
Reinforcement Learning: An Overview1

Kevin P. Murphy

December 9, 2024

1Parts of this monograph are borrowed from chapters 34 and 35 of my textbook [Mur23]. However, I have added a
lot of new material, so this text supercedes those chapters. Thanks to Lihong Li, who wrote Section 5.4 and parts of
Section 1.4, and Pablo Samuel Castro, who proof-read a draft of this manuscript.

ar
X

iv
:2

41
2.

05
26

5v
1

 [
cs

.A
I]

 6
 D

ec
 2

02
4

2

Contents

1 Introduction 9
1.1 Sequential decision making . 9

1.1.1 Problem definition . 9
1.1.2 Universal model . 9
1.1.3 Episodic vs continuing tasks . 11
1.1.4 Regret . 12
1.1.5 Further reading . 13

1.2 Canonical examples . 13
1.2.1 Partially observed MDPs . 13
1.2.2 Markov decision process (MDPs) . 13
1.2.3 Contextual MDPs . 14
1.2.4 Contextual bandits . 15
1.2.5 Belief state MDPs . 15
1.2.6 Optimization problems . 16

1.2.6.1 Best-arm identification . 17
1.2.6.2 Bayesian optimization . 17
1.2.6.3 Active learning . 17
1.2.6.4 Stochastic Gradient Descent (SGD) . 17

1.3 Reinforcement Learning . 18
1.3.1 Value-based RL (Approximate Dynamic Programming) 18
1.3.2 Policy-based RL . 19
1.3.3 Model-based RL . 19
1.3.4 Dealing with partial observability . 20

1.3.4.1 Optimal solution . 20
1.3.4.2 Finite observation history . 20
1.3.4.3 Stateful (recurrent) policies . 20

1.3.5 Software . 20
1.4 Exploration-exploitation tradeoff . 21

1.4.1 Simple heuristics . 21
1.4.2 Methods based on the belief state MDP . 22

1.4.2.1 Bandit case (Gittins indices) . 22
1.4.2.2 MDP case (Bayes Adaptive MDPs) . 22

1.4.3 Upper confidence bounds (UCBs) . 22
1.4.3.1 Basic idea . 23
1.4.3.2 Bandit case: Frequentist approach . 23
1.4.3.3 Bandit case: Bayesian approach . 23
1.4.3.4 MDP case . 24

1.4.4 Thompson sampling . 24
1.4.4.1 Bandit case . 24
1.4.4.2 MDP case (posterior sampling RL) . 25

3

1.5 RL as a posterior inference problem . 25
1.5.1 Modeling assumptions . 26
1.5.2 Soft value functions . 27
1.5.3 Maximum entropy RL . 28
1.5.4 Active inference . 29

2 Value-based RL 31
2.1 Basic concepts . 31

2.1.1 Value functions . 31
2.1.2 Bellman’s equations . 31
2.1.3 Example: 1d grid world . 32

2.2 Computing the value function and policy given a known world model 33
2.2.1 Value iteration . 33
2.2.2 Real-time dynamic programming (RTDP) . 34
2.2.3 Policy iteration . 34

2.3 Computing the value function without knowing the world model 35
2.3.1 Monte Carlo estimation . 35
2.3.2 Temporal difference (TD) learning . 36
2.3.3 Combining TD and MC learning using TD(λ) . 36
2.3.4 Eligibility traces . 38

2.4 SARSA: on-policy TD control . 38
2.5 Q-learning: off-policy TD control . 39

2.5.1 Tabular Q learning . 39
2.5.2 Q learning with function approximation . 41

2.5.2.1 Neural fitted Q . 41
2.5.2.2 DQN . 41
2.5.2.3 Experience replay . 42
2.5.2.4 The deadly triad . 42
2.5.2.5 Target networks . 43
2.5.2.6 Two time-scale methods . 43
2.5.2.7 Layer norm . 43

2.5.3 Maximization bias . 44
2.5.3.1 Double Q-learning . 44
2.5.3.2 Double DQN . 45
2.5.3.3 Randomized ensemble DQN . 45

2.5.4 DQN extensions . 45
2.5.4.1 Q learning for continuous actions . 45
2.5.4.2 Dueling DQN . 46
2.5.4.3 Noisy nets and exploration . 46
2.5.4.4 Multi-step DQN . 46
2.5.4.5 Rainbow . 47
2.5.4.6 Bigger, Better, Faster . 48
2.5.4.7 Other methods . 48

3 Policy-based RL 49
3.1 The policy gradient theorem . 49
3.2 REINFORCE . 50
3.3 Actor-critic methods . 51

3.3.1 Advantage actor critic (A2C) . 52
3.3.2 Generalized advantage estimation (GAE) . 53
3.3.3 Two-time scale actor critic algorithms . 54
3.3.4 Natural policy gradient methods . 54

4

3.3.4.1 Natural gradient descent . 54
3.3.4.2 Natural actor critic . 56

3.4 Policy improvement methods . 56
3.4.1 Policy improvement lower bound . 56
3.4.2 Trust region policy optimization (TRPO) . 57
3.4.3 Proximal Policy Optimization (PPO) . 57
3.4.4 VMPO . 58

3.5 Off-policy methods . 59
3.5.1 Policy evaluation using importance sampling . 59
3.5.2 Off-policy actor critic methods . 60

3.5.2.1 Learning the critic using V-trace . 60
3.5.2.2 Learning the actor . 61
3.5.2.3 IMPALA . 61

3.5.3 Off-policy policy improvement methods . 62
3.5.3.1 Off-policy PPO . 62
3.5.3.2 Off-policy VMPO . 62
3.5.3.3 Off-policy TRPO . 62

3.5.4 Soft actor-critic (SAC) . 63
3.5.4.1 Policy evaluation . 63
3.5.4.2 Policy improvement: Gaussian policy . 64
3.5.4.3 Policy improvement: softmax policy . 64
3.5.4.4 Adjusting the temperature . 64

3.6 Deterministic policy gradient methods . 66
3.6.1 DDPG . 67
3.6.2 Twin Delayed DDPG (TD3) . 67

4 Model-based RL 69
4.1 Decision-time planning . 71

4.1.1 Model predictive control (MPC) . 71
4.1.2 Heuristic search . 71
4.1.3 Monte Carlo tree search . 72

4.1.3.1 AlphaGo and AlphaZero . 72
4.1.3.2 MuZero . 72
4.1.3.3 EfficientZero . 73

4.1.4 Trajectory optimization for continuous actions . 73
4.1.4.1 Random shooting . 73
4.1.4.2 LQG . 73
4.1.4.3 CEM . 73
4.1.4.4 MPPI . 74
4.1.4.5 GP-MPC . 74

4.1.5 SMC for MPC . 74
4.2 Background planning . 76

4.2.1 A game-theoretic perspective on MBRL . 76
4.2.2 Dyna . 78

4.2.2.1 Tabular Dyna . 78
4.2.2.2 Dyna with function approximation . 78

4.2.3 Dealing with model errors and uncertainty . 79
4.2.3.1 Avoiding compounding errors in rollouts . 79
4.2.3.2 End-to-end differentiable learning of model and planner 80
4.2.3.3 Unified model and planning variational lower bound 80
4.2.3.4 Dynamically switching between MFRL and MBRL 80

4.3 World models . 80

5

4.3.1 Generative world models . 80
4.3.1.1 Observation-space world models . 81
4.3.1.2 Factored models . 81
4.3.1.3 Latent-space world models . 81
4.3.1.4 Dreamer . 81
4.3.1.5 Iris . 83

4.3.2 Non-generative world models . 84
4.3.2.1 Value prediction . 84
4.3.2.2 Self prediction . 85
4.3.2.3 Policy prediction . 86
4.3.2.4 Observation prediction . 86
4.3.2.5 Partial observation prediction . 86
4.3.2.6 BYOL-Explore . 88

4.4 Beyond one-step models: predictive representations . 88
4.4.1 General value functions . 88
4.4.2 Successor representations . 88
4.4.3 Successor models . 91

4.4.3.1 Learning SMs . 92
4.4.3.2 Jumpy models using geometric policy composition 92

4.4.4 Successor features . 92
4.4.4.1 Generalized policy improvement . 93
4.4.4.2 Option keyboard . 94
4.4.4.3 Learning SFs . 94
4.4.4.4 Choosing the tasks . 95

5 Other topics in RL 97
5.1 Distributional RL . 97

5.1.1 Quantile regression methods . 97
5.1.2 Replacing regression with classification . 97

5.2 Reward functions . 98
5.2.1 Reward hacking . 98
5.2.2 Sparse reward . 98
5.2.3 Reward shaping . 98
5.2.4 Intrinsic reward . 99

5.2.4.1 Knowledge-based intrinsic motivation . 99
5.2.4.2 Goal-based intrinsic motivation . 100

5.3 Hierarchical RL . 100
5.3.1 Feudal (goal-conditioned) HRL . 100

5.3.1.1 Hindsight Experience Relabeling (HER) . 101
5.3.1.2 Hierarchical HER . 101
5.3.1.3 Learning the subgoal space . 102

5.3.2 Options . 102
5.3.2.1 Definitions . 102
5.3.2.2 Learning options . 103

5.4 Imitation learning . 104
5.4.1 Imitation learning by behavior cloning . 104
5.4.2 Imitation learning by inverse reinforcement learning 104
5.4.3 Imitation learning by divergence minimization . 105

5.5 Offline RL . 105
5.5.1 Offline model-free RL . 106

5.5.1.1 Policy constraint methods . 106
5.5.1.2 Behavior-constrained policy gradient methods 107

6

5.5.1.3 Uncertainty penalties . 107
5.5.1.4 Conservative Q-learning and pessimistic value functions 107

5.5.2 Offline model-based RL . 108
5.5.3 Offline RL using reward-conditioned sequence modeling 108
5.5.4 Hybrid offline/online methods . 109

5.6 LLMs and RL . 109
5.6.1 RL for LLMs . 109

5.6.1.1 RLHF . 110
5.6.1.2 Assistance game . 110
5.6.1.3 Run-time inference as MPC . 110

5.6.2 LLMs for RL . 111
5.6.2.1 LLMs for pre-processing the input . 111
5.6.2.2 LLMs for rewards . 111
5.6.2.3 LLMs for world models . 112
5.6.2.4 LLMs for policies . 112

5.7 General RL, AIXI and universal AGI . 113

7

8

Chapter 1

Introduction

1.1 Sequential decision making

Reinforcement learning or RL is a class of methods for solving various kinds of sequential decision making
tasks. In such tasks, we want to design an agent that interacts with an external environment. The agent
maintains an internal state st, which it passes to its policy π to choose an action at = π(st). The environment
responds by sending back an observation ot+1, which the agent uses to update its internal state using the
state-update function st+1 = U(st, at, ot+1). See Figure 1.1 for an illustration.

1.1.1 Problem definition

The goal of the agent is to choose a policy π so as to maximize the sum of expected rewards:

Vπ(s0) = Ep(a0,s1,a1,...,aT ,sT |s0,π)

[
T∑

t=0

R(st, at)|s0
]

(1.1)

where s0 is the agent’s initial state, R(st, at) is the reward function that the agent uses to measure the
value of performing an action in a given state, Vπ(s0) is the value function for policy π evaluated at s0, and
the expectation is wrt

p(a0, s1, a1, . . . , aT , sT |s0, π) = π(a0|s0)penv(o1|a0)δ(s1 = U(s0, a0, o1)) (1.2)
× π(a1|s1)penv(o2|a1, o1)δ(s2 = U(s1, a1, o2)) (1.3)
× π(a2|s2)penv(o3|a1:2, o1:2)δ(s3 = U(s2, a2, o3)) . . . (1.4)

where penv is the environment’s distribution over observations (which is usually unknown). We define the
optimal policy as

π∗ = argmax
π

Ep0(s0) [Vπ(s0)] (1.5)

Note that picking a policy to maximize the sum of expected rewards is an instance of the maximum
expected utility principle. There are various ways to design or learn an optimal policy, depending on the
assumptions we make about the environment, and the form of the agent. We will discuss some of these
options below.

1.1.2 Universal model

A generic representation for sequential decision making problems (which is an extended version of the
“universal modeling framework” proposed in [Pow22]) is shown in Figure 1.2. Here we have assumed the

9

Figure 1.1: A small agent interacting with a big external world.

Figure 1.2: Diagram illustrating the interaction of the agent and environment. The agent has internal state st, and
chooses action at based on its policy πt. It then predicts its next internal states, st+1|t, via the predict function P ,
and optionally predicts the resulting observation, ôt+1, via the observation decoder D. The environment has (hidden)
internal state zt, which gets updated by the world model W to give the new state zt+1 = W (zt, at) in response to the
agent’s action. The environment also emits an observation ot+1 via the observation model O. This gets encoded to et+1

by the agent’s observation encoder E, which the agent uses to update its internal state using st+1 = U(st, at, et+1).
The policy is parameterized by θt, and these parameters may be updated (at a slower time scale) by the RL policy πRL.
Square nodes are functions, circles are variables (either random or deterministic). Dashed square nodes are stochastic
functions that take an extra source of randomness (not shown).

10

environment can be modeled by a controlled Markov process1 with hidden state zt, which gets updated
at each step in response to the agent’s action at. To allow for non-deterministic dynamics, we write this as
zt+1 = W (zt, at, ϵ

z
t), where W is the environment’s state transition function (which is usually not known

to the agent) and ϵzt is random system noise.2, The agent does not see the world state zt, but instead
sees a potentially noisy and/or partial observation ot+1 = O(zt+1, ϵ

o
t+1) at each step, where ϵot+1 is random

observation noise. For example, when navigating a maze, the agent may only see what is in front of it, rather
than seeing everything in the world all at once; furthermore, even the current view may be corrupted by
sensor noise. Any given image, such as one containing a door, could correspond to many different locations in
the world (this is called perceptual aliasing), each of which may require a different action. Thus the agent
needs use these observations to incrementally update its own internal belief state about the world, using
the state update function st+1 = SU(st, at, ot+1); this represents the agent’s beliefs about the underlying
world state zt, as well as the unknown world model W itself (or some proxy thereof). In the simplest setting,
the internal st can just store all the past observations, ht = (o1:t,a1:t−1), but such non-parametric models
can take a lot of time and space to work with, so we will usually consider parametric approximations. The
agent can then pass its state to its policy to pick actions, using at+1 = πt(st+1).

We can further elaborate the behavior of the agent by breaking the state-update function into two
parts. First the agent predicts its own next state, st+1|t = P (st, at), using a prediction function P ,
and then it updates this prediction given the observation using update function U , to give st+1 =
U(st+1|t, ot+1). Thus the SU function is defined as the composition of the predict and update functions:
st+1 = SU(st, at, ot+1) = U(P (st, at), ot+1). If the observations are high dimensional (e.g., images), the
agent may choose to encode its observations into a low-dimensional embedding et+1 using an encoder,
et+1 = E(ot+1); this can encourage the agent to focus on the relevant parts of the sensory signal. (The state
update then becomes st+1 = U(st+1|t, et+1).) Optionally the agent can also learn to invert this encoder by
training a decoder to predict the next observation using ôt+1 = D(st+1|t); this can be a useful training signal,
as we will discuss in Chapter 4. Finally, the agent needs to learn the action policy πt. We parameterize this
by θt, so πt(st) = π(st;θt). These parameters themselves may need to be learned; we use the notation πRL
to denote the RL policy which specifies how to update the policy parameters at each step. See Figure 1.2 for
an illustration.

We see that, in general, there are three interacting stochastic processes we need to deal with: the
environment’s states zt (which are usually affected by the agents actions); the agent’s internal states st (which
reflect its beliefs about the environment based on the observed data); and the the agent’s policy parameters
θt (which are updated based on the information stored in the belief state). The reason there are so many
RL algorithms is that this framework is very general. In the rest of this manuscript we will study special
cases, where we make different assumptions about the environment’s state zt and dynamics, the agent’s
state st and dynamics, the form of the action policy π(st|θt), and the form of the policy learning method
θt+1 = πRL(θt, st, at, ot+1).

1.1.3 Episodic vs continuing tasks

If the agent can potentially interact with the environment forever, we call it a continuing task. Alternatively,
the agent is in an episodic task, if its interaction terminates once the system enters a terminal state or
absorbing state, which is a state which transitions to itself with 0 reward. After entering a terminal state,
we may start a new epsiode from a new initial world state z0 ∼ p0. (The agent will typically also reinitialize
its own internal state s0.) The episode length is in general random. For example, the amount of time a robot
takes to reach its goal may be quite variable, depending on the decisions it makes, and the randomness in the
environment. Finally, if the trajectory length T in an episodic task is fixed and known, it is called a finite
horizon problem.

We define the return for a state at time t to be the sum of expected rewards obtained going forwards,

1The Markovian assumption is without loss of generality, since we can always condition on the entire past sequence of states
by suitably expanding the Markovian state space.

2Representing a stochastic function as a deterministic function with some noisy inputs is known as a functional causal model,
or structural equation model. This is standard practice in the control theory and causality communities.

11

where each reward is multiplied by a discount factor γ ∈ [0, 1]:

Gt ≜ rt + γrt+1 + γ2rt+2 + · · ·+ γT−t−1rT−1 (1.6)

=

T−t−1∑

k=0

γkrt+k =

T−1∑

j=t

γj−trj (1.7)

where rt = R(st, at) is the reward, and Gt is the reward-to-go. For episodic tasks that terminate at time T ,
we define Gt = 0 for t ≥ T . Clearly, the return satisfies the following recursive relationship:

Gt = rt + γ(rt+1 + γrt+2 + · · ·) = rt + γGt+1 (1.8)

Furthermore, we define the value function to be the expected reward-to-go:

Vπ(st) = E [Gt|π] (1.9)

The discount factor γ plays two roles. First, it ensures the return is finite even if T =∞ (i.e., infinite
horizon), provided we use γ < 1 and the rewards rt are bounded. Second, it puts more weight on short-term
rewards, which generally has the effect of encouraging the agent to achieve its goals more quickly. (For
example, if γ = 0.99, then an agent that reaches a terminal reward of 1.0 in 15 steps will receive an expected
discounted reward of 0.9915 = 0.86, whereas if it takes 17 steps it will only get 0.9917 = 0.84.) However, if γ is
too small, the agent will become too greedy. In the extreme case where γ = 0, the agent is completely myopic,
and only tries to maximize its immediate reward. In general, the discount factor reflects the assumption that
there is a probability of 1 − γ that the interaction will end at the next step. For finite horizon problems,
where T is known, we can set γ = 1, since we know the life time of the agent a priori.3

1.1.4 Regret
So far we have been discussing maximizing the reward. However, the upper bound on this is usually unknown,
so it can be hard to know how well a given agent is doing. An alternative approach is to work in terms of
the regret, which is defined as the difference between the expected reward under the agent’s policy and the
oracle policy π∗, which knows the true MDP. Specifically, let πt be the agent’s policy at time t. Then the
per-step regret at t is defined as

lt ≜ Es1:t
[
R(st, π∗(st))− Eπ(at|st) [R(st, at)]

]
(1.10)

Here the expectation is with respect to randomness in choosing actions using the policy π, as well as earlier
states, actions and rewards, as well as other potential sources of randomness.

