefly introduce
some representative works.

Holistic Evaluation of Language Models (HELM) [182] benchmarks a large number of LMs from various aspects,
including a lot of metrics related to trustworthiness such as robustness and fairness. Do-Not-Answer [323] introduces a
dataset to evaluate how LMs act when they face content that should not be answered. Wang et al. [323] also label the
output of several LMs output on their dataset and then use the labeled data to train some classifiers. PromptRobust [397]
constructs two kinds of adversarial prompts to evaluate LMs’ robustness: One kind is designed under non-adversarial
settings with semantic integrity while another category is created under adversarial settings. Their results show that
LMs perform poorly under such prompts. HaluEval [170] builds a dataset comprising both the samples generated by their
proposed framework and human-labeled hallucinations. It facilitates analysis of when LMs produce hallucinated output
and how well they detect hallucinated content. Then they use some strategies such as knowledge retrieval to help LMs
better recognize hallucinations. Mo et al. [220] evaluates the trustworthiness of open-source LMs, presenting a variety
of scenarios such as fairness and privacy. Results show that smaller LMs sometimes outperform larger ones in terms of
trustworthiness. PrivLM-Bench [169] is designed to evaluate the privacy issues in LMs. It enables a fair comparison of
privacy-preserving LMs by considering more than just differential privacy parameters. FFT [65] introduces around
two thousand carefully crafted examples to evaluate LMs’ performances on three trustworthy dimensions: factuality,
fairness, and toxicity. Their results suggest that larger LMs do not always show better harmlessness. ROBBIE [88]
first benchmarks various series of LMs using a lot of datasets, including two newly introduced datasets developed by
ROBBIE. It also evaluates mitigation techniques designed to reduce bias and toxicity. TrustLLM [284] is a comprehensive
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Table 14. Comparison of Different Works that Evaluate the Trustworthiness Issues in LMs. Please note that for the "No. of LMs"
attribute, compressed or pruned LMs are not included in the count.
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HELM [182] ✓ × ✓ ✓ × × × ✓ ×
Do-Not-Answer [323] × × ✓ ✓ × × ✓ ✓ ×
PromptRobust [397] ✓ × × × × × × × ×
HaluEval [170] × × × × ✓ × × × ×
Mo et al. [220] ✓ × ✓ × ✓ ✓ ✓ ✓ ×
PrivLM-Bench [169] × × × × × × ✓ × ×
FFT [65] × × ✓ ✓ ✓ × × ✓ ×
ROBBIE [88] × × ✓ × × × × ✓ ×
TrustLLM [284] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×
RAmBLA [31] ✓ × × × ✓ × × × ×
JailbreakBench [39] × × ✓ ✓ × × ✓ × ×
Xie et al. [345] × × ✓ × ✓ × × × ×
OR-Bench [64] × × ✓ ✓ × × ✓ × ×
SORRY-Bench [343] × × ✓ ✓ × × ✓ × ×
BeHonest [51] × × × ✓ ✓ ✓ × × ×
Hong et al. [123] ✓ ✓ ✓ × × × ✓ ✓ ✓