If we only care about the final performance of the agent, as in most optimization problems, it is enough
to look at the simple regret at the last step, namely lT . Optimizing simple regret results in a problem
known as pure exploration [BMS11], where the agent needs to interact with the environment to learn
the underlying MDP; at the end, it can then solve for the resulting policy using planning methods (see
Section 2.2). However, in RL, it is more common to focus on the cumulative regret, also called the total
regret or just the regret, which is defined as

LT ≜ E

[
T∑

t=1

lt

]
(1.11)

Thus the agent will accumulate reward (and regret) while it learns a model and policy. This is called earning
while learning, and requires performing exploratory actions, to learn the model (and hence optimize
long-term reward), while also performing actions that maximize the reward at each step. This requires solving
the exploration-exploitation tradeoff, as we discussed in Section 1.4.

3We may also use γ = 1 for continuing tasks, targeting the (undiscounted) average reward criterion [Put94].

12

1.1.5 Further reading

In later chapters, we will describe methods for learning the best policy to maximize Vπ(s0) = E [G0|s0, π]).
More details on RL can be found in textbooks such as [Sze10; SB18; Aga+22a; Pla22; ID19; RJ22; Li23;
MMT24], and reviews such as [Aru+17; FL+18; Li18; Wen18a]. For details on how RL relates to control
theory, see e.g., [Son98; Rec19; Ber19; Mey22], and for connections to operations research, see [Pow22].

1.2 Canonical examples

In this section, we describe different forms of model for the environment and the agent that have been studied
in the literature.

1.2.1 Partially observed MDPs

The model shown in Figure 1.2 is called a partially observable Markov decision process or POMDP
(pronounced “pom-dee-pee”) [KLC98]. Typically the environment’s dynamics model is represented by a
stochastic transition function, rather than a deterministic function with noise as an input. We can derive this
transition function as follows:

p(zt+1|zt, at) = Eϵzt [I (zt+1 =W (zt, at, ϵ
z
t))] (1.12)

Similarly the stochastic observation function is given by

p(ot+1|zt+1) = Eϵot+1

[
I
(
ot+1 = O(zt+1, ϵ

o
t+1)

)]
(1.13)

Note that we can combine these two distributions to derive the joint world model pWO(zt+1, ot+1|zt, at).
Also, we can use these distributions to derive the environment’s non-Markovian observation distribution,
penv(ot+1|o1:t, a1:t), used in Equation (1.4), as follows:

penv(ot+1|o1:t, a1:t) =
∑

zt+1

p(ot+1|zt+1)p(zt+1|a1:t) (1.14)

p(zt+1|a1:t) =
∑

z1

· · ·
∑

zt

p(z1|a1)p(z2|z1, a1) . . . p(zt+1|zt, at) (1.15)

If the world model (both p(o|z) and p(z′|z, a)) is known, then we can — in principle — solve for the optimal
policy. The method requires that the agent’s internal state correspond to the belief state st = bt = p(zt|ht),
where ht = (o1:t, a1:t−1) is the observation history. The belief state can be updated recursively using Bayes rule.
See Section 1.2.5 for details. The belief state forms a sufficient statistic for the optimal policy. Unfortunately,
computing the belief state and the resulting optimal policy is wildly intractable [PT87; KLC98]. We discuss
some approximate methods in Section 1.3.4.

1.2.2 Markov decision process (MDPs)

A Markov decision process [Put94] is a special case of a POMDP in which the environment states are
observed, so zt = ot = st.4 We usually define an MDP in terms of the state transition matrix induced by the
world model:

pS(st+1|st, at) = Eϵst [I (st+1 =W (st, at, ϵ
s
t))] (1.16)

4The field of control theory uses slightly different terminology and notation. In particular, the environment is called the
plant, and the agent is called the controller. States are denoted by xt ∈ X ⊆ RD, actions are denoted by ut ∈ U ⊆ RK , and
rewards are replaced by costs ct ∈ R.

13

Figure 1.3: Illustration of an MDP as a finite state machine (FSM). The MDP has three discrete states (green
cirlces), two discrete actions (orange circles), and two non-zero rewards (orange arrows). The numbers on the
black edges represent state transition probabilities, e.g., p(s′ = s0|a = a0, s

′ = s0) = 0.7; most state transitions
are impossible (probability 0), so the graph is sparse. The numbers on the yellow wiggly edges represent expected
rewards, e.g., R(s = s1, a = a0, s

′ = s0) = +5; state transitions with zero reward are not annotated. From
https: // en. wikipedia. org/ wiki/ Markov_ decision_ process . Used with kind permission of Wikipedia author
waldoalvarez.

In lieu of an observation model, we assume the environment (as opposed to the agent) sends out a reward
signal, sampled from pR(rt|st, at, st+1). The expected reward is then given by

R(st, at, st+1) =
∑

r

r pR(r|st, at, st+1) (1.17)

R(st, at) =
∑

st+1

pS(st+1|st, at)R(st, at, st+1) (1.18)

Given a stochastic policy π(at|st), the agent can interact with the environment over many steps. Each
step is called a transition, and consists of the tuple (st, at, rt, st+1), where at ∼ π(·|st), st+1 ∼ pS(st, at),
and rt ∼ pR(st, at, st+1). Hence, under policy π, the probability of generating a trajectory length T ,
τ = (s0, a0, r0, s1, a1, r1, s2, . . . , sT), can be written explicitly as

p(τ) = p0(s0)

T−1∏

t=0

π(at|st)pS(st+1|st, at)pR(rt|st, at, st+1) (1.19)

In general, the state and action sets of an MDP can be discrete or continuous. When both sets are finite,
we can represent these functions as lookup tables; this is known as a tabular representation. In this case,
we can represent the MDP as a finite state machine, which is a graph where nodes correspond to states,
and edges correspond to actions and the resulting rewards and next states. Figure 1.3 gives a simple example
of an MDP with 3 states and 2 actions.

If we know the world model pS and pR, and if the state and action space is tabular, then we can solve for
the optimal policy using dynamic programming techniques, as we discuss in Section 2.2. However, typically
the world model is unknown, and the states and actions may need complex nonlinear models to represent
their transitions. In such cases, we will have to use RL methods to learn a good policy.

1.2.3 Contextual MDPs
A Contextual MDP [HDCM15] is an MDP where the dynamics and rewards of the environment depend
on a hidden static parameter referred to as the context. (This is different to a contextual bandit, discussed
in Section 1.2.4, where the context is observed at each step.) A simple example of a contextual MDP is a
video game, where each level of the game is procedurally generated, that is, it is randomly generated
each time the agent starts a new episode. Thus the agent must solve a sequence of related MDPs, which are

14

https://en.wikipedia.org/wiki/Markov_decision_process

drawn from a common distribution. This requires the agent to generalize across multiple MDPs, rather than
overfitting to a specific environment [Cob+19; Kir+21; Tom+22]. (This form of generalization is different
from generalization within an MDP, which requires generalizing across states, rather than across environments;
both are important.)

A contextual MDP is a special kind of POMDP where the hidden variable corresponds to the unknown
parameters of the model. In [Gho+21], they call this an epistemic POMDP, which is closely related to the
concept of belief state MDP which we discuss in Section 1.2.5.

1.2.4 Contextual bandits
A contextual bandit is a special case of a POMDP where the world state transition function is independent
of the action of the agent and the previous state, i.e., p(zt|zt−1, at) = p(zt). In this case, we call the world
states “contexts”; these are observable by the agent, i.e., ot = zt. Since the world state distribution is
independent of the agents actions, the agent has no effect on the external environment. However, its actions
do affect the rewards that it receives. Thus the agent’s internal belief state — about the underlying reward
function R(o, a) — does change over time, as the agent learns a model of the world (see Section 1.2.5).

A special case of a contextual bandit is a regular bandit, in which there is no context, or equivalently, st is
some fixed constant that never changes. When there are a finite number of possible actions, A = {a1, . . . , aK},
this is called a multi-armed bandit.5 In this case the reward model has the form R(a) = f(wa), where wa
are the parameters for arm a.

Contextual bandits have many applications. For example, consider an online advertising system. In
this case, the state st represents features of the web page that the user is currently looking at, and the action
at represents the identity of the ad which the system chooses to show. Since the relevance of the ad depends
on the page, the reward function has the form R(st, at), and hence the problem is contextual. The goal is to
maximize the expected reward, which is equivalent to the expected number of times people click on ads; this
is known as the click through rate or CTR. (See e.g., [Gra+10; Li+10; McM+13; Aga+14; Du+21; YZ22]
for more information about this application.) Another application of contextual bandits arises in clinical
trials [VBW15]. In this case, the state st are features of the current patient we are treating, and the action
at is the treatment the doctor chooses to give them (e.g., a new drug or a placebo).

For more details on bandits, see e.g., [LS19; Sli19].

1.2.5 Belief state MDPs
In this section, we describe a kind of MDP where the state represents a probability distribution, known as a
belief state or information state, which is updated by the agent (“in its head”) as it receives information
from the environment.6 More precisely, consider a contextual bandit problem, where the agent approximates
the unknown reward by a function R(o, a) = f(o, a;w). Let us denote the posterior over the unknown
parameters by bt = p(w|ht), where ht = {o1:t, a1:t, r1:t} is the history of past observations, actions and
rewards. This belief state can be updated deterministically using Bayes’ rule; we denote this operation by
bt+1 = BayesRule(bt, ot+1, at+1, rt+1). (This corresponds to the state update SU defined earlier.) Using this,
we can define the following belief state MDP, with deterministic dynamics given by

p(bt+1|bt, ot+1, at+1, rt+1) = I (bt+1 = BayesRule(bt, ot+1, at+1, rt+1)) (1.20)

and reward function given by

p(rt|ot, at, bt) =
∫
pR(rt|ot, at;w)p(w|bt)dw (1.21)

5The terminology arises by analogy to a slot machine (sometimes called a “bandit”) in a casino. If there are K slot machines,
each with different rewards (payout rates), then the agent (player) must explore the different machines until they have discovered
which one is best, and can then stick to exploiting it.

6Technically speaking, this is a POMDP, where we assume the states are observed, and the parameters are the unknown
hidden random variables. This is in contrast to Section 1.2.1, where the states were not observed, and the parameters were
assumed to be known.

15

,

,

Action 2

Success SuccessFailure Failure

, , ,
Action 1

Success Failure

, ,

Action 1

Figure 1.4: Illustration of sequential belief updating for a two-armed beta-Bernoulli bandit. The prior for the reward
for action 1 is the (blue) uniform distribution Beta(1, 1); the prior for the reward for action 2 is the (orange) unimodal
distribution Beta(2, 2). We update the parameters of the belief state based on the chosen action, and based on whether
the observed reward is success (1) or failure (0).

If we can solve this (PO)MDP, we have the optimal solution to the exploration-exploitation problem.
As a simple example, consider a context-free Bernoulli bandit, where pR(r|a) = Ber(r|µa), and

µa = pR(r = 1|a) = R(a) is the expected reward for taking action a. The only unknown parameters are
w = µ1:A. Suppose we use a factored beta prior

p0(w) =
∏

a

Beta(µa|αa0 , βa0) (1.22)

where w = (µ1, . . . , µK). We can compute the posterior in closed form to get

p(w|Dt) =
∏

a

Beta(µa|αa0 +N0
t (a)︸ ︷︷ ︸

αa
t

, βa0 +N1
t (a)︸ ︷︷ ︸

βa
t

) (1.23)

where

Nr
t (a) =

t−1∑

i=1

I (ai = a, ri = r) (1.24)

This is illustrated in Figure 1.4 for a two-armed Bernoulli bandit. We can use a similar method for a
Gaussian bandit, where pR(r|a) = N (r|µa, σ2

a).
In the case of contextual bandits, the problem is conceptually the same, but becomes more complicated

computationally. If we assume a linear regression bandit, pR(r|s, a;w) = N (r|ϕ(s, a)Tw, σ2), we can use
Bayesian linear regression to compute p(w|Dt) exactly in closed form. If we assume a logistic regression
bandit, pR(r|s, a;w) = Ber(r|σ(ϕ(s, a)Tw)), we have to use approximate methods for approximate Bayesian
logistic regression to compute p(w|Dt). If we have a neural bandit of the form pR(r|s, a;w) = N (r|f(s, a;w))
for some nonlinear function f , then posterior inference is even more challenging (this is equivalent to the
problem of inference in Bayesian neural networks, see e.g., [Arb+23] for a review paper for the offline case,
and [DMKM22; JCM24] for some recent online methods).

We can generalize the above methods to compute the belief state for the parameters of an MDP in the
obvious way, but modeling both the reward function and state transition function.

Once we have computed the belief state, we can derive a policy with optimal regret using the methods
like UCB (Section 1.4.3) or Thompson sampling (Section 1.4.4).

1.2.6 Optimization problems
The bandit problem is an example of a problem where the agent must interact with the world in order to
collect information, but it does not otherwise affect the environment. Thus the agents internal belief state

16

changes over time, but the environment state does not.7 Such problems commomly arise when we are trying
to optimize a fixed but unknown function R. We can “query” the function by evaluating it at different points
(parameter values), and in some cases, the resulting observation may also include gradient information. The
agent’s goal is to find the optimum of the function in as few steps as possible. We give some examples of this
problem setting below.

1.2.6.1 Best-arm identification

In the standard multi-armed bandit problem our goal is to maximize the sum of expected rewards. However,
in some cases, the goal is to determine the best arm given a fixed budget of T trials; this variant is known as
best-arm identification [ABM10]. Formally, this corresponds to optimizing the final reward criterion:

Vπ,πT
= Ep(a1:T ,r1:T |s0,π) [R(â)] (1.25)

where â = πT (a1:T , r1:T) is the estimated optimal arm as computed by the terminal policy πT applied to
the sequence of observations obtained by the exploration policy π. This can be solved by a simple adaptation
of the methods used for standard bandits.

1.2.6.2 Bayesian optimization

Bayesian optimization is a gradient-free approach to optimizing expensive blackbox functions. That is, we
want to find

w∗ = argmax
w

R(w) (1.26)

for some unknown function R, where w ∈ RN , using as few actions (function evaluations of R) as possible.
This is essentially an “infinite arm” version of the best-arm identification problem [Tou14], where we replace
the discrete choice of arms a ∈ {1, . . . ,K} with the parameter vector w ∈ RN . In this case, the optimal
policy can be computed if the agent’s state st is a belief state over the unknown function, i.e., st = p(R|ht).
A common way to represent this distribution is to use Gaussian processes. We can then use heuristics like
expected improvement, knowledge gradient or Thompson sampling to implement the corresponding policy,
wt = π(st). For details, see e.g., [Gar23].

1.2.6.3 Active learning

Active learning is similar to BayesOpt, but instead of trying to find the point at which the function is largest
(i.e., w∗), we are trying to learn the whole function R, again by querying it at different points wt. Once
again, the optimal strategy again requires maintaining a belief state over the unknown function, but now the
best policy takes a different form, such as choosing query points to reduce the entropy of the belief state. See
e.g., [Smi+23].

1.2.6.4 Stochastic Gradient Descent (SGD)

Finally we discuss how to interpret SGD as a sequential decision making process, following [Pow22]. The action
space consists of querying the unknown function R at locations at = wt, and observing the function value
rt = R(wt); however, unlike BayesOpt, now we also observe the corresponding gradient gt = ∇wR(w)|wt ,
which gives non-local information about the function. The environment state contains the true function R
which is used to generate the observations given the agent’s actions. The agent state contains the current
parameter estimate wt, and may contain other information such as first and second moments mt and vt,
needed by methods such as Adam. The update rule (for vanilla SGD) takes the form wt+1 = wt + αtgt,
where the stepsize αt is chosen by the policy, αt = π(st). The terminal policy has the form π(sT) = wT .

7In the contextual bandit problem, the environment state (context) does change, but not in response to the agent’s actions.
Thus p(ot) is usually assumed to be a static distribution.

17

Approach Method Functions learned On/Off Section
Value-based SARSA Q(s, a) On Section 2.4
Value-based Q-learning Q(s, a) Off Section 2.5
Policy-based REINFORCE π(a|s) On Section 3.2
Policy-based A2C π(a|s), V (s) On Section 3.3.1
Policy-based TRPO/PPO π(a|s), A(s, a) On Section 3.4.3
Policy-based DDPG a = π(s), Q(s, a) Off Section 3.6.1
Policy-based Soft actor-critic π(a|s), Q(s, a) Off Section 3.5.4
Model-based MBRL p(s′|s, a) Off Chapter 4

Table 1.1: Summary of some popular methods for RL. On/off refers to on-policy vs off-policy methods.

Although in principle it is possible to learn the learning rate (stepsize) policy using RL (see e.g., [Xu+17]),
the policy is usually chosen by hand, either using a learning rate schedule or some kind of manually
designed adaptive learning rate policy (e.g., based on second order curvature information).

1.3 Reinforcement Learning

In this section, we give a brief overview of how to compute optimal policies when the model of the environment
is unknown; this is the core problem tackled by RL. We mostly focus on the MDP case, but discuss the
POMDP case in Section 1.3.4.

We may categorize RL methods along two main dimensions: (1) by what the agent represents and learns:
the value function, and/or the policy, and/or the model; (2) and by how actions are selected: on-policy
(actions must be selected by the agent’s current policy), and off-policy (actions can be select by any kind of
policy, including human demonstrations). Table 1.1 lists a few representative examples. More details are
given in the subsequent sections.

1.3.1 Value-based RL (Approximate Dynamic Programming)

In this section, we give a brief introduction to value-based RL, also called Approximate Dynamic
Programming or ADP; see Chapter 2 for more details.

We introduced the value function Vπ(s) in Equation (1.1), which we repeat here for convenience:

Vπ(s) ≜ Eπ [G0|s0 = s] = Eπ

[∞∑

t=0

γtrt|s0 = s

]
(1.27)

The value function for the optimal policy π∗ is known to satisfy the following recursive condition, known as
Bellman’s equation:

V∗(s) = max
a

R(s, a) + γEpS(s′|s,a) [V∗(s
′)] (1.28)

This follows from the principle of dynamic programming, which computes the optimal solution to a
problem (here the value of state s by combining the optimal solution of various subproblems (here the values
of the next states s′). This can be used to derive the following learning rule:

V (s)← V (s) + η[r + γV (s′)− V (s)] (1.29)

where s′ ∼ pS(·|s, a) is the next state sampled from the environment, and r = R(s, a) is the observed reward.
This is called Temporal Difference or TD learning (see Section 2.3.2 for details). Unfortunately, it is not
clear how to derive a policy if all we know is the value function. We now describe a solution to this problem.

18

We first generalize the notion of value function to assigning a value to a state and action pair, by defining
the Q function as follows:

Qπ(s, a) ≜ Eπ [G0|s0 = s, a0 = a] = Eπ

[∞∑

t=0

γtrt|s0 = s, a0 = a

]
(1.30)

This quantity represents the expected return obtained if we start by taking action a in state s, and then
follow π to choose actions thereafter. The Q function for the optimal policy satisfies a modified Bellman
equation

Q∗(s, a) = R(s, a) + γEpS(s′|s,a)
[
max
a′

Q∗(s
′, a′)

]
(1.31)

This gives rise to the following TD update rule:

Q(s, a)← r + γmax
a′

Q(s′, a′)−Q(s, a) (1.32)

where we sample s′ ∼ pS(·|s, a) from the environment. The action is chosen at each step from the implicit
policy

a = argmax
a′

Q(s, a′) (1.33)

This is called Q learning (see Section 2.5 for details),

1.3.2 Policy-based RL

In this section we give a brief introductin to Policy-based RL; for details see Chapter 3.
In policy-based methods, we try to directly maximize J(πθ) = Ep(s0) [Vπ(s0)] wrt the parameter’s θ; this

is called policy search. If J(πθ) is differentiable wrt θ, we can use stochastic gradient ascent to optimize θ,
which is known as policy gradient (see Section 3.1).