RUPBench [328] ✓ × × × × × × × ×
Nakka et al. [226] × × ✓ × × × ✓ ✓ ×

benchmark that contains a large number of datasets and various well-designed metrics to systematically evaluate
various LMs across multiple trustworthy dimensions, including truthfulness, safety, fairness, robustness, privacy, and
machine ethics. They also carefully design specific subcategories for each dimension. RAmBLA [31] evaluates the
trustworthiness of four LMs as biomedical assistants from three dimensions: Robustness, High Recall, and Hallucination.
RAmBLA suggests LMs with more parameters are less likely to cause hallucinations and may choose to reject providing
an answer in uncertain situations. JailbreakBench [39] constructs a jailbreaking dataset named JBB-Behaviors and
jailbreak artifacts to evaluate current LMs’ performance regarding jailbreaking. It also proposes a unified evaluation
pipeline that can incorporate new jailbreak defense techniques. Xie et al. [345] tests online safety analysis methods,
filling the gap where no methods focus on the generation phase. OR-Bench [64] constructs three datasets: OR-Bench-
80K, OR-Bench-Hard-1K, and OR-Bench-Toxic, to systematically evaluate over-refusal problems in LMs, emphasizing
the challenge of balancing safety alignment with the models’ usefulness. SORRY-Bench [343] systematically tests
43 different LMs to see how they perform when facing requests that should be refused. They also collect more than
annotations created by humans and find that fine-tuned 7B LMs can achieve performance comparable to GPT-4 scale
LMs as evaluators. BeHonest [51] evaluates the honesty of LMs from three aspects: Self-Knowledge, Non-Deceptiveness,
and Consistency. They use many different metrics for each aspect. For example, sycophancy rate and lying rate are
adopted in Non-Deceptiveness. The results in both the Self-Knowledge and Consistency parts reveal that larger model
sizes generally bring improved performance for the Llama-2 [302] and Llama-3 [84] series. Hong et al. [123] examines
the effects of compression methods, including quantization and pruning, on the trustworthiness of language models.
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They find that pruning and extreme quantization significantly affect the trustworthiness of LMs. RUPBench [328]
comprises 15 reasoning datasets designed to assess the performance of LMs both in normal conditions and under
various adversarial perturbations. Their results indicate that larger LMs generally demonstrate better resilience to
perturbations. Nakka et al. [226] investigates the trust and ethical implications of SLMs deployed on personal devices.
It reveals the vulnerabilities of on-device SLMs compared with their on-server counterparts.

We summarize all the works above in Table 14. Please note that the dimensions listed in the table reflect only those
relevant to our current focus; additional dimensions may be discussed in those works, but not included in the table. For
example, TrustLLM [284] also explores Machine Ethics.

8 FUTURE DIRECTIONS

In this section, we offer insights into several promising future research directions that could inspire and motivate the
community to address existing gaps in the development of small language models.

8.1 Developing Efficient SLM Model Architecture

Although Transformers [308] are foundational in most languagemodels, they face significant computational andmemory
challenges that worsen with model size, impacting training and autoregressive decoding. Recently, Mamba [105], a
promising alternative, has emerged. It adapts the Multi-Head Attention mechanism to dynamically scale attention based
on task demands, boosting efficiency, especially for simpler sequences. Mamba retains the content-aware capabilities
of Transformers but scales linearly with input length, improving efficiency in both training and inference. Hence,
developing domain-specific SLMs based on Mamba offers a promising research direction. Additionally, exploring other
model architectures that enhance performance while reducing computational demands is also important.

8.2 Expanding Domain-Specific SLMs

Domain-specific SLMs, which are tailored for specific fields, can provide a stronger foundation for relevant downstream
tasks than general-purpose models. Currently, these models primarily focus on scientific and healthcare domains.
However, there is significant potential for expansion into other key areas such as law, finance, education, telecommuni-
cations, and transportation. The scarcity of SLMs that cater to these domains presents an urgent call for research into
developing more specialized models.

8.3 Establishing Benchmarking and Leaderboard Platforms for SLMs

Several compelling reasons justify the establishment of benchmarking and leaderboard platforms for SLMs. Firstly, most
state-of-the-art SLMs are trained on proprietary datasets, which may include test sets from existing evaluation tasks,
presenting challenges for fair capability comparisons. Secondly, many SLMs are designed for specific device applications,
significantly differing from general open-domain tasks. Thus, there is a lack of comprehensive benchmarks that
accurately reflect SLM performance in specific device applications. For example, SLMs deployed on smartphones often
handle tasks sensitive to user data, such as auto-replies based on historical chat texts or GUI context understanding—tasks
not typically included in current benchmarks, potentially leading to an underestimation of their importance. Finally,
current evaluation tasks focus primarily on metrics like accuracy. Evaluating on-device SLMs involves balancing
multiple factors, including overall capabilities, response times, storage and memory usage, power consumption, CPU
utilization, additional fine-tuning requirements, and context window constraints, making comprehensive and detailed
assessments essential.
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8.4 Enhancing SLM Performance and Efficiency