Policy gradient methods have the advantage that they provably converge to a local optimum for many
common policy classes, whereas Q-learning may diverge when approximation is used (Section 2.5.2.4). In
addition, policy gradient methods can easily be applied to continuous action spaces, since they do not need
to compute argmaxaQ(s, a). Unfortunately, the score function estimator for ∇θJ(πθ) can have a very high
variance, so the resulting method can converge slowly.

One way to reduce the variance is to learn an approximate value function, Vw(s), and to use it as a
baseline in the score function estimator. We can learn Vw(s) using using TD learning. Alternatively, we can
learn an advantage function, Aw(s, a), and use it as a baseline. These policy gradient variants are called actor
critic methods, where the actor refers to the policy πθ and the critic refers to Vw or Aw. See Section 3.3 for
details.

1.3.3 Model-based RL

In this section, we give a brief introduction to model-based RL; for more details, see Chapter 4.
Value-based methods, such as Q-learning, and policy search methods, such as policy gradient, can be very

sample inefficient, which means they may need to interact with the environment many times before finding
a good policy, which can be problematic when real-world interactions are expensive. In model-based RL, we
first learn the MDP, including the pS(s′|s, a) and R(s, a) functions, and then compute the policy, either using
approximate dynamic programming on the learned model, or doing lookahead search. In practice, we often
interleave the model learning and planning phases, so we can use the partially learned policy to decide what
data to collect, to help learn a better model.

19

1.3.4 Dealing with partial observability

In an MDP, we assume that the state of the environment st is the same as the observation ot obtained by the
agent. But in many problems, the observation only gives partial information about the underlying state of the
world (e.g., a rodent or robot navigating in a maze). This is called partial observability. In this case, using
a policy of the form at = π(ot) is suboptimal, since ot does not give us complete state information. Instead
we need to use a policy of the form at = π(ht), where ht = (a1, o1, . . . , at−1, ot) is the entire past history of
observations and actions, plus the current observation. Since depending on the entire past is not tractable for
a long-lived agent, various approximate solution methods have been developed, as we summarize below.

1.3.4.1 Optimal solution

If we know the true latent structure of the world (i.e., both p(o|z) and p(z′|z, a), to use the notation of
Section 1.1.2), then we can use solution methods designed for POMDPs, discussed in Section 1.2.1. This
requires using Bayesian inference to compute a belief state, bt = p(zt|ht) (see Section 1.2.5), and then using
this belief state to guide our decisions. However, learning the parameters of a POMDP (i.e., the generative
latent world model) is very difficult, as is recursively computing and updating the belief state, as is computing
the policy given the belief state. Indeed, optimally solving POMDPs is known to be computationally very
difficult for any method [PT87; KLC98]. So in practice simpler approximations are used. We discuss some of
these below. (For more details, see [Mur00].)

Note that it is possible to marginalize out the POMDP latent state zt, to derive a prediction over the
next observable state, p(ot+1|ht,at). This can then become a learning target for a model, that is trained to
directly predict future observations, without explicitly invoking the concept of latent state. This is called a
predictive state representation or PSR [LS01]. This is related to the idea of observable operator
models [Jae00], and to the concept of successor representations which we discuss in Section 4.4.2.

1.3.4.2 Finite observation history

The simplest solution to the partial observability problem is to define the state to be a finite history of the
last k observations, st = ht−k:t; when the observations ot are images, this is often called frame stacking.
We can then use standard MDP methods. Unfortunately, this cannot capture long-range dependencies in the
data.

1.3.4.3 Stateful (recurrent) policies

A more powerful approach is to use a stateful policy, that can remember the entire past, and not just respond
to the current input or last k frames. For example, we can represent the policy by an RNN (recurrent neural
network), as proposed in the R2D2 paper [Kap+18], and used in many other papers. Now the hidden state
zt of the RNN will implicitly summarize the past observations, ht, and can be used in lieu of the state st in
any standard RL algorithm.

RNNs policies are widely used, and this method is often effective in solving partially observed problems.
However, they typically will not plan to perform information-gathering actions, since there is no explicit
notion of belief state or uncertainty. However, such behavior can arise via meta-learning [Mik+20].

1.3.5 Software

Implementing RL algorithms is much trickier than methods for supervised learning, or generative methods
such as language modeling and diffusion, all of which have stable (easy-to-optimize) loss functions. Therefore
it is often wise to build on existing software rather than starting from scratch. We list some useful libraries
in Section 1.3.5.

In addition, RL experiments can be very high variance, making it hard to draw valid conclusions. See
[Aga+21b; Pat+24; Jor+24] for some recommended experimental practices. For example, when reporting
performance across different environments, with different intrinsic difficulties (e.g., different kinds of Atari

20

URL Language Comments
Stoix Jax Mini-library with many methods (including MBRL)
PureJaxRL Jax Single files with DQN; PPO, DPO
JaxRL Jax Single files with AWAC, DDPG, SAC, SAC+REDQ
Stable Baselines Jax Jax Library with DQN, CrossQ, TQC; PPO, DDPG, TD3, SAC
Jax Baselines Jax Library with many methods
Rejax Jax Library with DDQN, PPO, (discrete) SAC, DDPG
Dopamine Jax/TF Library with many methods
Rlax Jax Library of RL utility functions (used by Acme)
Acme Jax/TF Library with many methods (uses rlax)
CleanRL PyTorch Single files with many methods
Stable Baselines 3 PyTorch Library with DQN; A2C, PPO, DDPG, TD3, SAC, HER
TianShou PyTorch Library with many methods (including offline RL)

Table 1.2: Some open source RL software.

games), [Aga+21b] recommend reporting the interquartile mean (IQM) of the performance metric, which
is the mean of the samples between the 0.25 and 0.75 percentiles, (this is a special case of a trimmed mean).
Let this estimate be denoted by µ̂(Di), where D is the empirical data (e.g., reward vs time) from the i’th
run. We can estimate the uncertainty in this estimate using a nonparametric method, such as bootstrap
resampling, or a parametric approximation, such as a Gaussian approximation. (This requires computing the
standard error of the mean, σ̂√

n
, where n is the number of trials, and σ̂ is the estimated standard deviation of

the (trimmed) data.)

1.4 Exploration-exploitation tradeoff

A fundamental problem in RL with unknown transition and reward models is to decide between choosing
actions that the agent knows will yield high reward, or choosing actions whose reward is uncertain, but which
may yield information that helps the agent get to parts of state-action space with even higher reward. This is
called the exploration-exploitation tradeoff. In this section, we discuss various solutions.

1.4.1 Simple heuristics

We start with a policy based on pure exploitation. This is known as the greedy policy, at = argmaxaQ(s, a).
We can add exploration to this by sometimes picking some other, non-greedy action.

One approach is to use an ϵ-greedy policy πϵ, parameterized by ϵ ∈ [0, 1]. In this case, we pick the
greedy action wrt the current model, at = argmaxa R̂t(st, a) with probability 1 − ϵ, and a random action
with probability ϵ. This rule ensures the agent’s continual exploration of all state-action combinations.
Unfortunately, this heuristic can be shown to be suboptimal, since it explores every action with at least a
constant probability ϵ/|A|, although this can be solved by annealing ϵ to 0 over time.

Another problem with ϵ-greedy is that it can result in “dithering”, in which the agent continually changes
its mind about what to do. In [DOB21] they propose a simple solution to this problem, known as ϵz-greedy,
that often works well. The idea is that with probability 1− ϵ the agent exploits, but with with probability ϵ
the agent explores by repeating the sampled action for n ∼ z() steps in a row, where z(n) is a distribution
over the repeat duration. This can help the agent escape from local minima.

Another approach is to use Boltzmann exploration, which assigns higher probabilities to explore more
promising actions, taking itno account the reward function. That is, we use a polocy of the form

πτ (a|s) =
exp(R̂t(st, a)/τ)∑
a′ exp(R̂t(st, a

′)/τ)
(1.34)

where τ > 0 is a temperature parameter that controls how entropic the distribution is. As τ gets close to 0,
πτ becomes close to a greedy policy. On the other hand, higher values of τ will make π(a|s) more uniform,

21

https://github.com/EdanToledo/Stoix
https://github.com/luchris429/purejaxrl/tree/main
https://github.com/ikostrikov/jaxrl
https://stable-baselines3.readthedocs.io/en/master/guide/sbx.html
https://github.com/tinker495/jax-baseline
https://github.com/keraJLi/rejax
https://github.com/google/dopamine
https://github.com/google-deepmind/rlax/tree/master
https://github.com/google-deepmind/acme/tree/master
https://github.com/vwxyzjn/cleanrl
https://stable-baselines3.readthedocs.io/en/master/
https://github.com/thu-ml/tianshou/

R̂(s, a1) R̂(s, a2) πϵ(a|s1) πϵ(a|s2) πτ (a|s1) πτ (a|s2)
1.00 9.00 0.05 0.95 0.00 1.00
4.00 6.00 0.05 0.95 0.12 0.88
4.90 5.10 0.05 0.95 0.45 0.55
5.05 4.95 0.95 0.05 0.53 0.48
7.00 3.00 0.95 0.05 0.98 0.02
8.00 2.00 0.95 0.05 1.00 0.00

Table 1.3: Comparison of ϵ-greedy policy (with ϵ = 0.1) and Boltzmann policy (with τ = 1) for a simple MDP with 6
states and 2 actions. Adapted from Table 4.1 of [GK19].

and encourage more exploration. Its action selection probabilities can be much “smoother” with respect to
changes in the reward estimates than ϵ-greedy, as illustrated in Table 1.3.

The Boltzmann policy explores equally widely in all states. An alternative approach is to try to explore
(state,action) combinations where the consequences of the outcome might be uncertain. This can be achived
using an exploration bonus Rbt(s, a), which is large if the number of times we have tried actioon a in state
s is small. We can then add Rb to the regular reward, to bias the behavior in a way that will hopefully
cause the agent to learn useful information about the world. This is called an intrinsic reward function
(Section 5.2.4).

1.4.2 Methods based on the belief state MDP

We can compute an optimal solution to the exploration-exploitation tradeoff by adopting a Bayesian approach
to the problem. We start by computing the belief state MDP, as discussed in Section 1.2.5. We then compute
the optimal policy, as we explain below.

1.4.2.1 Bandit case (Gittins indices)

Suppose we have a way to compute the recursively compute the belief state over model parameters, p(θt|D1:t).
How do we use this to solve for the policy in the resulting belief state MDP?

In the special case of context-free bandits with a finite number of arms, the optimal policy of this belief
state MDP can be computed using dynamic programming. The result can be represented as a table of action
probabilities, πt(a1, . . . , aK), for each step; this are known as Gittins indices [Git89] (see [PR12; Pow22] for
a detailed explanation). However, computing the optimal policy for general contextual bandits is intractable
[PT87].

1.4.2.2 MDP case (Bayes Adaptive MDPs)

We can extend the above techniques to the MDP case by constructing a BAMDP, which stands for “Bayes-
Adaptive MDP” [Duf02]. However, this is computationally intractable to solve, so various approximations are
made (see e.g., [Zin+21; AS22; Mik+20]).

1.4.3 Upper confidence bounds (UCBs)

The optimal solution to explore-exploit is intractable. However, an intuitively sensible approach is based
on the principle known as “optimism in the face of uncertainty” (OFU). The principle selects actions
greedily, but based on optimistic estimates of their rewards. The optimality of this approach is proved in the
R-Max paper of [Ten02], which builds on the earlier E3 paper of [KS02].

The most common implementation of this principle is based on the notion of an upper confidence
bound or UCB. We will initially explain this for the bandit case, then extend to the MDP case.

22

1.4.3.1 Basic idea

To use a UCB strategy, the agent maintains an optimistic reward function estimate R̃t, so that R̃t(st, a) ≥
R(st, a) for all a with high probability, and then chooses the greedy action accordingly:

at = argmax
a

R̃t(st, a) (1.35)

UCB can be viewed a form of exploration bonus, where the optimistic estimate encourages exploration.
Typically, the amount of optimism, R̃t−R, decreases over time so that the agent gradually reduces exploration.
With properly constructed optimistic reward estimates, the UCB strategy has been shown to achieve near-
optimal regret in many variants of bandits [LS19]. (We discuss regret in Section 1.1.4.)

The optimistic function R̃ can be obtained in different ways, sometimes in closed forms, as we discuss
below.

1.4.3.2 Bandit case: Frequentist approach

A frequentist approach to computing a confidence bound can be based on a concentration inequal-
ity [BLM16] to derive a high-probability upper bound of the estimation error: |R̂t(s, a)−Rt(s, a)| ≤ δt(s, a),
where R̂t is a usual estimate of R (often the MLE), and δt is a properly selected function. An optimistic
reward is then obtained by setting R̃t(s, a) = R̂t(s, a) + δt(s, a).

As an example, consider again the context-free Bernoulli bandit, R(a) ∼ Ber(µ(a)). The MLE R̂t(a) =
µ̂t(a) is given by the empirical average of observed rewards whenever action a was taken:

µ̂t(a) =
N1
t (a)

Nt(a)
=

N1
t (a)

N0
t (a) +N1

t (a)
(1.36)

where Nr
t (a) is the number of times (up to step t− 1) that action a has been tried and the observed reward

was r, and Nt(a) is the total number of times action a has been tried:

Nt(a) =

t−1∑

s=1

I (at = a) (1.37)

Then the Chernoff-Hoeffding inequality [BLM16] leads to δt(a) = c/
√
Nt(a) for some constant c, so

R̃t(a) = µ̂t(a) +
c√
Nt(a)

(1.38)

1.4.3.3 Bandit case: Bayesian approach

We can also derive an upper confidence about using Bayesian inference. If we use a beta prior, we can compute
the posterior in closed form, as shown in Equation (1.23). The posterior mean is µ̂t(a) = E [µ(a)|ht] = αa

t

αa
t +β

a
t
,

and the posterior standard deviation is approximately

σ̂t(a) =
√
V [µ(a)|ht] ≈

√
µ̂t(a)(1− µ̂t(a))

Nt(a)
(1.39)

We can use similar techniques for a Gaussian bandit, where pR(R|a,θ) = N (R|µa, σ2
a), µa is the expected

reward, and σ2
a the variance. If we use a conjugate prior, we can compute p(µa, σa|Dt) in closed form.

Using an uninformative version of the conjugate prior, we find E [µa|ht] = µ̂t(a), which is just the empirical
mean of rewards for action a. The uncertainty in this estimate is the standard error of the mean, i.e.,√
V [µa|ht] = σ̂t(a)/

√
Nt(a), where σ̂t(a) is the empirical standard deviation of the rewards for action a.

Once we have computed the mean and posterior standard deviation, we define the optimistic reward
estimate as

R̃t(a) = µ̂t(a) + cσ̂t(a) (1.40)
for some constant c that controls how greedy the policy is. See Figure 1.5 for an illustration. We see that
this is similar to the frequentist method based on concentration inequalities, but is more general.

23

Figure 1.5: Illustration of the reward distribution Q(a) for a Gaussian bandit with 3 different actions, and the
corresponding lower and upper confidence bounds. We show the posterior means Q(a) = µ(a) with a vertical dotted line,
and the scaled posterior standard deviations cσ(a) as a horizontal solid line. From [Sil18]. Used with kind permission
of David Silver.

1.4.3.4 MDP case

The UCB idea (especially in its frequentist form) has been extended to the MDP case in several works. (The
Bayesian version is discussed in Section 1.4.4.) For example, [ACBF02] proposes to combine UCB with Q
learning, by defining the policy as

π(a|s) = I
(
a = argmax

a′
Q(s, a′) + c

√
log(t)/Nt(s, a′)

)
(1.41)

[AJO08] presents the more sophisticated UCRL2 algorithm, which computes confidence intervals on all the
MDP model parameters at the start of each episode; it then computes the resulting optimistic MDP and
solves for the optimal policy, which it uses to collect more data.

1.4.4 Thompson sampling

A common alternative to UCB is to use Thompson sampling [Tho33], also called probability matching
[Sco10]. We start by describing this in the bandit case, then extend to the MDP case. For more details, see
[Rus+18]. (See also [Ger18] for some evidence that humans use Thompson-sampling like mechanisms.)

1.4.4.1 Bandit case

In Thompson sampling, we define the policy at step t to be πt(a|st,ht) = pa, where pa is the probability that
a is the optimal action. This can be computed using

pa = Pr(a = a∗|st,ht) =
∫

I
(
a = argmax

a′
R(st, a

′;θ)

)
p(θ|ht)dθ (1.42)

If the posterior is uncertain, the agent will sample many different actions, automatically resulting in exploration.
As the uncertainty decreases, it will start to exploit its knowledge.

To see how we can implement this method, note that we can compute the expression in Equation (1.42)
by using a single Monte Carlo sample θ̃t ∼ p(θ|ht). We then plug in this parameter into our reward model,
and greedily pick the best action:

at = argmax
a′

R(st, a
′; θ̃t) (1.43)

This sample-then-exploit approach will choose actions with exactly the desired probability, since

pa =

∫
I
(
a = argmax

a′
R(st, a

′; θ̃t)

)
p(θ̃t|ht) = Pr

θ̃t∼p(θ|ht)
(a = argmax

a′
R(st, a

′; θ̃t)) (1.44)

24

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
−20

−15

−10

−5

0

5

10
arm0
arm1
arm2

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time

0

200

400

600

800

1000

1200

1400

cu
m

ul
at

iv
e

re
wa

rd

arm0
arm1
arm2

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time

0

5

10

15

20

25

30

35

40

L T

Cumulative regret

observed
c √ t

(c)

Figure 1.6: Illustration of Thompson sampling applied to a linear-Gaussian contextual bandit. The context has the
form st = (1, t, t2). (a) True reward for each arm vs time. (b) Cumulative reward per arm vs time. (c) Cumulative
regret vs time. Generated by thompson_sampling_linear_gaussian.ipynb.

Despite its simplicity, this approach can be shown to achieve optimal regret (see e.g., [Rus+18] for a
survey). In addition, it is very easy to implement, and hence is widely used in practice [Gra+10; Sco10;
CL11].

In Figure 1.6, we give a simple example of Thompson sampling applied to a linear regression bandit. The
context has the form st = (1, t, t2). The true reward function has the form R(st, a) = w

T
ast. The weights per

arm are chosen as follows: w0 = (−5, 2, 0.5), w1 = (0, 0, 0), w2 = (5,−1.5,−1). Thus we see that arm 0 is
initially worse (large negative bias) but gets better over time (positive slope), arm 1 is useless, and arm 2 is
initially better (large positive bias) but gets worse over time. The observation noise is the same for all arms,
σ2 = 1. See Figure 1.6(a) for a plot of the reward function. We use a conjugate Gaussian-gamma prior and
perform exact Bayesian updating. Thompson sampling quickly discovers that arm 1 is useless. Initially it
pulls arm 2 more, but it adapts to the non-stationary nature of the problem and switches over to arm 0, as
shown in Figure 1.6(b). In Figure 1.6(c), we show that the empirical cumulative regret in blue is close to the
optimal lower bound in red.

1.4.4.2 MDP case (posterior sampling RL)

We can generalize Thompson sampling to the (episodic) MDP case by maintaining a posterior over all the
model parameters (reward function and transition model), sampling an MDP from this belief state at the start
of each episode, solving for the optimal policy corresponding to the sampled MDP, using the resulting policy
to collect new data, and then updating the belief state at the end of the episode. This is called posterior
sampling RL [Str00; ORVR13; RR14; OVR17; WCM24].

As a more computationally efficient alternative, it is also possible to maintain a posterior over policies
or Q functions instead of over world models; see e.g., [Osb+23a] for an implementation of this idea based
on epistemic neural networks [Osb+23b]. Another approach is to use successor features (Section 4.4.4),
where the Q function is assumed to have the form Qπ(s, a) = ψπ(s, a)Tw. In particular, [Jan+19b] proposes
Sucessor Uncertainties, in which they model the uncertainty over w as a Gaussian, p(w) = N (µw,Σw).
From this they can derive the posterior distribution over Q values as

p(Q(s, a)) = N (Ψπµw,Ψ
πΣw(Ψ

π)T) (1.45)

where Ψπ = [ψπ(s, a)]T is a matrix of features, one per state-action pair.

1.5 RL as a posterior inference problem
In this section, we discuss an approach to policy optimization that reduces it to probabilistic inference. This
is called control as inference or RL as inference, and has been discussed in numerous works (see e.g.,
[Att03; TS06; Tou09; ZABD10; RTV12; BT12; KGO12; HR17; Lev18; Wat+21]). The resulting framework

25

https://probml.github.io/notebooks#thompson_sampling_linear_gaussian.ipynb

Figure 1.7: A graphical model for optimal control.

also forms the foundation of the SAC method discussed in Section 3.5.4, the MPO discussed in Section 3.4.4,
and the MPC method discussed in Section 4.1.5.

1.5.1 Modeling assumptions
Figure 1.7 gives a probabilistic model, which not only captures state transitions as in a standard MDP, but
also introduces a new variable, Ot. This variable is binary, indicating whether the action at time t is optimal
or not, and has the following probability distribution:

p(Ot = 1|st, at) = exp(R(st, at)) (1.46)

In the above, we have assumed that R(s, a) < 0, so that Equation (1.46) gives a valid probability. However,
this is not required, since we can simply replace the likelihood term p(Ot = 1|st, at) with an unnormalized
potential, ϕt(st, at); this will not affect the results of inference. For brevity, we will just write p(Ot) rather
than p(Ot = 1), since 1 is just a dummy value.

To simplify notation, we assume a uniform action prior, p(at|st) = 1/|A|; this is without loss of generality,
since we can always push an informative action prior p(at|st) into the potential function ϕt(st, at). (We call
this an “action prior” rather than a policy, since we are going to derive the policy using posterior inference, as
we explain below.) Under these assumptions, the posterior probability of observing a length-T trajectory τ ,
when optimality achieved in every step, is

p(τ |O1:T) ∝ p(τ ,O1:T) ∝
[
p(s1)

T−1∏

t=1

pS(st+1|st, at)
][

T∏

t=1

p(Ot|st, at)
]

= p(s1)

T−1∏

t=1

pS(st+1|st, at) exp
(

T∑

t=1

R(st, at)

)
(1.47)

(Typically p(s1) is a delta function at the observed initial state s1.) The intuition of Equation (1.47) is
clearest when the state transitions are deterministic. In this case, pS(st+1|st, at) is either 1 or 0, depending
on whether the transition is dynamically feasible or not. Hence we have

p(τ |O1:T) ∝ I (p(τ) ̸= 0) exp(

T∑

t=1

R(st, at)) (1.48)

where the first term determines if τ is feasible or not. In this case, find the action sequence that maximizes
the sum of rewards is equivalent to inferring the MAP sequence of actions, which we denote by â1:T (s1).
(The case of stochastic transitions is more complicated, and will be discussed later.)

26

For deterministic environments, the optimal policy is open loop, and corresponds to following the optimal
action sequence â1:T (s1). (This is like a shortest path planning problem.) However, in the stochastic case,
we need to compute a closed loop policy, π(at|st), that conditions on the observed state. To compute this,
let us define the following quantities:

βt(st, at) ≜ p(Ot:T |st, at) (1.49)

βt(st) ≜ p(Ot:T |st) (1.50)

(These terms are analogous to the backwards messages in the forwards-backwards algorithm for HMMs
[Rab89].) Using this notation, we can write the optimal policy using

p(at|st,Ot:T) =
p(st, at|Ot:T)
p(st|Ot:T)

=
p(Ot:T |st, at)p(at|st)p(st)

p(Ot:T |st)p(st)
∝ βt(st, at)

βt(s)
(1.51)

We can compute the backwards messages as follows:

βt(st, at) =

∫

S
βt+1(st+1)pS(st+1|st, at)p(Ot|st, at)dst+1 (1.52)

βs(st) =

∫

A
βt(st, at)p(at|st)dat ∝

∫

A
βt(st, at)dat (1.53)

where we have assumed the action prior p(at|st) = 1/|A| for notational simplicty. (Recall that the action
prior is distinct from the optimal policy, which is given by p(at|st,Ot:T).)

1.5.2 Soft value functions

We can gain more insight into what is going on by working in log space. Let us define

Q(st, at) = log βt(st, at) (1.54)
V (st) = log βt(st) (1.55)

The update for V becomes
V (st) = log

∑

at

exp(Q(st, at)) (1.56)

This is a standard log-sum-exp computation, and is similar to the softmax operation. Thus we call it a soft
value function. When the values of Q(st, at) are large (which can be ensure by scaling up all the rewards),
this approximates the standard hard max operation:

V (st) = log
∑

at

exp(Q(st, at)) ≈ max
at

Q(st, at) (1.57)

For the deterministic case, the backup for Q becomes the usual

Q(st, at) = log p(Ot|st, at) + log βt+1(st+1) = r(st, at) + V (st+1) (1.58)

where st+1 = f(st, at) is the next state. However, for the stochastic case, we get

Q(st, at) = r(st, at) + logEpS(st+1|st,at) [exp(V (st+1))] (1.59)

This replaces the standard expectation over the next state with a softmax. This can result in Q functions that
are optimistic, since if there is one next state with particularly high reward (e.g., you win the lottery), it will
dominate the backup, even if on average it is unlikely. This can result in risk seeking behavior, and is known
as the optimism bias (see e.g., [Mad+17; Cha+21] for discussion). We will discuss a solution to this below.

27

1.5.3 Maximum entropy RL
Recall that the true posterior is given by

p(τ |O1:T) ≜ p∗(τ) ∝ p(s1)
T−1∏

t=1

pS(st+1|st, at) exp
(

T∑

t=1

R(st, at)

)
(1.60)

In the sections above, we derived the exact posterior over states and actions conditioned on the optimality
variables. However, in general we will have to approximate it.

Let us denote the approximate posterior by q(τ). Variational inference corresponds to the minimizing
(wrt q) the following objective:

DKL (q(τ) ∥ p∗(τ)) = −Eq(τ) [log p∗(τ)− log q(τ)] (1.61)

We can drive this loss to its minimum value of 0 by performing exact inference, which sets q(τ) = p∗(τ),
which is given by

p∗(τ) = p(s1|O1:T)

T−1∏

t=1

pS(st+1|st, at,O1:T)p(at|st,O1:T)) (1.62)

Unfortunately, this uses an optimistic form of the dynamics, pS(st+1|st, at,O1:T), in which the agent plans
assuming it directly controls the state distribution itself, rather than just the action distribution. We can
solve this optimism bias problem by instead using a “causal” variational posterior of the following form:8

q(τ) = p(s1)

T−1∏

t=1

pS(st+1|st, at)p(at|st,O1:T) = p(s1)

T−1∏

t=1

pS(st+1|st, at)π(at|st) (1.63)

where π(at|st) is the policy we wish to learn. In the case of deterministic transitions, where pS(st+1|st, at) =
δ(st+1 − f(st, at)), we do not need this simplification, since pS(st+1|st, at,O1:T) = pS(st+1|st, at). (And in
both cases p(s1|O1:T) = p(s1), which is assumed to be a delta function.) We can now write the (negative of)
the objective as follows:

−DKL (q(τ) ∥ p∗(τ)) = Eq(τ)

[
log p(s1) +

T∑

t=1

(log pS(st+1|st, at) +R(st, at))− (1.64)

− log p(s1)−
T∑

t=1

(log pS(st+1|st, at) + log π(at|st))
]

(1.65)

= Eq(τ)

[
T∑

t=1

R(st, at)− log π(at|st)
]

(1.66)

=
T∑

t=1

Eq(st,at)[R(st, at)] + Eq(st) H(π(·|st)) (1.67)

This is known as the maximum entropy RL objective [ZABD10].We can optimize this using the soft actor
critic algorithm which we discuss in Section 3.5.4.

Note that we can tune the magnitude of the entropy regularizer by defining the optimality variable using
p(Ot = 1|st, at) = exp(1

αR(st, at)). This gives the objective

J(π) =

T∑

t=1

Eq(st,at)[R(st, at)] + αEq(st) H(π(·|st)) (1.68)

As α→ 0 (equivalent to scaling up the rewards), this approaches the standard (unregularized) RL objective.
8Unfortunately, this trick is specific to variational inference, which means that other posterior inference methods, such as

sequential Monte Carlo [Pic+19; Lio+22], will still suffer from the optimism bias in the stochastic case (see e.g., [Mad+17] for
discussion).

28

1.5.4 Active inference
Control as inference is closely related to a technique known as active inference, as we explain below. For
more details on the connection, see [Mil+20; WIP20; LÖW21; Saj+21; Tsc+20].

The active inference technique was developed in the neuroscience community, that has its own vocabulary
for standard ML concepts. We start with the free energy principle [Fri09; Buc+17; SKM18; Ger19;
Maz+22]. The FEP is equivalent to using variational inference to perform state estimation (perception) and
parameter estimation (learning) in a latent variable model. In particular, consider an LVM p(z,o|θ) with
hidden states z, observations o, and parameters θ. We define the variational free energy to be

F(o|θ) = DKL (q(z|o,θ) ∥ p(z|o,θ))− log p(o|θ) = Eq(z|o,θ) [log q(z|o,θ)− log p(o, z|θ)] ≥ − log p(o|θ)
(1.69)

which is the KL between the approximate variational posterior q and the true posterior p, minus a normalization
constant, log p(o|θ), which is known as the free energy. State estimation (perception) corresponds to solving
minq(z|o,θ) F(o|θ), and parameter estimation (model fitting) corresponds to solving minθ F(o|θ), just as in
the EM (expectation maximization) algorithm. (We can also be Bayesian about θ, as in variational Bayes
EM, instead of just computing a point estimate.) This EM procedure will minimize the VFE, which is an
upper bound on the negative log marginal likelihood of the data. In other words, it adjusts the model (belief
state and parameters) so that it better predicts the observations, so the agent is less surprised (minimizes
prediction errors).

To extend the above FEP to decision making problems, we define the expected free energy as follows

G(a) = Eq(o|a) [F(o)] = Eq(o,z|a) [log q(z|o)− log p(o, z)] (1.70)

where q(o|a) is the posterior predictive distribution over future observations given action sequence a. (We
can also condition on any observed history or agent state h, but we omit this (and the model parameters θ)
from the notation for brevity.) We can decompose the EFE (which the agent wants to minimize) into two
terms. First there is the intrinsic value, known as the epistemic drive:

Gepistemic(a) = Eq(o,z|a) [log q(z|o)− log q(z)] (1.71)

Minimizing this will encourage the agent to choose actions which maximize the mutual information between
the observations o and the hidden states z, thus reducing uncertainty about the hidden states. (This is called
epistemic foraging.) The extrinsic value, known as the exploitation term, is given by

Gextrinsic(a) = −Eq(o|a) [log p(o)] (1.72)

Minimizing this will encourage the agent to choose actions that result in observations that match its prior.
For example, if the agent predicts that the world will look brighter when it flips a light switch, it can take
the action of flipping the switch to fulfill this prediction. This prior can be related to a reward function by
defining as p(o) ∝ eR(o), encouraging goal directed behavior, exactly as in control-as-inference. However, the
active inference approach provides a way of choosing actions without needing to specify a reward. Since
solving to the optimal action at each step can be slow, it is possible to amortize this cost by training a
policy network to compute π(a|h) = argmina G(a|h), where h is the observation history (or current state),
as shown in [Mil20; HL20]; this is called “deep active inference” .

Overall, we see that this framework provides a unified theory of both perception and action, both of which
try to minimize some form of free energy. In particular, minimizing the expected free energy will cause the
agent to pick actions to reduce its uncertainty about its hidden states, which can then be used to improve
its predictive model pθ of observations; this in turn will help minimize the VFE of future observations, by
updating the internal belief state q(z|o,θ) to explain the observations. In other words, the agent acts so it
can learn so it becomes less surprised by what it sees. This ensures the agent is in homeostasis with its
environment.

Note that active inference is often discussed in the context of predictive coding. This is equivalent to a
special case of FEP where two assumptions are made: (1) the generative model p(z,o|θ) is a a nonlinear

29

hierarchical Gaussian model (similar to a VAE decoder), and (2) the variational posterior approximation uses
a diagonal Laplace approximation, q(z|o,θ) = N (z|ẑ,H) with the mode ẑ being computed using gradient
descent, and H being the Hessian at the mode. This can be considered a non-amortized version of a VAE,
where inference (E step) is done with iterated gradient descent, and parameter estimation (M step) is also
done with gradient descent. (A more efficient incremental EM version of predictive coding, which updates
{ẑn : n = 1 : N} and θ in parallel, was recently presented in [Sal+24], and an amortized version in [Tsc+23].)
For more details on predictive coding, see [RB99; Fri03; Spr17; HM20; MSB21; Mar21; OK22; Sal+23;
Sal+24].

30

Chapter 2

Value-based RL

2.1 Basic concepts

In this section we introduce some definitions and basic concepts.

2.1.1 Value functions

Let π be a given policy. We define the state-value function, or value function for short, as follows (with
Eπ [·] indicating that actions are selected by π):

Vπ(s) ≜ Eπ [G0|s0 = s] = Eπ

[∞∑

t=0

γtrt|s0 = s

]
(2.1)

This is the expected return obtained if we start in state s and follow π to choose actions in a continuing task
(i.e., T =∞).

Similarly, we define the state-action value function, also known as the Q-function, as follows:

Qπ(s, a) ≜ Eπ [G0|s0 = s, a0 = a] = Eπ

[∞∑

t=0

γtrt|s0 = s, a0 = a

]
(2.2)

This quantity represents the expected return obtained if we start by taking action a in state s, and then
follow π to choose actions thereafter.

Finally, we define the advantage function as follows:

Aπ(s, a) ≜ Qπ(s, a)− Vπ(s) (2.3)

This tells us the benefit of picking action a in state s then switching to policy π, relative to the baseline
return of always following π. Note that Aπ(s, a) can be both positive and negative, and Eπ(a|s) [Aπ(s, a)] = 0
due to a useful equality: Vπ(s) = Eπ(a|s) [Qπ(s, a)].

2.1.2 Bellman’s equations

Suppose π∗ is a policy such that Vπ∗ ≥ Vπ for all s ∈ S and all policy π, then it is an optimal policy. There
can be multiple optimal policies for the same MDP, but by definition their value functions must be the same,
and are denoted by V∗ and Q∗, respectively. We call V∗ the optimal state-value function, and Q∗ the
optimal action-value function. Furthermore, any finite MDP must have at least one deterministic optimal
policy [Put94].

31

A fundamental result about the optimal value function is Bellman’s optimality equations:

V∗(s) = max
a

R(s, a) + γEpS(s′|s,a) [V∗(s
′)] (2.4)

Q∗(s, a) = R(s, a) + γEpS(s′|s,a)
[
max
a′

Q∗(s
′, a′)

]
(2.5)

Conversely, the optimal value functions are the only solutions that satisfy the equations. In other words,
although the value function is defined as the expectation of a sum of infinitely many rewards, it can be
characterized by a recursive equation that involves only one-step transition and reward models of the MDP.
Such a recursion play a central role in many RL algorithms we will see later.

Given a value function (V or Q), the discrepancy between the right- and left-hand sides of Equations (2.4)
and (2.5) are called Bellman error or Bellman residual. We can define the Bellman operator B given
an MDP M = (R, T) and policy π as a function that takes a value function V and derives a few value function
V ′ that satisfies

V ′(s) = BπMV (s) ≜ Eπ(a|s)
[
R(s, a) + γET (s′|s,a) [V (s′)]

]
(2.6)

This reduces the Bellman error. Applying the Bellman operator to a state is called a Bellman backup. If
we iterate this process, we will converge to the optimal value function V∗, as we discuss in Section 2.2.1.

Given the optimal value function, we can derive an optimal policy using

π∗(s) = argmax
a

Q∗(s, a) (2.7)

= argmax
a

[
R(s, a) + γEpS(s′|s,a) [V∗(s

′)]
]

(2.8)

Following such an optimal policy ensures the agent achieves maximum expected return starting from any
state.

The problem of solving for V∗, Q∗ or π∗ is called policy optimization. In contrast, solving for Vπ or Qπ
for a given policy π is called policy evaluation, which constitutes an important subclass of RL problems as
will be discussed in later sections. For policy evaluation, we have similar Bellman equations, which simply
replace maxa{·} in Equations (2.4) and (2.5) with Eπ(a|s) [·].

In Equations (2.7) and (2.8), as in the Bellman optimality equations, we must take a maximum over all
actions in A, and the maximizing action is called the greedy action with respect to the value functions,
Q∗ or V∗. Finding greedy actions is computationally easy if A is a small finite set. For high dimensional
continuous spaces, see Section 2.5.4.1.

2.1.3 Example: 1d grid world
In this section, we show a simple example, to make some of the above concepts more concrete. Consider the
1d grid world shown in Figure 2.1(a). There are 5 possible states, among them ST1 and ST2 are absorbing
states, since the interaction ends once the agent enters them. There are 2 actions, ↑ and ↓. The reward
function is zero everywhere except at the goal state, ST2, which gives a reward of 1 upon entering. Thus the
optimal action in every state is to move down.

Figure 2.1(b) shows the Q∗ function for γ = 0. Note that we only show the function for non-absorbing
states, as the optimal Q-values are 0 in absorbing states by definition. We see that Q∗(s3, ↓) = 1.0, since the
agent will get a reward of 1.0 on the next step if it moves down from s3; however, Q∗(s, a) = 0 for all other
state-action pairs, since they do not provide nonzero immediate reward. This optimal Q-function reflects the
fact that using γ = 0 is completely myopic, and ignores the future.

Figure 2.1(c) shows Q∗ when γ = 1. In this case, we care about all future rewards equally. Thus
Q∗(s, a) = 1 for all state-action pairs, since the agent can always reach the goal eventually. This is infinitely
far-sighted. However, it does not give the agent any short-term guidance on how to behave. For example, in
s2, it is not clear if it is should go up or down, since both actions will eventually reach the goal with identical
Q∗-values.