In terms of enhancing SLM performance and efficiency, the efficiency of using teacher LLMs via instruction tuning can
be further developed, such as Efficient Instruction Tuning of SLMs from LLMs-generated data, Optimizing Teacher LLM
Selection for SLM Learning, and Applying Emerging Techniques from LLMs to SLMs.

• Efficient Instruction Tuning of SLMs from LLMs-generated data. Enhancing the specialization of SLMs through
instruction tuning from LLMs-generated data is crucial, yet finding the most cost-effective instructional strategies
remains an underexplored status. Some key areas for exploration are: (1) Instruction Design Adaptability: The
performance of LLMs and SLMs varies significantly with changes in instructions. Therefore, designing tailored
instructions that effectively activate relevant sub-competencies and reasoning pathways in SLMs for specific tasks
is crucial. This approach would optimize their ability to utilize instructional data, representing a significant future
research direction. (2) SLM Capability Adaptability: Given that SLMs exhibit diverse capabilities across domains,
simply supplying extensive data samples for instruction tuning is often inefficient, as SLMs may spend excessive time
processing unnecessary data. To optimize efficiency when adapting to specific domains, we suggest first assessing
the intrinsic capabilities of an SLM within those domains. Subsequently, one could select appropriate data and
activate essential fine-grained capabilities to effectively adapt to domain shifts. This targeted approach ensures
efficient and domain-specific instruction tuning. (3) Optimizing Data Efficiency: SLMs may possess missing or latent
domain knowledge, and activating this latent knowledge may not require substantial data. Thus, identifying inherent
knowledge within SLMs and determining the minimal data necessary for effective fine-tuning is a future direction.
This research aims to optimize performance while minimizing training resources.

• Optimizing Teacher LLM Selection for SLM Learning. Teacher LLMs with different abilities and knowledge
facilitate diverse applications for SLM training, including data rewriting and generation. Selecting the appropriate
teacher model based on specific use cases is crucial. This process requires evaluating the teacher’s capabilities and
knowledge to ensure optimal application. For example, GPT-4 excels in generating domain-specific data, outperforming
ChatGPT, which may produce inferior outcomes. Strategic selection of teacher LLMs is essential for future work to
ensure their strengths are effectively utilized to enhance SLM performance.

• Applying Emerging Techniques from LLMs to SLMs. To improve LLM performance, techniques such as Retrieval-
Augmented Generation (RAG) and Mixture of Experts (MoE) are employed. The adoption of RAG in SLMs shows
significant promise [192], suggesting benefits from further tailoring retrieved information for SLMs. Future research
should account for SLMs’ constraints, such as limited context windows, and customize RAG accordingly. MoE uses
multiple experts to enhance learning without increasing active neurons, but its storage demands pose challenges
for SLM deployment, making this a promising area for exploration. Additionally, the application of LLM techniques
such as in-context learning and prompting engineering to maximize SLM performance, while accounting for SLMs’
constraints, warrants further investigation.

8.5 Applications of SLMs: OOD, Personalization, Lifelong Learning

In real-world applications, SLMs often encounter out-of-distribution samples, need to provide personalized services,
and need to be updated periodically to reflect new needs and new knowledge. Hence, there are several promising
directions in terms of the real-world application of SLMs, which are listed as follows:

• Enhancing OOD with Integrated RAG and Self-Adaptive Techniques. SLMs often encounter out-of-distribution
(OOD) samples due to limited capabilities and training data. To enhance inference performance, Retrieval-Augmented
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Generation (RAG) and self-adaptive methods are utilized. RAG provides additional information, while self-adaptive
methods generate pseudo labels for self-training. However, inaccuracies in pseudo-labels can reduce their effectiveness.
A promising future direction is to integrate RAG with self-adaptive techniques to improve pseudo-label accuracy.