Figure 2.1(d) shows Q∗ when γ = 0.9. This reflects a preference for near-term rewards, while also taking
future reward into account. This encourages the agent to seek the shortest path to the goal, which is usually

32

ST1

S1

S2

S3

ST2

ST1

S1

S2

S3

ST2

0

0

0

0

1

0 0

0 0

0 1.0

0 1.0

1.0 1.0

1.0 1.0

0 0.81

0.73 0.9

0.81 1.0

Up Down Up Down Up Down

R(s)
Q*(s, a)

Up
a1

Down

a2

(a) (b) (c) (d)

𝛄 = 1𝛄 = 0 𝛄 = 0.9

Figure 2.1: Left: illustration of a simple MDP corresponding to a 1d grid world of 3 non-absorbing states and 2
actions. Right: optimal Q-functions for different values of γ. Adapted from Figures 3.1, 3.2, 3.4 of [GK19].

what we desire. A proper choice of γ is up to the agent designer, just like the design of the reward function,
and has to reflect the desired behavior of the agent.

2.2 Computing the value function and policy given a known world
model

In this section, we discuss how to compute the optimal value function (the prediction problem) and the
optimal policy (the control problem) when the MDP model is known. (Sometimes the term planning is
used to refer to computing the optimal policy, given a known model, but planning can also refer to computing
a sequence of actions, rather than a policy.) The algorithms we discuss are based on dynamic programming
(DP) and linear programming (LP).

For simplicity, in this section, we assume discrete state and action sets with γ < 1. However, exact
calculation of optimal policies often depends polynomially on the sizes of S and A, and is intractable, for
example, when the state space is a Cartesian product of several finite sets. This challenge is known as
the curse of dimensionality. Therefore, approximations are typically needed, such as using parametric
or nonparametric representations of the value function or policy, both for computational tractability and
for extending the methods to handle MDPs with general state and action sets. This requires the use of
approximate dynamic programming (ADP) and approximate linear programming (ALP) algorithms
(see e.g., [Ber19]).

2.2.1 Value iteration

A popular and effective DP method for solving an MDP is value iteration (VI). Starting from an initial
value function estimate V0, the algorithm iteratively updates the estimate by

Vk+1(s) = max
a

[
R(s, a) + γ

∑

s′

p(s′|s, a)Vk(s′)
]

(2.9)

Note that the update rule, sometimes called a Bellman backup, is exactly the right-hand side of the
Bellman optimality equation Equation (2.4), with the unknown V∗ replaced by the current estimate Vk. A

33

fundamental property of Equation (2.9) is that the update is a contraction: it can be verified that

max
s
|Vk+1(s)− V∗(s)| ≤ γmax

s
|Vk(s)− V∗(s)| (2.10)

In other words, every iteration will reduce the maximum value function error by a constant factor.
Vk will converge to V∗, after which an optimal policy can be extracted using Equation (2.8). In practice,

we can often terminate VI when Vk is close enough to V∗, since the resulting greedy policy wrt Vk will be
near optimal. Value iteration can be adapted to learn the optimal action-value function Q∗.

2.2.2 Real-time dynamic programming (RTDP)
In value iteration, we compute V∗(s) and π∗(s) for all possible states s, averaging over all possible next states
s′ at each iteration, as illustrated in Figure 2.2(right). However, for some problems, we may only be interested
in the value (and policy) for certain special starting states. This is the case, for example, in shortest path
problems on graphs, where we are trying to find the shortest route from the current state to a goal state.
This can be modeled as an episodic MDP by defining a transition matrix pS(s′|s, a) where taking edge a from
node s leads to the neighboring node s′ with probability 1. The reward function is defined as R(s, a) = −1
for all states s except the goal states, which are modeled as absorbing states.

In problems such as this, we can use a method known as real-time dynamic programming or RTDP
[BBS95], to efficiently compute an optimal partial policy, which only specifies what to do for the reachable
states. RTDP maintains a value function estimate V . At each step, it performs a Bellman backup for
the current state s by V (s) ← maxa EpS(s′|s,a) [R(s, a) + γV (s′)]. It picks an action a (often with some
exploration), reaches a next state s′, and repeats the process. This can be seen as a form of the more general
asynchronous value iteration, that focuses its computational effort on parts of the state space that are
more likely to be reachable from the current state, rather than synchronously updating all states at each
iteration.

2.2.3 Policy iteration
Another effective DP method for computing π∗ is policy iteration. It is an iterative algorithm that searches
in the space of deterministic policies until converging to an optimal policy. Each iteration consists of two
steps, policy evaluation and policy improvement.

The policy evaluation step, as mentioned earlier, computes the value function for the current policy. Let π
represent the current policy, v(s) = Vπ(s) represent the value function encoded as a vector indexed by states,
r(s) =

∑
a π(a|s)R(s, a) represent the reward vector, and T(s′|s) =∑a π(a|s)p(s′|s, a) represent the state

transition matrix. Bellman’s equation for policy evaluation can be written in the matrix-vector form as

v = r + γTv (2.11)

This is a linear system of equations in |S| unknowns. We can solve it using matrix inversion: v = (I−γT)−1r.
Alternatively, we can use value iteration by computing vt+1 = r+ γTvt until near convergence, or some form
of asynchronous variant that is computationally more efficient.

Once we have evaluated Vπ for the current policy π, we can use it to derive a better policy π′, thus the
name policy improvement. To do this, we simply compute a deterministic policy π′ that acts greedily with
respect to Vπ in every state, using

π′(s) = argmax
a
{R(s, a) + γE [Vπ(s

′)]} (2.12)

We can guarantee that Vπ′ ≥ Vπ. This is called the policy improvement theorem. To see this, define r′,
T′ and v′ as before, but for the new policy π′. The definition of π′ implies r′ + γT′v ≥ r + γTv = v, where
the equality is due to Bellman’s equation. Repeating the same equality, we have

v ≤ r′ + γT′v ≤ r′ + γT′(r′ + γT′v) ≤ r′ + γT′(r′ + γT′(r′ + γT′v)) ≤ · · · (2.13)

= (I+ γT′ + γ2T′2 + · · ·)r′ = (I− γT′)−1r′ = v′ (2.14)

34

Figure 2.2: Policy iteration vs value iteration represented as backup diagrams. Empty circles represent states, solid
(filled) circles represent states and actions. Adapted from Figure 8.6 of [SB18].

Starting from an initial policy π0, policy iteration alternates between policy evaluation (E) and improvement
(I) steps, as illustrated below:

π0
E→ Vπ0

I→ π1
E→ Vπ1

· · · I→ π∗
E→ V∗ (2.15)

The algorithm stops at iteration k, if the policy πk is greedy with respect to its own value function Vπk
. In

this case, the policy is optimal. Since there are at most |A||S| deterministic policies, and every iteration
strictly improves the policy, the algorithm must converge after finite iterations.

In PI, we alternate between policy evaluation (which involves multiple iterations, until convergence of
Vπ), and policy improvement. In VI, we alternate between one iteration of policy evaluation followed by one
iteration of policy improvement (the “max” operator in the update rule). We are in fact free to intermix any
number of these steps in any order. The process will converge once the policy is greedy wrt its own value
function.

Note that policy evaluation computes Vπ whereas value iteration computes V∗. This difference is illustrated
in Figure 2.2, using a backup diagram. Here the root node represents any state s, nodes at the next level
represent state-action combinations (solid circles), and nodes at the leaves representing the set of possible
resulting next state s′ for each possible action. In PE, we average over all actions according to the policy,
whereas in VI, we take the maximum over all actions.

2.3 Computing the value function without knowing the world model
In the rest of this chapter, we assume the agent only has access to samples from the environment, (s′, r) ∼
p(s′, r|s, a). We will show how to use these samples to learn optimal value function and Q-function, even
without knowing the MDP dynamics.

2.3.1 Monte Carlo estimation
Recall that Vπ(s) = E [Gt|st = s] is the sum of expected (discounted) returns from state s if we follow policy
π. A simple way to estimate this is to rollout the policy, and then compute the average sum of discounted
rewards. The trajectory ends when we reach a terminal state, if the task is episodic, or when the discount
factor γt becomes negligibly small, whichever occurs first. This is called Monte Carlo estimation. We can
use this to update our estimate of the value function as follows:

V (st)← V (st) + η [Gt − V (st)] (2.16)

where η is the learning rate, and the term in brackets is an error term. We can use a similar technique to
estimate Qπ(s, a) = E [Gt|st = s, at = a] by simply starting the rollout with action a.

We can use MC estimation of Q, together with policy iteration (Section 2.2.3), to learn an optimal policy.
Specifically, at iteration k, we compute a new, improved policy using πk+1(s) = argmaxaQk(s, a), where Qk

35

is approximated using MC estimation. This update can be applied to all the states visited on the sampled
trajectory. This overall technique is called Monte Carlo control.

To ensure this method converges to the optimal policy, we need to collect data for every (state, action)
pair, at least in the tabular case, since there is no generalization across different values of Q(s, a). One way
to achieve this is to use an ϵ-greedy policy (see Section 1.4.1). Since this is an on-policy algorithm, the
resulting method will converge to the optimal ϵ-soft policy, as opposed to the optimal policy. It is possible to
use importance sampling to estimate the value function for the optimal policy, even if actions are chosen
according to the ϵ-greedy policy. However, it is simpler to just gradually reduce ϵ.

2.3.2 Temporal difference (TD) learning
The Monte Carlo (MC) method in Section 2.3.1 results in an estimator for V (s) with very high variance, since
it has to unroll many trajectories, whose returns are a sum of many random rewards generated by stochastic
state transitions. In addition, it is limited to episodic tasks (or finite horizon truncation of continuing tasks),
since it must unroll to the end of the episode before each update step, to ensure it reliably estimates the long
term return.

In this section, we discuss a more efficient technique called temporal difference or TD learning [Sut88].
The basic idea is to incrementally reduce the Bellman error for sampled states or state-actions, based on
transitions instead of a long trajectory. More precisely, suppose we are to learn the value function Vπ for a
fixed policy π. Given a state transition (st, at, rt, st+1), where at ∼ π(st), we change the estimate V (st) so
that it moves towards the target value qt = rt + γV (st+1) ≈ Gt:t+1:

V (st)← V (st) + η

rt + γV (st+1)− V (st)︸ ︷︷ ︸

δt

 (2.17)

where η is the learning rate. (See [RFP15] for ways to adaptively set the learning rate.) The δt = yt − V (st)
term is known as the TD error. A more general form of TD update for parametric value function
representations is

w ← w + η [rt + γVw(st+1)− Vw(st)]∇wVw(st) (2.18)

we see that Equation (2.16) is a special case. The TD update rule for evaluating Qπ is similar, except we
replace states with states and actions.

It can be shown that TD learning in the tabular case, Equation (2.16), converges to the correct value func-
tion, under proper conditions [Ber19]. However, it may diverge when using nonlinear function approximators,
as we discuss in Section 2.5.2.4. The reason is that this update is a “semi-gradient”, which refers to the fact
that we only take the gradient wrt the value function, ∇wV (st,wt), treating the target Ut as constant.

The potential divergence of TD is also consistent with the fact that Equation (2.18) does not correspond
to a gradient update on any objective function, despite having a very similar form to SGD (stochastic gradient
descent). Instead, it is an example of bootstrapping, in which the estimate, Vw(st), is updated to approach
a target, rt + γVw(st+1), which is defined by the value function estimate itself. This idea is shared by DP
methods like value iteration, although they rely on the complete MDP model to compute an exact Bellman
backup. In contrast, TD learning can be viewed as using sampled transitions to approximate such backups.
An example of a non-bootstrapping approach is the Monte Carlo estimation in the previous section. It
samples a complete trajectory, rather than individual transitions, to perform an update; this avoids the
divergence issue, but is often much less efficient. Figure 2.3 illustrates the difference between MC, TD, and
DP.

2.3.3 Combining TD and MC learning using TD(λ)
A key difference between TD and MC is the way they estimate returns. Given a trajectory τ = (s0, a0, r0, s1, . . . , sT),
TD estimates the return from state st by one-step lookahead, Gt:t+1 = rt + γV (st+1), where the return from

36

Figure 2.3: Backup diagrams of V (st) for Monte Carlo, temporal difference, and dynamic programming updates of the
state-value function. Used with kind permission of Andy Barto.

time t + 1 is replaced by its value function estimate. In contrast, MC waits until the end of the episode
or until T is large enough, then uses the estimate Gt:T = rt + γrt+1 + · · ·+ γT−t−1rT−1. It is possible to
interpolate between these by performing an n-step rollout, and then using the value function to approximate
the return for the rest of the trajectory, similar to heuristic search (Section 4.1.2). That is, we can use the
n-step return

Gt:t+n = rt + γrt+1 + · · ·+ γn−1rt+n−1 + γnV (st+n) (2.19)

For example, the 1-step and 2-step returns are given by

Gt:t+1 = rt + γvt+1 (2.20)

Gt:t+1 = rt + γrt+1 + γ2vt+2 (2.21)

The corresponding n-step version of the TD update becomes

w ← w + η [Gt:t+n − Vw(st)]∇wVw(st) (2.22)

Rather than picking a specific lookahead value, n, we can take a weighted average of all possible values,
with a single parameter λ ∈ [0, 1], by using

Gλt ≜ (1− λ)
∞∑

n=1

λn−1Gt:t+n (2.23)

This is called the lambda return. Note that these coefficients sum to one (since
∑∞
t=0(1− λ)λt = 1−λ

1−λ = 1,
for λ < 1), so the return is a convex combination of n-step returns. See Figure 2.4 for an illustration. We can
now use Gλt inside the TD update instead of Gt:t+n; this is called TD(λ).

Note that, if a terminal state is entered at step T (as happens with episodic tasks), then all subsequent
n-step returns are equal to the conventional return, Gt. Hence we can write

Gλt = (1− λ)
T−t−1∑

n=1

λn−1Gt:t+n + λT−t−1Gt (2.24)

From this we can see that if λ = 1, the λ-return becomes equal to the regular MC return Gt. If λ = 0, the
λ-return becomes equal to the one-step return Gt:t+1 (since 0n−1 = 1 iff n = 1), so standard TD learning is
often called TD(0) learning. This episodic form also gives us the following recursive equation

Gλt = rt + γ[(1− λ)vt+1 + λGλt+1] (2.25)

which we initialize with GT = vt.

37

Figure 2.4: The backup diagram for TD(λ). Standard TD learning corresponds to λ = 0, and standard MC learning
corresponds to λ = 1. From Figure 12.1 of [SB18]. Used with kind permission of Richard Sutton.

2.3.4 Eligibility traces

An important benefit of using the geometric weighting in Equation (2.23), as opposed to the n-step update,
is that the corresponding TD learning update can be efficiently implemented through the use of eligibility
traces, even though Gλt is a sum of infinitely many terms. The eligibility term is a weighted sum of the
gradients of the value function:

zt = γλzt−1 +∇wVw(st) (2.26)

(This trace term gets reset to 0 at the start of each episode.) We replace the TD(0) update of wt+1 =
wt + ηδt∇wVw(st) with the TD(λ) version to get

wt+1 = wt + ηδtzt (2.27)

See [Sei+16] for more details.

2.4 SARSA: on-policy TD control

TD learning is for policy evaluation, as it estimates the value function for a fixed policy. In order to find an
optimal policy, we may use the algorithm as a building block inside generalized policy iteration (Section 2.2.3).
In this case, it is more convenient to work with the action-value function, Q, and a policy π that is greedy
with respect to Q. The agent follows π in every step to choose actions, and upon a transition (s, a, r, s′) the
TD update rule is

Q(s, a)← Q(s, a) + η [r + γQ(s′, a′)−Q(s, a)] (2.28)

where a′ ∼ π(s′) is the action the agent will take in state s′. After Q is updated (for policy evaluation), π
also changes accordingly as it is greedy with respect to Q (for policy improvement). This algorithm, first
proposed by [RN94], was further studied and renamed to SARSA by [Sut96]; the name comes from its
update rule that involves an augmented transition (s, a, r, s′, a′).

In order for SARSA to converge to Q∗, every state-action pair must be visited infinitely often, at least in
the tabular case, since the algorithm only updates Q(s, a) for (s, a) that it visits. One way to ensure this
condition is to use a “greedy in the limit with infinite exploration” (GLIE) policy. An example is the ϵ-greedy
policy, with ϵ vanishing to 0 gradually. It can be shown that SARSA with a GLIE policy will converge to Q∗
and π∗ [Sin+00].

38

2.5 Q-learning: off-policy TD control

SARSA is an on-policy algorithm, which means it learns the Q-function for the policy it is currently using,
which is typically not the optimal policy, because of the need to perform exploration. However, with a
simple modification, we can convert this to an off-policy algorithm that learns Q∗, even if a suboptimal or
exploratory policy is used to choose actions.

2.5.1 Tabular Q learning

Suppose we modify SARSA by replacing the sampled next action a′ ∼ π(s′) in Equation (2.28) with a greedy
action: a′ = argmaxbQ(s′, b). This results in the following update when a transition (s, a, r, s′) happens

Q(s, a)← Q(s, a) + η
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(2.29)

This is the update rule of Q-learning for the tabular case [WD92].
Since it is off-policy, the method can use (s, a, r, s′) triples coming from any data source, such as older

versions of the policy, or log data from an existing (non-RL) system. If every state-action pair is visited
infinitely often, the algorithm provably converges to Q∗ in the tabular case, with properly decayed learning
rates [Ber19]. Algorithm 1 gives a vanilla implementation of Q-learning with ϵ-greedy exploration.

Algorithm 1: Tabular Q-learning with ϵ-greedy exploration
1 Initialize value function Q
2 repeat
3 Sample starting state s of new episode
4 repeat

5 Sample action a =

{
argmaxbQ(s, b), with probability 1− ϵ
random action, with probability ϵ

6 (s′, r) = env.step(a)
7 Compute the TD error: δ = r + γmaxa′ Q(s′, a′)−Q(s, a)
8 Q(s, a)← Q(s, a) + ηδ
9 s← s′

10 until state s is terminal
11 until converged

For terminal states, s ∈ S+, we know that Q(s, a) = 0 for all actions a. Consequently, for the optimal
value function, we have V ∗(s) = maxa′ Q

∗(s, a) = 0 for all terminal states. When performing online learning,
we don’t usually know which states are terminal. Therefore we assume that, whenever we take a step in the
environment, we get the next state s′ and reward r, but also a binary indicator done(s′) that tells us if s′ is
terminal. In this case, we set the target value in Q-learning to V ∗(s′) = 0 yielding the modified update rule:

Q(s, a)← Q(s, a) + η
[
r + (1− done(s′))γmax

a′
Q(s′, a′)−Q(s, a)

]
(2.30)

For brevity, we will usually ignore this factor in the subsequent equations, but it needs to be implemented in
the code.

Figure 2.5 gives an example of Q-learning applied to the simple 1d grid world from Figure 2.1, using
γ = 0.9. We show the Q-functon at the start and end of each episode, after performing actions chosen by an
ϵ-greedy policy. We initialize Q(s, a) = 0 for all entries, and use a step size of η = 1. At convergence, we have
Q∗(s, a) = r + γQ∗(s′, a∗), where a∗ =↓ for all states.

39

Q-function
episode start Episode Time Step Action (s,α,r , s') r + γQ*(s' , α)

UP DOWN

1 1 (S1 , D,0,S2) 0 + 0.9 X 0 = 0

1 2 (S2 ,U,0,S1) 0 + 0.9 X 0 = 0

1 3 (S1 , D,0,S2) 0 + 0.9 X 0 = 0

1 4 (S2 , U,0,S1) 0 + 0.9 X 0 = 0

1 5 (S3 , D,1,ST2) 1

2 1 (S1 , D,0,S2) 0 + 0.9 x 0 = 0

2 2 (S2 , D,0,S3) 0 + 0.9 x 1 = 0.9

2 3 (S3 , D,0,ST2) 1

3 1 (S1 , D,0,S2) 0 + 0.9 x 0.9 = 0.81

3 2 (S2 , D,0,S3) 0 + 0.9 x 1 = 0.9

3 3 (S3 , D,0,S2) 0 + 0.9 x 0.9 = 0.81

3 4 (S2 , D,0,S3) 0 + 0.9 x 1 = 0.9

3 5 (S3 , D,0,ST2) 1

4 1 (S1 , D,0,S2) 0 + 0.9 x 0.9 = 0.81

4 2 (S2 , U,0,S1) 0 + 0.9 x 0.81 = 0.73

4 3 (S1 , D,0,S2) 0 + 0.9 x 0.9 = 0.81

4 4 (S2 , U,0,S3) 0 + 0.9 x 0.81 = 0.73

4 5 (S1 , D,0,S3) 0 + 0.9 x 0.9 = 0.81

4 6 (S2 , D,0,S3) 0 + 0.9 x 1 = 0.9

4 7 (S2 , D,0,S3) 1

5 1 (S1 , U, 0,ST1) 0

0 0

0 0

0 1

0 0

0 0

0 0

0 0

0 0

0 1

0 0

0 0.9

0 1

0 0.81

0 0.9

0.81 1

0 0

0 0.9

0 1

0 0.81

0 0.9

0.81 1

0 0.81

0.73 0.9

0.81 1

0 0.81

0.73 0.9

0.81 1

0 0.81

0.73 0.9

0.81 1

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

Q-function
episode end

UP DOWN

Q1

Q2

Q3

Q4

Q5

Figure 2.5: Illustration of Q learning for one random trajectory in the 1d grid world in Figure 2.1 using ϵ-greedy
exploration. At the end of episode 1, we make a transition from S3 to ST2 and get a reward of r = 1, so we estimate
Q(S3, ↓) = 1. In episode 2, we make a transition from S2 to S3, so S2 gets incremented by γQ(S3, ↓) = 0.9. Adapted
from Figure 3.3 of [GK19].

40

2.5.2 Q learning with function approximation
To make Q learning work with high-dimensional state spaces, we have to replace the tabular (non-parametric)
representation with a parametric approximation, denoted Qw(s, a). We can update this function using one or
more steps of SGD on the following loss function

L(w|s, a, r, s′) =
(
(r + γmax

a′
Qw(s

′, a′))−Qw(s, a)
)2 (2.31)

Since nonlinear functions need to be trained on minibatches of data, we compute the average loss over multiple
randomly sampled experience tuples (see Section 2.5.2.3 for discussion) to get

L(w) = E(s,a,r,s′)∼U(D) [L(w|s, a, r, s′)] (2.32)

See Algorithm 2 for the pseudocode.

Algorithm 2: Q learning with function approximation and replay buffers
1 Initialize environment state s, network parameters w0, replay buffer D = ∅, discount factor γ, step

size η, policy π0(a|s) = ϵUnif(a) + (1− ϵ)δ(a = argmaxaQw0
(s, a))

2 for iteration k = 0, 1, 2, . . . do
3 for environment step s = 0, 1, . . . , S − 1 do
4 Sample action: a ∼ πk(a|s)
5 Interact with environment: (s′, r) = env.step(a)
6 Update buffer: D ← D ∪ {(s, a, s′, r)}
7 wk,0 ← wk
8 for gradient step g = 0, 1, . . . , G− 1 do
9 Sample batch: B ⊂ D

10 Compute error: L(B,wk,g) = 1
|B|
∑

(s,a,r,s′)∈B
[
Qwk,g

(s, a)− (r + γmaxa′ Qwk
(s′, a′))

]2

11 Update parameters: wk,g ← wk,g − η∇wk,g
L(B,wk,g)

12 wk+1 ← wk,G

2.5.2.1 Neural fitted Q

The first approach of this kind is known as neural fitted Q iteration [Rie05], which corresponds to fully
optimizing L(w) at each iteration (equivalent to using G =∞ gradient steps).

2.5.2.2 DQN

The influential deep Q-network or DQN paper of [Mni+15] also used neural nets to represent the Q function,
but performed a smaller number of gradient updates per iteration. Furthermore, they proposed to modify the
target value when fitting the Q function in order to avoid instabilities during training (see Section 2.5.2.4 for
details).

The DQN method became famous since it was able to train agents that can outperform humans when
playing various Atari games from the ALE (Atari Learning Environment) benchmark [Bel+13]. Here the
input is a small color image, and the action space corresponds to moving left, right, up or down, plus an
optional shoot action.1

Since 2015, many more extensions to DQN have been proposed, with the goal of improving performance
in various ways, either in terms of peak reward obtained, or sample efficiency (e.g., reward obtained after only

1For more discussion of ALE, see [Mac+18a], and for a recent extension to continuous actions (representing joystick control),
see the CALE benchmark of [FC24]. Note that DQN was not the first deep RL method to train an agent from pixel input; that
honor goes to [LR10], who trained an autoencoder to embed images into low-dimensional latents, and then used neural fitted Q
learning (Section 2.5.2.1) to fit the Q function.

41

(a) (b)

Figure 2.6: (a) A simple MDP. (b) Parameters of the policy diverge over time. From Figures 11.1 and 11.2 of [SB18].
Used with kind permission of Richard Sutton.

100k steps in the environment, as proposed in the Atari-100k benchmark [Kai+19]), or training stability, or
all of the above. We discuss some of these extensions in Section 2.5.4.

2.5.2.3 Experience replay

Since Q learning is an off-policy method, we can update the Q function using any data source. This is
particularly important when we use nonlinear function approximation (see Section 2.5.2), which often needs a
lot of data for model fitting. A natural source of data is data collected earlier in the trajectori of the agent;
this is called an experience replay buffer, which stores (s, a, r, s′) transition tuples into a buffer. This can
improve the stability and sample efficiency of learning, and was originally proposed in [Lin92].

This modification has two advantages. First, it improves data efficiency as every transition can be used
multiple times. Second, it improves stability in training, by reducing the correlation of the data samples
that the network is trained on, since the training tuples do not have to come from adjacent moments in time.
(Note that experience replay requires the use of off-policy learning methods, such as Q learning, since the
training data is sampled from older versions of the policy, not the current policy.)

It is possible to replace the uniform sampling from the buffer with one that favors more important
transition tuples that may be more informative about Q. This idea is formalized in [Sch+16a], who develop a
technique known as prioritized experience replay.

2.5.2.4 The deadly triad

The problem with the naive Q learning objective in Equation (2.31) is that it can lead to instability, since
the target we are regressing towards uses the same parameters w as the function we are updating. So the
network is “chasing its own tail”. Although this is fine for tabular models, it can fail for nonlinear models, as
we discuss below.

In general, an RL algorithm can become unstable when it has these three components: function approxi-
mation (such as neural networks), bootstrapped value function estimation (i.e., using TD-like methods instead
of MC), and off-policy learning (where the actions are sampled from some distribution other than the policy
that is being optimized). This combination is known as the deadly triad [Sut15; van+18]).

A classic example of this is the simple MDP depicted in Figure 2.6a, due to [Bai95]. (This is known as
Baird’s counter example.) It has 7 states and 2 actions. Taking the dashed action takes the environment
to the 6 upper states uniformly at random, while the solid action takes it to the bottom state. The reward is
0 in all transitions, and γ = 0.99. The value function Vw uses a linear parameterization indicated by the
expressions shown inside the states, with w ∈ R8. The target policies π always chooses the solid action in
every state. Clearly, the true value function, Vπ(s) = 0, can be exactly represented by setting w = 0.

42

Suppose we use a behavior policy b to generate a trajectory, which chooses the dashed and solid actions
with probabilities 6/7 and 1/7, respectively, in every state. If we apply TD(0) on this trajectory, the
parameters diverge to ∞ (Figure 2.6b), even though the problem appears simple. In contrast, with on-policy
data (that is, when b is the same as π), TD(0) with linear approximation can be guaranteed to converge to
a good value function approximate [TR97]. The difference is that with on-policy learning, as we improve
the value function, we also improve the policy, so the two become self-consistent, whereas with off-policy
learning, the behavior policy may not match the optimal value function that is being learned, leading to
inconsistencies.

The divergence behavior is demonstrated in many value-based bootstrapping methods, including TD,
Q-learning, and related approximate dynamic programming algorithms, where the value function is represented
either linearly (like the example above) or nonlinearly [Gor95; TVR97; OCD21]. The root cause of these
divergence phenomena is that bootstrapping methods typically are not minimizing a fixed objective function.
Rather, they create a learning target using their own estimates, thus potentially creating a self-reinforcing
loop to push the estimates to infinity. More formally, the problem is that the contraction property in the
tabular case (Equation (2.10)) may no longer hold when V is approximated by Vw.

We discuss some solutions to the deadly triad problem below.

2.5.2.5 Target networks

One heuristic solution to the deadly triad, proposed in the DQN paper, is to use a “frozen” target network
computed at an earlier iteration to define the target value for the DQN updates, rather than trying to chase
a constantly moving target. Specifically, we maintain an extra copy the Q-network, Qw− , with the same
structure as Qw. This new Q-network is used to compute bootstrapping targets

q(r, s′;w−) = r + γmax
a′

Qw−(s′, a′) (2.33)

for training Qw. We can periodically set w− ← sg(w), usually after a few episodes, where the stop gradient
operator is used to prevent autodiff propagating gradients back to w. Alternatively, we can use an exponential
moving average (EMA) of the weights, i.e., we use w = ρw + (1− ρ)sg(w), where ρ≪ 1 ensures that Qw
slowly catches up with Qw. (If ρ = 0, we say that this is a detached target, since it is just a frozen copy of
the current weights.) The final loss has the form

L(w) = E(s,a,r,s′)∼U(D) [L(w|s, a, r, s′)] (2.34)

L(w|s, a, r, s′) = (q(r, s′;w)−Qw(s, a))2 (2.35)

Theoretical work justifying this technique is given in [FSW23; Che+24a].

2.5.2.6 Two time-scale methods

A general way to ensure convergence in off-policy learning is to construct an objective function, the minimiza-
tion of which leads to a good value function approximation. This is the basis of the gradient TD method of
[SSM08; Mae+09; Ghi+20]. In practice, this can be achieved by updating the target value in the TD update
more quickly than the value function itself; this is known as a two timescale optimization (see e.g., [Yu17;
Zha+19; Hon+23]). It is also possible to use a standard single timescale method provided the target value is
computed using a frozen target network, as discussed in Section 2.5.2.5. See [FSW23; Che+24a] for details.

2.5.2.7 Layer norm

More recently, [Gal+24] proved that just adding LayerNorm [BKH16] to the penultimate layer of the critic net-
work, just before the linear head, is sufficient to provably yield convergence of TD learning even in the off-policy
setting. In particular, suppose the network has the form Q(s, a|w,θ) = wTReLU(LayerNorm(f(s, a;θ))).
Since ||LayerNorm(f(s, a;θ))|| ≤ 1, we have ||Q(s, a|w,θ) ≤ ||w||, which means the magnitude of the output
is always bounded, as shown in Figure 2.7. In [Gal+24], they prove this (plus ℓ2 regularization on w, and a
sufficiently wide penultimate layer) is sufficient to ensure convergence of the value function estimate.

43

−1.00−0.75−0.50−0.250.00 0.25 0.50 0.75 1.00−1.00
−0.75−0.50−0.250.00

0.250.50
0.751.00

0.0

0.2

0.4

0.6

0.8

1.0

Data

−1.00−0.75−0.50−0.250.00 0.25 0.50 0.75 1.00 −1.00−0.75−0.50−0.250.000.250.500.751.00
0.0

0.2

0.4

0.6

0.8

1.0

No LayerNorm

−1.00−0.75−0.50−0.250.00 0.25 0.50 0.75 1.00 −1.00−0.75−0.50−0.250.000.250.500.751.00
0.0

0.2

0.4

0.6

0.8

1.0

With LayerNorm

Figure 2.7: We generate a dataset (left) with inputs x distributed in a circle with radius 0.5 and labels y = ||x||. We
then fit a two-layer MLP without LayerNorm (center) and with LayerNorm (right). LayerNorm bounds the values and
prevents catastrophic overestimation when extrapolating. From Figure 3 of [Bal+23]. Used with kind permission of
Philip Ball.

Figure 2.8: Comparison of Q-learning and double Q-learning on a simple episodic MDP using ϵ-greedy action selection
with ϵ = 0.1. The initial state is A, and squares denote absorbing states. The data are averaged over 10,000 runs.
From Figure 6.5 of [SB18]. Used with kind permission of Richard Sutton.

2.5.3 Maximization bias
Standard Q-learning suffers from a problem known as the optimizer’s curse [SW06], or the maximization
bias. The problem refers to the simple statistical inequality: E [maxaXa] ≥ maxa E [Xa], for a set of random
variables {Xa}. Thus, if we pick actions greedily according to their random scores {Xa}, we might pick a
wrong action just because random noise makes it appealing.

Figure 2.8 gives a simple example of how this can happen in an MDP. The start state is A. The right
action gives a reward 0 and terminates the episode. The left action also gives a reward of 0, but then enters
state B, from which there are many possible actions, with rewards drawn from N (−0.1, 1.0). Thus the
expected return for any trajectory starting with the left action is −0.1, making it suboptimal. Nevertheless,
the RL algorithm may pick the left action due to the maximization bias making B appear to have a positive
value.

2.5.3.1 Double Q-learning

One solution to avoid the maximization bias is to use two separate Q-functions, Q1 and Q2, one for selecting
the greedy action, and the other for estimating the corresponding Q-value. In particular, upon seeing a
transition (s, a, r, s′), we perform the following update for i = 1 : 2:

Qi(s, a)← Qi(s, a) + η(qi(s, a)−Qi(s, a)) (2.36)
qi(s, a) = r + γQi(s

′, argmax
a′

Q−i(s
′, a′)) (2.37)

So we see that Q1 uses Q2 to choose the best action but uses Q1 to evaluate it, and vice versa. This technique
is called double Q-learning [Has10]. Figure 2.8 shows the benefits of the algorithm over standard Q-learning

44

in a toy problem.

2.5.3.2 Double DQN

In [HGS16], they combine double Q learning with deep Q networks (Section 2.5.2.2) to get double DQN.
This modifies Equation (2.37) to its gradient form, and then the current network for action proposals, but
the target network for action evaluation. Thus the training target becomes

q(r, s′;w,w) = r + γQw(s
′, argmax

a′
Qw(s

′, a′)) (2.38)

In Section 3.6.2 we discuss an extension called clipped double DQN which uses two Q networks and
their frozen copies to define the following target:

q(r, s′;w1:2,w1:2) = r + γ min
i=1,2

Qwi
(s′, argmax

a′
Qwi

(s′, a′)) (2.39)

where Qwi
is the target network for Qwi

.

2.5.3.3 Randomized ensemble DQN

The double DQN method is extended in the REDQ (randomized ensembled double Q learning) method
of [Che+20], which uses an ensemble of N > 2 Q-networks. Furthermore, at each step, it draws a random
sample of M ≤ N networks, and takes the minimum over them when computing the target value. That is, it
uses the following update (see Algorithm 2 in appendix of [Che+20]):

q(r, s′;w1:N ,w1:N) = r + γmax
a′

min
i∈M

Qwi
(s′, a′) (2.40)

where M is a random subset from the N value functions. The ensemble reduces the variance, and the
minimum reduces the overestimation bias.2 If we set N =M = 2, we get a method similar to clipped double
Q learning. (Note that REDQ is very similiar to the Random Ensemble Mixture method of [ASN20],
which was designed for offline RL.)

2.5.4 DQN extensions

In this section, we discuss various extensions of DQN.

2.5.4.1 Q learning for continuous actions

Q learning is not directly applicable to continuous actions due to the need to compute the argmax over
actions. An early solution to this problem, based on neural fitted Q learning (see Section 2.5.2.1), is proposed
in [HR11]. This became the basis of the DDPG algorithm of Section 3.6.1, which learns a policy to predict
the argmax.

An alternative approach is to use gradient-free optimizers such as the cross-entropy method to approximate
the argmax. The QT-Opt method of [Kal+18] treats the action vector a as a sequence of actions, and
optimizes one dimension at a time [Met+17]. The CAQL (continuous action Q-learning) method of [Ryu+20])
uses mixed integer programming to solve the argmax problem, leveraging the ReLU structure of the Q-network.
The method of [Sey+22] quantizes each action dimension separately, and then solves the argmax problem
using methods inspired by multi-agent RL.

2In addition, REDQ performs G ≫ 1 updates of the value functions for each environment step; this high Update-To-Data
(UTD) ratio (also called Replay Ratio) is critical for sample efficiency, and is commonly used in model-based RL.

45

2.5.4.2 Dueling DQN

The dueling DQN method of [Wan+16], learns a value function and an advantage function, and derives the
Q function, rather than learning it directly. This is helpful when there are many actions with similar Q-values,
since the advantage A(s, a) = Q(s, a)− V (s) focuses on the differences in value relative to a shared baseline.

In more detail, we define a network with |A|+ 1 output heads, which computes Aw(s, a) for a = 1 : A
and Vw(s). We can then derive

Qw(s, a) = Vw(s) +Aw(s, a) (2.41)

However, this naive approach ignores the following constraint that holds for any policy π:

Eπ(a|s) [Aπ(s, a)] = Eπ(a|s) [Qπ(s, a)− V π(s)] (2.42)
= V π(s)− V π(s) = 0 (2.43)

Fortunately, for the optimal policy π∗(s) = argmaxa′ Q
∗(s, a′) we have

0 = Eπ∗(a|s) [Q
∗(s, a)]− V ∗(s) (2.44)

= Q∗(s, argmax
a′

Q∗(s, a′))− V ∗(s) (2.45)

= max
a′

Q∗(s, a′)− V ∗(s) (2.46)

= max
a′

A∗(s, a′) (2.47)

Thus we can satisfy the constraint for the optimal policy by subtracting off maxaA(s, a) from the advantage
head. Equivalently we can compute the Q function using

Qw(s, a) = Vw(s) +Aw(s, a)−max
a′

Aw(s, a
′) (2.48)

In practice, the max is replaced by an average, which seems to work better empirically.

2.5.4.3 Noisy nets and exploration

Standard DQN relies on the epsilon-greedy strategy to perform exploration. However, this will explore equally
in all states, whereas we would like to the amount of exploration to be state dependent, to reflect the amount
of uncertainty in the outcomes of trying each action in that state due to lack of knowledge (i.e., epistemic
uncertainty rather than aleatoric or irreducile uncertainty). An early approach to this, known as noisy
nets [For+18], added random noise to the network weights to encourage exploration which is temporally
consistent within episodes. More recent methods for exploration are discussed in Section 1.4.