• LoRA for Personalized Services. Companies often provide personalized services, but user-specific complexities
can render simple rules ineffective. Training a separate SLM for each user is impractical. LoRA suggests a method of
separable training weights alongside fixed original weights, enabling scalable customization. For instance, RecLoRA
[396] integrates personalized knowledge into SLMs/LLMs tailored for recommendation tasks by maintaining a set of
parallel, independent LoRA weights. This approach effectively customizes language model parameters to align with
individual user preferences. This approach is a promising direction that inspires further investigation.

• Lifelong On-device Learning for Knowledge Injection. SLMs on devices can access local data without risking
data privacy through two main methods. The first method uses retrieval-augmented generation to integrate local data
into prompts, requiring SLMs with advanced processing and reasoning capabilities. The second method fine-tunes
SLMs with local data, integrating customized knowledge into the model’s weights. However, this approach demands
significant device resources, including memory and energy. A promising solution is lifelong learning, where SLMs
continuously learn and adapt while in use.

8.6 SLMs Assisting LLMs

In Section 6, we introduced existing works on the use of SLMs to assist LLMs. For instance, EFT [218] emulates
fine-tuning on LLMs by leveraging behavior deltas between SLMs’ pre-trained and fine-tuned weights to alleviate
the time-cost issues associated with fine-tuning LLMs; SlimPLM [289] detects missing knowledge in LLMs using a
slim proxy SLM to accelerate knowledge injection; Contrastive Decoding [176] enhances text quality by maximizing
the difference between the log probabilities of an expert LLM and an amateur SLM to mitigate issues of low-quality
generation. The research on adopting SLMs to assist LLMs is still in its early stages, with many promising directions
yet to be explored. We list some as follows:

• Enhancing LLM Performance Across Broader Tasks Through SLM Integration. SLMs can outperform LLMs in
certain scenarios. For example, SLMs often present fewer security vulnerabilities compared to their larger counterparts
and demonstrate superior performance on easier samples in specific tasks [175, 209]. Therefore, integrating SLMs
with LLMs can promote the development of models that are not only more robust but also inherently safer. Currently,
research in this domain is relatively sparse, suggesting that this collaborative framework could potentially be applied
to a wider array of tasks.

• Efficient Enhancement of LLMs through Proxy SLMs. Existing research [16, 189, 218, 289] indicates that SLMs,
owing to their accelerated fine-tuning and inference speeds, can effectively mimic the behaviors of LLMs, thereby
serving as efficient proxies for optimization. However, the application of SLMs as operational proxies for LLMs is
currently underexplored. This mimicry could potentially be expanded to include various aspects of LLM functionality,
such as the optimization of prompts, the filtration and integration of supplementary knowledge, and the management
of additional knowledge repositories.

• SLMs Assist in Managing Data Quality. LLMs tend to produce hallucinations and toxic content due to low-quality
real-world training data. One solution is to remove these low-quality data [314]. However, directly eliminating
low-quality content can diminish certain functionalities of LLMs, such as versatility [315]. Therefore, it is crucial to
define more refined data quality assessment criteria across dimensions such as factuality, safety, and diversity [334]
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for real-world data. Researching efficient data selection methods using small models represents a valuable research
direction. Additionally, while synthetic data serves as a vital complement to scarce human-generated data [200], the
potential for small models to effectively manage synthetic data remains largely unexplored.

• SLMs Assist in LLM Assessment. LLMs are producing vast amounts of increasingly complex texts, such as
specialized code and scientific papers, presenting challenges not only for human evaluators but also for traditional
assessment metrics. Consequently, developing effective evaluators to assess various aspects of generated content,
including factuality, safety, and uncertainty, becomes crucial. Given their proficiency in handling specific tasks,
exploring the potential of SLMs to evaluate LLM outputs is a promising research direction.