2.5.4.4 Multi-step DQN

As we discussed in Section 2.3.3, we can reduce the bias introduced by bootstrapping by replacing TD(1)
updates with TD(n) updates, where we unroll the value computation for n MC steps, and then plug in the
value function at the end. We can apply this to the DQN context by defining the target

q(s0, a0) =

n∑

t=1

γt−1rt + γnmax
an

Qw(sn, an) (2.49)

This can be implemented for episodic environments by storing experience tuples of the form

τ = (s, a,

n∑

k=1

γk−1rk, sn, done) (2.50)

where done = 1 if the trajectory ended at any point during the n-step rollout.

46

Figure 2.9: Plot of median human-normalized score over all 57 Atari games for various DQN agents. The yellow,
red and green curves are distributional RL methods (Section 5.1), namely categorical DQN (C51) (Section 5.1.2)
Quantile Regression DQN (Section 5.1.1), and Implicit Quantile Networks [Dab+18]. Figure from https: // github.
com/ google-deepmind/ dqn_ zoo .

Theoretically this method is only valid if all the intermediate actions, a2:n−1, are sampled from the current
optimal policy derived from Qw, as opposed to some behavior policy, such as epsilon greedy or some samples
from the replay buffer from an old policy. In practice, we can just restrict sampling to recent samples from
the replay buffer, making the resulting method approximately on-policy.

Instead of using a fixed n, it is possible to use a weighted combination of returns; this is known as the
Q(λ) algorithm [PW94; Koz+21].

2.5.4.5 Rainbow

The Rainbow method of [Hes+18] combined 6 improvements to the vanilla DQN method, as listed below.
(The paper is called “Rainbow” due to the color coding of their results plot, a modified version of which is
shown in Figure 2.9.) At the time it was published (2018), this produced SOTA results on the Atari-200M
benchmark. The 6 improvements are as follows:

• Use double DQN, as in Section 2.5.3.2.

• Use prioritized experience replay, as in Section 2.5.2.3.

• Use the categorical DQN (C51) (Section 5.1.2) distributional RL method.

• Use n-step returns (with n = 3), as in Section 2.5.4.4.

• Use dueling DQN, as in Section 2.5.4.2.

• Use noisy nets, as in Section 2.5.4.3.

Each improvement gives diminishing returns, as can be see in Figure 2.9.
Recently the “Beyond the Rainbow” paper [Unk24] proposed several more extensions:

• Use a larger CNN with residual connections, namely the Impala network from [Esp+18] with the
modifications (including the use of spectral normalization) proposed in [SS21].

• Replace C51 with Implicit Quantile Networks [Dab+18].

• Use Munchausen RL [VPG20], which modifies the Q learning update rule by adding an entropy-like
penalty.

• Collect 1 environment step from 64 parallel workers for each minibatch update (rather than taking
many steps from a smaller number of workers).

47

https://github.com/google-deepmind/dqn_zoo
https://github.com/google-deepmind/dqn_zoo

2.5.4.6 Bigger, Better, Faster

At the time of writing this document (2024), the SOTA on the 100k sample-efficient Atari benchmark [Kai+19]
is obtained by the BBF algorithm of [Sch+23b]. (BBF stands for “Bigger, Better, Faster”.) It uses the
following tricks, in order of decreasing importance:

• Use a larger CNN with residual connections, namely a modified version of the Impala network from
[Esp+18].

• Increase the update-to-data (UTD) ratio (number of times we update the Q function for every
observation that is observed), in order to increase sample efficiency [HHA19].

• Use a periodic soft reset of (some of) the network weights to avoid loss of elasticity due to increased
network updates, following the SR-SPR method of [D’O+22].

• Use n-step returns, as in Section 2.5.4.4, and then gradually decrease (anneal) the n-step return from
n = 10 to n = 3, to reduce the bias over time.

• Add weight decay.

• Add a self-predictive representation loss (Section 4.3.2.2) to increase sample efficiency.

• Gradually increase the discount factor from γ = 0.97 to γ = 0.997, to encourage longer term planning
once the model starts to be trained.3

• Drop noisy nets (which requires multiple network copies and thus slows down training due to increased
memory use), since it does not help.

• Use dueling DQN (see Section 2.5.4.2).

• Use distributional DQN (see Section 5.1).

2.5.4.7 Other methods

Many other methods have been proposed to reduce the sample complexity of value-based RL while maintaining
performance, see e.g., the MEME paper of [Kap+22].

3The Agent 57 method of [Bad+20] automatically learns the exploration rate and discount factor using a multi-armed
bandit stratey, which lets it be more exploratory or more exploitative, depending on the game. This resulted in super human
performance on all 57 Atari games in ALE. However, it required 80 billion frames (environment steps)! This was subsequently
reduced to the “standard” 200M frames in the MEME method of [Kap+22].

48

Chapter 3

Policy-based RL

In the previous section, we considered methods that estimate the action-value function, Q(s, a), from which
we derive a policy. However, these methods have several disadvantages: (1) they can be difficult to apply to
continuous action spaces; (2) they may diverge if function approximation is used (see Section 2.5.2.4); (3)
the training of Q, often based on TD-style updates, is not directly related to the expected return garnered
by the learned policy; (4) they learn deterministic policies, whereas in stochastic and partially observed
environments, stochastic policies are provably better [JSJ94].

In this section, we discuss policy search methods, which directly optimize the parameters of the policy
so as to maximize its expected return. We mostly focus on policy gradient methods, that use the gradient
of the loss to guide the search. As we will see, these policy methods often benefit from estimating a value or
advantage function to reduce the variance in the policy search process, so we will also use techniques from
Chapter 2. The parametric policy will be denoted by πθ(a|s). For discrete actions, this can be a DNN with a
softmax output. For continuous actions, we can use a Gaussian output layer, or a diffusion policy [Ren+24].

For more details on policy gradient methods, see [Wen18b; Leh24].

3.1 The policy gradient theorem

We start by defining the objective function for policy learning, and then derive its gradient. The objective,
which we aim to maximize, is defined as

J(π) ≜ Eπ

[∞∑

t=0

γtRt+1

]
(3.1)

=

∞∑

t=0

γt
∑

s

(∑

s0

p0(s0)p
π(s0 → s, t)

)∑

a

π(a|s)R(s, a) (3.2)

=
∑

s

(∑

s0

∞∑

t=0

γtp0(s0)p
π(s0 → s, t)

)∑

a

π(a|s)R(s, a) (3.3)

=
∑

s

ρπ(s)
∑

a

π(a|s)R(s, a) (3.4)

where we have defined the discounted state visitation measure

ργπ(s) ≜
∞∑

t=0

γt
∑

s0

p0(s0)p
π(s0 → s, t)

︸ ︷︷ ︸
pπt (s)

(3.5)

49

where pπ(s0 → s, t) is the probability of going from s0 to s in t steps, and pπt (s) is the marginal probability of
being in state s at time t (after each episodic reset). Note that ργπ is a measure of time spent in non-terminal
states, but it is not a probability measure, since it is not normalized, i.e.,

∑
s ρ

γ
π(s) ̸= 1. However, we may

abuse notation and still treat it like a probability, so we can write things like

Eργπ(s) [f(s)] =
∑

s

ργπ(s)f(s) (3.6)

Using this notation, we can define the objective as

J(π) = Eργπ(s),π(a|s) [R(s, a)] (3.7)

We can also define a normalized version of the measure ρ by noting that
∑∞
t=0 γ

t = 1
1−γ for γ < 1. Hence the

normalized discounted state visitation distribution is given by

pγπ(s) = (1− γ)ργπ(s) = (1− γ)
∞∑

t=0

γtpt(s) (3.8)

(Note the change from ρ to p.)
Note that in [SB18, Sec 13.2], they use slightly different notation. In particular, they assume γ = 1, and

define the non-discounted state visitation measure as η(s) and the corresponding normalized version by µ(s).
This is equivalent to ignoring the discount factor γt when defining ρπ(s). This is standard practice in many
implementations, since we can just average over (unweighted) trajectories when estimating the objective and
its gradient, even though it results in a biased estimate [NT20; CVRM23].

It can be shown that the gradient of the above objective is given by

∇θJ(θ) =
∑

s

ργπ(s)
∑

a

Qπ(s, a)∇θπθ(a|s) (3.9)

=
∑

s

ργπ(s)
∑

a

Qπθ (s, a)πθ(a|s)∇θ log πθ(a|s) (3.10)

= Eργπ(s)πθ(a|s) [Q
πθ (s, a)∇θ log πθ(a|s)] (3.11)

This is known as the policy gradient theorem [Sut+99]. In statistics, the term ∇θ log πθ(a|s) is called the
(Fisher) score function1, so sometimes Equation (3.11) is called the score function estimator or SFE
[Fu15; Moh+20].

3.2 REINFORCE

One way to apply the policy gradient theorem to optimize a policy is to use stochastic gradient ascent.
Theoretical results concerning the convergence and sample complexity of such methods can be found in
[Aga+21a].

To implement such a method, let τ = (s0, a0, r0, s1, . . . , sT) be a trajectory created by sampling from
s0 ∼ p0 and then following πθ. Then we have

∇θJ(πθ) =
∞∑

t=0

γtEpt(s)πθ(at|st) [∇θ log πθ(at|st)Qπθ
(st, at)] (3.12)

≈
T−1∑

t=0

γtGt∇θ log πθ(at|st) (3.13)

1This is distinct from the Stein score, which is the gradient wrt the argument of the log probability, ∇a log πθ(a|s), as used
in diffusion.

50

where the return is defined as follows

Gt ≜ rt + γrt+1 + γ2rt+2 + · · ·+ γT−t−1rT−1 =

T−t−1∑

k=0

γkrt+k =

T−1∑

j=t

γj−trj (3.14)

See Algorithm 3 for the pseudocode.

Algorithm 3: REINFORCE (episodic version)
1 Initialize policy parameters θ
2 repeat
3 Sample an episode τ = (s0, a0, r0, s1, . . . , sT) using πθ
4 for t = 0, 1, . . . , T − 1 do
5 Gt =

∑T
k=t+1 γ

k−t−1Rk
6 θ ← θ + ηθγ

tGt∇θ log πθ(at|st)
7 until converged

In practice, estimating the policy gradient using Equation (3.11) can have a high variance. A baseline
function b(s) can be used for variance reduction to get

∇θJ(πθ) = Eρθ(s)πθ(a|s) [∇θ log πθ(a|s)(Qπθ
(s, a)− b(s))] (3.15)

Any function that satisfies E [∇θb(s)] = 0 is a valid baseline. This follows since
∑

a

∇θπθ(a|s)(Q(s, a)− b(s)) = ∇θ
∑

a

πθ(a|s)Q(s, a)−∇θ[
∑

a

πθ(a|s)]b(s) = ∇θ
∑

a

πθ(a|s)Q(s, a)− 0

(3.16)
A common choice for the baseline is b(s) = Vπθ

(s). This is a good choice since Vπθ
(s) and Q(s, a) are

correlated and have similar magnitudes, so the scaling factor in front of the gradient term will be small.
Using this we get an update of the following form

θ ← θ + η

T−1∑

t=0

γt(Gt − b(st))∇θ log πθ(at|st) (3.17)

This is is called the REINFORCE estimator [Wil92].2 The update equation can be interpreted as follows:
we compute the sum of discounted future rewards induced by a trajectory, compared to a baseline, and if
this is positive, we increase θ so as to make this trajectory more likely, otherwise we decrease θ. Thus, we
reinforce good behaviors, and reduce the chances of generating bad ones.

3.3 Actor-critic methods

An actor-critic method [BSA83] uses the policy gradient method, but where the expected return Gt is
estimated using temporal difference learning of a value function instead of MC rollouts. (The term “actor”
refers to the policy, and the term “critic” refers to the value function.) The use of bootstrapping in TD
updates allows more efficient learning of the value function compared to MC, and further reduces the variance.
In addition, it allows us to develop a fully online, incremental algorithm, that does not need to wait until the
end of the trajectory before updating the parameters.

2The term “REINFORCE” is an acronym for “REward Increment = nonnegative Factor x Offset Reinforcement x Characteristic
Eligibility”. The phrase “characteristic eligibility” refers to the ∇ log πθ(at|st) term; the phrase “offset reinforcement” refers to
the Gt − b(st) term; and the phrase “nonnegative factor” refers to the learning rate η of SGD.

51

3.3.1 Advantage actor critic (A2C)
Concretely, consider the use of the one-step TD method to estimate the return in the episodic case, i.e.,
we replace Gt with Gt:t+1 = rt + γVw(st+1). If we use Vw(st) as a baseline, the REINFORCE update in
Equation (3.17) becomes

θ ← θ + η

T−1∑

t=0

γt (Gt:t+1 − Vw(st))∇θ log πθ(at|st) (3.18)

= θ + η

T−1∑

t=0

γt
(
rt + γVw(st+1)− Vw(st)

)
∇θ log πθ(at|st) (3.19)

Note that δt = rt+1 + γVw(st+1)− Vw(st) is a single sample approximation to the advantage function
A(st, at) = Q(st, at) − V (st). This method is therefore called advantage actor critic or A2C. See
Algorithm 4 for the pseudo-code.3 (Note that Vw(st+1) = 0 if st is a done state, representing the end of an
episode.) Note that this is an on-policy algorithm, where we update the value function V πw to reflect the value
of the current policy π. See Section 3.3.3 for further discussion of this point.

Algorithm 4: Advantage actor critic (A2C) algorithm (episodic)
1 Initialize actor parameters θ, critic parameters w
2 repeat
3 Sample starting state s0 of a new episode
4 for t = 0, 1, 2, . . . do
5 Sample action at ∼ πθ(·|st)
6 (st+1, rt, donet) = env.step(st, at)
7 qt = rt + γ(1− donet)Vw(st+1) // Target
8 δt = qt − Vw(st) // Advantage
9 w ← w + ηwδt∇wVw(st) // Critic

10 θ ← θ + ηθγ
tδt∇θ log πθ(at|st) // Actor

11 if donet = 1 then
12 break

13 until converged

In practice, we should use a stop-gradient operator on the target value for the TD update, for reasons
explained in Section 2.5.2.4. Furthermore, it is common to add an entropy term to the policy, to act as a
regularizer (to ensure the policy remains stochastic, which smoothens the loss function — see Section 3.5.4).
If we use a shared network with separate value and policy heads, we need to use a single loss function for
training all the parameters ϕ. Thus we get the following loss, for each trajectory, where we want to minimize
TD loss, maximize the policy gradient (expected reward) term, and maximize the entropy term.

L(ϕ; τ) = 1

T

T∑

t=1

[λTDLTD(st, at, rt, st+1)− λPGJPG(st, at, rt, st+1)− λentJent(st)] (3.20)

qt = rt + γ(1− done(st))Vϕ(st+1) (3.21)

LTD(st, at, rt, st+1) = (sg(qt)− Vϕ(s))2 (3.22)
JPG(st, at, rt, st+1) = (sg(qt − Vϕ(st)) log πϕ(at|st) (3.23)

Jent(st) = −
∑

a

πϕ(a|st) log πϕ(a|st) (3.24)

3In [Mni+16], they proposed a distributed version of A2C known as A3C which stands for “asynchrononous advantage actor
critic”.

52

To handle the dynamically varying scales of the different loss functions, we can use the PopArt method of
[Has+16; Hes+19] to allow for a fixed set of hyper-parameter values for λi. (PopArt stands for “Preserving
Outputs Precisely, while Adaptively Rescaling Targets”.)

3.3.2 Generalized advantage estimation (GAE)
In A2C, we replaced the high variance, but unbiased, MC return Gt with the low variance, but biased,
one-step bootstrap return Gt:t+1 = rt + γVw(st+1). More generally, we can compute the n-step estimate

Gt:t+n = rt + γrt+1 + γ2rt+2 + · · ·+ γn−1rt+n−1 + γnVw(st+n) (3.25)

and thus obtain the (truncated) n-step advantage estimate as follows:

A(n)
w (st, at) = Gt:t+n − Vw(st) (3.26)

Unrolling to infinity, we get

A
(1)
t = rt + γvt+1 − vt (3.27)

A
(2)
t = rt + γrt+1 + γ2vt+2 − vt (3.28)

... (3.29)

A
(∞)
t = rt + γrt+1 + γ2rt+2 + · · · − vt (3.30)

A
(1)
t is high bias but low variance, and A(∞)

t is unbiased but high variance.
Instead of using a single value of n, we can take a weighted average. That is, we define

At =

∑T
n=1 wnA

(n)
t∑T

n=1 wn
(3.31)

If we set wn = λn−1 we get the following simple recursive calculation:

δt = rt + γvt+1 − vt (3.32)

At = δt + γλδt+1 + · · ·+ (γλ)T−t+1δT−1 = δt + γλAt+1 (3.33)

Here λ ∈ [0, 1] is a parameter that controls the bias-variance tradeoff: larger values decrease the bias but
increase the variance. This is called generalized advantage estimation (GAE) [Sch+16b]. See Algorithm 5
for some pseudocode. Using this, we can define a general actor-critic method, as shown in Algorithm 6.

Algorithm 5: Generalized Advantage Estimation
1 def GAE(r1:T , v1:T , γ, λ)
2 A′ = 0
3 for t = T : 1 do
4 δt = rt + γvt+1 − vt
5 A′ = δt + γλA′

6 At = A′ // advantage
7 qt = At + vt // TD target

8 Return (A1:T), q1:T)

We can generalize this approach even further, by using gradient estimators of the form

∇J(θ) = E

[∞∑

t=0

Ψt∇ log πθ(at|st)
]

(3.34)

53

Algorithm 6: Actor critic with GAE
1 Initialize parameters ϕ, environment state s
2 repeat
3 (s1, a1, r1, . . . , sT) = rollout(s, πϕ)
4 v1:T = Vϕ(s1:T)
5 (A1:T , q1:T) = sg(GAE(r1:T , v1:T , γ, λ))
6 L(ϕ) = 1

T

∑T
t=1

[
λTD(Vϕ(st)− qt)2 − λPGAt log πϕ(at|st)− λentH(πϕ(·|st))

]

7 ϕ := ϕ− η∇L(ϕ)
8 until converged

where Ψt may be any of the following:

Ψt =

∞∑

i=t

γiri Monte Carlo target (3.35)

Ψt =

∞∑

i=t

γiri − Vw(st) MC with baseline (3.36)

Ψt = Aw(st, at) advantage function (3.37)
Ψt = Qw(st, at) Q function (3.38)
Ψt = rt + Vw(st+1)− Vw(st) TD residual (3.39)

See [Sch+16b] for details.

3.3.3 Two-time scale actor critic algorithms

In standard AC, we update the actor and critic in parallel. However, it is better to let critic Vw learn using a
faster learning rate (or more updates), so that it reflects the value of the current policy πθ more accurately,
in order to get better gradient estimates for the policy update. This is known as two timescale learning or
bilevel optimization [Yu17; Zha+19; Hon+23; Zhe+22; Lor24]. (See also Section 4.2.1, where we discuss
RL from a game theoretic perspective.)

3.3.4 Natural policy gradient methods

In this section, we discuss an improvement to policy gradient methods that uses preconditioning to speedup
convergence. In particular, we replace gradient descent with natural gradient descent (NGD) [Ama98;
Mar20], which we explain below. We then show how to combine it with actor-critic.