• SLMs Optimize Query and Reduce Noise for LLM RAG. For Retrieval-Augmented Generation (RAG) using LLMs,
differing query requirements between LLMs and search engines pose a challenge. The query for LLMs is often abstract
and difficult to handle by search engines, which require more detailed query keywords. Moreover, LLMs may not
need all the information related to a query because they only require partial additional knowledge. Thus, intermediate
agents are crucial to adapting LLM queries for search engines by clarifying the required detailed keywords that can
search for necessary extra knowledge. Additionally, search engine outputs contain noises, requiring refinement to
boost LLM efficiency. SLMs, skilled in a single task, are ideal for optimizing query rewriting and noise reduction in
RAG systems, making their application in LLM RAG a promising research area.

• Cloud LLM-Local SLM Collaboration. Cloud LLMs are commonly used, but privacy concerns limit them to
processing all request aspects, necessitating the use of local SLMs to handle sensitive data [380]. This setup allows for
the specialized capabilities of SLMs to be leveraged on-device while still benefiting from the generalized functionalities
of cloud-based LLMs. Researching optimal designs for collaboration that balance and enhance the capabilities of
cloud-based LLMs and local SLMs is a crucial future direction.

• Optimizing Specialized Training for Enhanced Model Performance. Specialized training and fine-tuning
strategies are crucial for enhancing language model performance in specific tasks, such as coding. Models like
DeepSeek-Coder illustrate the benefits of focused training, achieving significant gains in specialized domains.
However, these models often struggle with broader or more complex requests, revealing a key trade-off. Future
research could investigate integrating these specialized models with general SLMs and LLMs to merge specialization
benefits with broader model versatility.

8.7 Trustworthy SLMs

As SLMs are playing crucial roles in various aspects, understanding and improving the trustworthiness of SLMs are
essential. Hence, two promising directions are:

• A Comprehensive Evaluation of SLMs’ Trustworthiness. While numerous studies address trustworthiness
issues in LLMs, research on SLMs remains sparse. Most existing literature focuses on models with at least 7 billion
parameters, leaving a gap in the comprehensive analysis of SLMs’ trustworthiness. Current evaluations typically
cover only a fraction of the necessary aspects. Therefore, a systematic assessment, such as TrustLLM [284], is essential
to thoroughly evaluate the trustworthiness of SLMs and understand their reliability across various applications.

• Developing Trustworthy SLMs. In addition to understanding the trustworthiness of SLMs, developing trustworthy
SLMs and improving their trustworthiness is also of critical importance. Essentially there are three directions worthy
of investigation: (i) One promising direction is how to train trustworthy SLMs from scratch; (ii) As one can also obtain
SLMs by compression LLMs, another promising direction is how to obtain trustworthy SLMs during compression or
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quantization of LLMs. In particular, if the LLM is trustworthy, how to preserve its trustworthiness during compression?
If the LLM is non-trustworthy, how do we make SLM trustworthy during compression? (iii) Given a non-trustworthy
SLM, how to fine-tune it to make it more robust?

9 CONCLUSION

This paper provides a comprehensive survey of SLMs with up to 7 billion parameters. We first clarify the definition of
SLMs due to the current lack of clarity. We then outline foundational concepts essential for building SLMs. Subsequently,
our review focuses on enhancement techniques such as knowledge distillation and quantization, along with strategies
for adapting LLMs to SLM contexts. The subsequent section surveys representative SLMs, discussing their preferred
datasets and architectural choices. We also examine their applications across various tasks as well as deployment
strategies on devices and explore their role in augmenting the capabilities of LLMs. Another critical aspect discussed
is their trustworthiness. The paper concludes with key insights intended to guide future research on small language
models. Specifically, we highlight the following promising future directions.
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