3.3.4.1 Natural gradient descent

NGD is a second order method for optimizing the parameters of (conditional) probability distributions, such
as policies, πθ(a|s). It typically converges faster and more robustly than SGD, but is computationally more
expensive.

Before we explain NGD, let us review standard SGD, which is an update of the following form

θk+1 = θk − ηkgk (3.40)

where gk = ∇θL(θk) is the gradient of the loss at the previous parameter values, and ηk is the learning rate.
It can be shown that the above update is equivalent to minimizing a locally linear approximation to the loss,
L̂k, subject to the constraint that the new parameters do not move too far (in Euclidean distance) from the

54

(a) (b)

Figure 3.1: Changing the mean of a Gaussian by a fixed amount (from solid to dotted curve) can have more impact
when the (shared) variance is small (as in a) compared to when the variance is large (as in b). Hence the impact (in
terms of prediction accuracy) of a change to µ depends on where the optimizer is in (µ, σ) space. From Figure 3 of
[Hon+10], reproduced from [Val00]. Used with kind permission of Antti Honkela.

previous parameters:

θk+1 = argmin
θ
L̂k(θ) s.t. ||θ − θk||22 ≤ ϵ (3.41)

L̂k(θ) = L(θk) + gTk(θ − θk) (3.42)

where the step size ηk is proportional to ϵ. This is called a proximal update [PB+14].
One problem with the SGD update is that Euclidean distance in parameter space does not make sense for

probabilistic models. For example, consider comparing two Gaussians, pθ = p(y|µ, σ) and pθ′ = p(y|µ′, σ′).
The (squared) Euclidean distance between the parameter vectors decomposes as ||θ−θ′||22 = (µ−µ′)2+(σ−σ′)2.
However, the predictive distribution has the form exp(− 1

2σ2 (y − µ)2), so changes in µ need to be measured
relative to σ. This is illustrated in Figure 3.1(a-b), which shows two univariate Gaussian distributions (dotted
and solid lines) whose means differ by ϵ. In Figure 3.1(a), they share the same small variance σ2, whereas in
Figure 3.1(b), they share the same large variance. It is clear that the difference in µ matters much more (in
terms of the effect on the distribution) when the variance is small. Thus we see that the two parameters
interact with each other, which the Euclidean distance cannot capture.

The key to NGD is to measure the notion of distance between two probability distributions in terms
of the KL divergence. This can be approximated in terms of the Fisher information matrix (FIM). In
particular, for any given input x, we have

DKL (pθ(y|x) ∥ pθ+δ(y|x)) ≈
1

2
δTFxδ (3.43)

where Fx is the FIM

Fx(θ) = −Epθ(y|x)
[
∇2 log pθ(y|x)

]
= Epθ(y|x)

[
(∇ log pθ(y|x))(∇ log pθ(y|x))T

]
(3.44)

We now replace the Euclidean distance between the parameters, d(θk,θk+1) = ||δ||22, with

d(θk,θk+1) = δ
TFkδk (3.45)

where δ = θk+1 − θk and Fk = Fx(θk) for a randomly chosen input x. This gives rise to the following
constrained optimization problem:

δk = argmin
δ
L̂k(θk + δ) s.t. δTFkδ ≤ ϵ (3.46)

If we replace the constraint with a Lagrange multiplier, we get the unconstrained objective:

Jk(δ) = L(θk) + gTkδ + ηkδ
TFkδ (3.47)

55

Solving Jk(δ) = 0 gives the update
δ = −ηkF−1

k gk (3.48)

The term F−1g is called the natural gradient. This is equivalent to a preconditioned gradient update,
where we use the inverse FIM as a preconditioning matrix. We can compute the (adaptive) learning rate
using

ηk =

√
ϵ

gTkF
−1
k gk

(3.49)

Computing the FIM can be hard. A simple approximation is to replace the model’s distribution with the
empirical distribution. In particular, define pD(x,y) = 1

N

∑N
n=1 δxn(x)δyn(y), pD(x) =

1
N

∑N
n=1 δxn(x) and

pθ(x,y) = pD(x)p(y|x,θ). Then we can compute the empirical Fisher [Mar16] as follows:

F(θ) = Epθ(x,y)
[
∇ log p(y|x,θ)∇ log p(y|x,θ)T

]
(3.50)

≈ EpD(x,y)

[
∇ log p(y|x,θ)∇ log p(y|x,θ)T

]
(3.51)

=
1

|D|
∑

(x,y)∈D
∇ log p(y|x,θ)∇ log p(y|x,θ)T (3.52)

3.3.4.2 Natural actor critic

To apply NGD to RL, we can adapt the A2C algorithm in Algorithm 6. In particular, define

gkt = ∇θkAt log πθ(at|st) (3.53)

where At is the advantage function at step t of the random trajectory generated by the policy at iteration k.
Now we compute

gk =
1

T

T∑

t=1

gkt, Fk =
1

T

T∑

t=1

gktg
T
kt (3.54)

and compute δk+1 = −ηkF−1
k gk. This approach is called natural policy gradient [Kak01; Raj+17].

We can compute F−1
k gk without having to invert Fk by using the conjugate gradient method, where

each CG step uses efficient methods for Hessian-vector products [Pea94]. This is called Hessian free
optimization [Mar10]. Similarly, we can efficiently compute gTk(F

−1
k gk).

As a more accurate alternative to the empirical Fisher, [MG15] propose the KFAC method, which stands
for “Kronecker factored approximate curvature”; this approximates the FIM of a DNN as a block diagonal
matrix, where each block is a Kronecker product of two small matrices. This was applied to policy gradient
learning in [Wu+17].

3.4 Policy improvement methods
In this section, we discuss methods that try to monotonically improve performance of the policy at each step,
rather than just following the gradient, which can result in a high variance estimate where performance can
increase or decrease at each step. These are called policy improvement methods. Our presentation is
based on [QPC24].

3.4.1 Policy improvement lower bound
We start by stating a useful result from [Ach+17]. Let πk be the current policy at step k, and let π be any
other policy (e.g., a candidate new one). Let pγπk

be the normalized discounted state visitation distribution
for πk, defined in Equation (3.8). Let Aπk(s, a) = Qπk(s, a)− V πk(s) be the advantage function. Finally, let
the total variation distance between two distributions be given by

TV(p, q) ≜
1

2
||p− q||1 =

1

2

∑

s

|p(s)− q(s)| (3.55)

56

Then one can show [Ach+17] that

J(π)− J(πk) ≥
1

1− γ Epγπk
(s)πk(a|s)

[
π(a|s)
πk(a|s)

Aπk(s, a)

]

︸ ︷︷ ︸
L(π,πk)

−2γCπ,πk

(1− γ)2Ep
γ
πk

(s) [TV(π(·|s), πk(·|s))] (3.56)

where Cπ,πk = maxs |Eπ(a|s) [Aπk(s, a)] |. In the above, L(π, πk) is a surrogate objective, and the second term
is a penalty term.

If we can optimize this lower bound (or a stochastic approximation, based on samples from the current
policy πk), we can guarantee monotonic policy improvement (in expectation) at each step. We will replace
this objective with a trust-region update that is easier to optimize:

πk+1 = argmax
π

L(π, πk) s.t. Epγπk
(s) [TV(π, πk)(s)] ≤ ϵ (3.57)

The constraint bounds the worst-case performance decline at each update. The overall procedure becomes
an approximate policy improvement method. There are various ways of implementing the above method in
practice, some of which we discuss below. (See also [GDWF22], who propose a framework called mirror
learning, that justifies these “approximations” as in fact being the optimal thing to do for a different kind of
objective.)

3.4.2 Trust region policy optimization (TRPO)
In this section, we describe the trust region policy optimization (TRPO) method of [Sch+15b]. This
implements an approximation to Equation (3.57). First, it leverages the fact that if

Epγπk
(s) [DKL (πk ∥ π) (s)] ≤ δ (3.58)

then π also satisfies the TV constraint with δ = ϵ2

2 . Next it considers a first-order expansion of the surrogate
objective to get

L(π, πk) = Epγπk
(s)πk(a|s)

[
π(a|s)
πk(a|s)

Aπk(s, a)

]
≈ gTk(θ − θk) (3.59)

where gk = ∇θL(πθ, πk)|θk . Finally it considers a second-order expansion of the KL term to get the
approximate constraint

Epγπk
(s) [DKL (πk ∥ π) (s)] ≈

1

2
(θ − θk)TFk(θ − θk) (3.60)

where Fk = gkg
T
k is an approximation to the Fisher information matrix (see Equation (3.54)). We then use

the update
θk+1 = θk + ηkvk (3.61)

where vk = F−1
k gk is the natural gradient, and the step size is initialized to ηk =

√
2δ

vTkFkvk
. (In practice we

compute vk by approximately solving the linear system Fkv = gk using conjugate gradient methods, which
just require matrix vector multiplies.) We then use a backtracking line search procedure to ensure the trust
region is satisfied.

3.4.3 Proximal Policy Optimization (PPO)
In this section, we describe the the proximal policy optimization or PPO method of [Sch+17], which is a
simplification of TRPO.

We start by noting the following result:

Epγπk
(s) [TV(π, πk)(s)] =

1

2
E(s,a)∼pγπk

[
| π(a|s)
πk(a|s)

− 1|
]

(3.62)

57

This holds provided the support of π is contained in the support of πk at every state. We then use the
following update:

πk+1 = argmax
π

E(s,a)∼pγπk
[min (ρk(s, a)A

πk(s, a), ρ̃k(s, a)A
πk(s, a))] (3.63)

where ρk(s, a) =
π(a|s)
πk(a|s) is the likelihood ratio, and ρ̃k(s, a) = clip(ρk(s, a), 1− ϵ, 1 + ϵ), where clip(x, l, u) =

min(max(x, l), u). See [GDWF22] for a theoretical justification for these simplifications. Furthermore,
this can be modified to ensure monotonic improvement as discussed in [WHT19], making it a true bound
optimization method.

Some pseudocode for PPO (with GAE) is given in Algorithm 7. It is basically identical to the AC code in
Algorithm 6, except the policy loss has the form min(ρtAt, ρ̃tAt) instead of At log πϕ(at|st), and we perform
multiple policy updates per rollout, for increased sample efficiency. For all the implementation details, see
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/.

Algorithm 7: PPO with GAE
1 Initialize parameters ϕ, environment state s
2 for iteration k = 1, 2, . . . do
3 (τ, s) = rollout(s, πϕ)
4 (s1, a1, r1, . . . , sT) = τ
5 vt = Vϕ(st) for t = 1 : T
6 (A1:T , q1:T) = GAE(r1:T , v1:T , γ, λ)
7 ϕold ← ϕ
8 for m = 1 :M do
9 ρt =

πϕ(at|st)
πϕold

(at|st) for t = 1 : T

10 ρ̃t = clip(ρt) for t = 1 : T

11 L(ϕ) = 1
T

∑T
t=1

[
λTD(Vϕ(st)− qt)2 − λPGmin(ρtAt, ρ̃tAt)− λentH(πϕ(·|st))

]

12 ϕ := ϕ− η∇ϕL(ϕ)

3.4.4 VMPO
In this section, we discuss the VMPO algorithm of [FS+19], which is an on-policy extenson of the earlier
on-policy MPO algorithm (MAP policy optimization) from [Abd+18]. It was originally explained in terms of
“control as inference” (see Section 1.5), but we can also view it as a contrained policy improvement method,
based on Equation (3.57). In particular, VMPO leverages the fact that if

Epγπk
(s) [DKL (π ∥ πk) (s)] ≤ δ (3.64)

then π also satisfies the TV constraint with δ = ϵ2

2 .
Note that here the KL is reversed compared to TRPO in Section 3.4.2. This new version will encourage

π to be mode-covering, so it will naturally have high entropy, which can result in improved robustness.
Unfortunately, this kind of KL is harder to compute, since we are taking expectations wrt the unknown
distribution π.

To solve this problem, VMPO adopts an EM-type approach. In the E step, we compute a non-parametric
version of the state-action distribution given by the unknown new policy:

ψ(s, a) = π(a|s)pγπk
(s) (3.65)

The optimal new distribution is given by

ψk+1 = argmax
ψ

Eψ(s,a) [Aπk(s, a)] s.t. DKL (ψ ∥ ψk) ≤ δ (3.66)

58

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

where ψk(s, a) = πk(a|s)pγπk
(s). The solution to this is

ψk+1(s, a) = pγπk
(s)πk(a|s)w(s, a) (3.67)

w(s, a) =
exp(Aπk(s, a)/λ∗)

Z(λ∗)
(3.68)

Z(λ) = E(s,a)∼pγπk
[exp(Aπk(s, a)/λ)] (3.69)

λ∗ = argmin
λ≥0

λδ + λ logZ(λ) (3.70)

In the M step, we project this target distribution back onto the space of parametric policies, while satisfying
the KL trust region constraint:

πk+1 = argmax
π

E(s,a)∼pγπk
[w(s, a) log π(a|s)] s.t. Epγπk

[DKL (ψk ∥ ψ) (s)] ≤ δ (3.71)

3.5 Off-policy methods
In many cases, it is useful to train a policy using data collected from a distinct behavior policy πb(a|s) that
is not the same as the target policy π(a|s) that is being learned. For example, this could be data collected
from earlier trials or parallel workers (with different parameters θ′) and stored in a replay buffer, or it
could be demonstration data from human experts. This is known as off-policy RL, and can be much
more sample efficient than the on-policy methods we have discussed so far, since these methods can use data
from multiple sources. However, off-policy methods are more complicated, as we will explain below.

The basic difficulty is that the target policy that we want to learn may want to try an action in a
state that has not been experienced before in the existing data, so there is no way to predict the outcome
of this new (s, a) pair. In this section, we tackle this problem by assuming that the target policy is not
too different from the behavior policy, so that the ratio π(a|s)/πb(a|s) is bounded, which allows us to use
methods based on importance sampling. In the online learning setting, we can ensure this property by using
conservative incremental updates to the policy. Alternatively we can use policy gradient methods with various
regularization methods, as we discuss below.

In Section 5.5, we discuss offline RL, which is an extreme instance of off-policy RL where we have a fixed
behavioral dataset, possibly generated from an unknown behavior policy, and can never collect any new data.

3.5.1 Policy evaluation using importance sampling
Assume we have a dataset of the form D = {τ (i)}1≤i≤n, where each trajectory is a sequence τ (i) =

(s
(i)
0 , a

(i)
0 , r

(i)
0 , s

(i)
1 . . .), where the actions are sampled according to a behavior policy πb, and the reward and

next states are sampled according to the reward and transition models. We want to use this offline dataset to
evaluate the performance of some target policy π; this is called off-policy policy evaluation or OPE. If
the trajectories τ (i) were sampled from π. we could use the standard Monte Carlo estimate:

Ĵ(π) ≜
1

n

n∑

i=1

T−1∑

t=0

γtr
(i)
t (3.72)

However, since the trajectories are sampled from πb, we use importance sampling (IS) to correct for the
distributional mismatch, as first proposed in [PSS00]. This gives

ĴIS(π) ≜
1

n

n∑

i=1

p(τ (i)|π)
p(τ (i)|πb)

T−1∑

t=0

γtr
(i)
t (3.73)

It can be verified that Eπb

[
ĴIS(π)

]
= J(π), that is, ĴIS(π) is unbiased, provided that p(τ |πb) > 0 whenever

p(τ |π) > 0. The importance ratio, p(τ (i)|π)
p(τ (i)|πb)

, is used to compensate for the fact that the data is sampled

59

from πb and not π. It can be simplified as follows:

p(τ |π)
p(τ |πb)

=
p(s0)

∏T−1
t=0 π(at|st)pS(st+1|st, at)pR(rt|st, at, st+1)

p(s0)
∏T−1
t=0 πb(at|st)pS(st+1|st, at)pR(rt|st, at, st+1)

=

T−1∏

t=0

π(at|st)
πb(at|st)

(3.74)

This simplification makes it easy to apply IS, as long as the target and behavior policies are known. (If the
behavior policy is unknown, we can estimate it from D, and replace πb by its estimate π̂b. For convenience,
define the per-step importance ratio at time t by

ρt(τ) ≜ π(at|st)/πb(at|st) (3.75)

We can reduce the variance of the estimator by noting that the reward rt is independent of the trajectory
beyond time t. This leads to a per-decision importance sampling variant:

ĴPDIS(π) ≜
1

n

n∑

i=1

T−1∑

t=0

∏

t′≤t
ρt′(τ

(i))γtr
(i)
t (3.76)

3.5.2 Off-policy actor critic methods

In this section, we discuss how to extend actor-critic methods to work with off-policy data.

3.5.2.1 Learning the critic using V-trace

In this section we build on Section 3.5.1 to develop a practical method, known as V-trace [Esp+18], to
estimate the value function for a target policy using off-policy data. (This is an extension of the earlier
Retrace algorithm [Mun+16], which estimates the Q function using off-policy data.)

First consider the n-step target value for V (si) in the on-policy case:

Vi = V (si) +

i+n−1∑

t=i

γt−irt + γnV (si+n) (3.77)

= V (si) +

i+n−1∑

t=i

γt−i (rt + γV (st+1)− V (st))︸ ︷︷ ︸
δt

(3.78)

where we define δt = (rt + γV (st+1)− V (st)) as the TD error at time t. To extend this to the off-policy case,
we use the per-step importance ratio trick. However, to bound the variance of the estimator, we truncate the
IS weights. In particular, we define

ct = min

(
c,
π(at|st)
πb(at|st)

)
, ρt = min

(
ρ,
π(at|st)
πb(at|st)

)
(3.79)

where c and ρ are hyperparameters. We then define the V-trace target value for V (si) as

vi = V (si) +

i+n−1∑

t=i

γt−i
(
t−1∏

t′=i

ct′

)
ρtδt (3.80)

Note that we can compute these targets recursively using

vi = V (si) + ρiδi + γci(vi+1 − V (si+1)) (3.81)

The product of the weights ci . . . ct−1 (known as the “trace”) measures how much a temporal difference δt
at time t impacts the update of the value function at earlier time i. If the policies are very different, the

60

variance of this product will be large. So the truncation parameter c is used to reduce the variance. In
[Esp+18], they find c = 1 works best.

The use of the target ρtδt rather than δt means we are evaluating the value function for a policy that is
somewhere between πb and π. For ρ =∞ (i.e., no truncation), we converge to the value function V π, and for
ρ→ 0, we converge to the value function V πb . In [Esp+18], they find ρ = 1 works best.

Note that if c = ρ, then ci = ρi. This gives rise to the simplified form

vt = V (st) +

n−1∑

j=0

γj

(
j∏

m=0

ct+m

)
δt+j (3.82)

We can use the above V-trace targets to learn an approximate value function by minimizing the usual ℓ2
loss:

L(w) = Et∼D
[
(vt − Vw(st))2

]
(3.83)

the gradient of which has the form

∇L(w) = 2Et∼D [(vt − Vw(st))∇wVw(st)] (3.84)

3.5.2.2 Learning the actor

We now discuss how to update the actor using an off-policy estimate of the policy gradient. We start by
defining the objective to be the expected value of the new policy, where the states are drawn from the
behavior policy’s state distribution, but the actions are drawn from the target policy:

Jπb
(πθ) =

∑

s

pγπb
(s)Vπ(s) =

∑

s

pγπb
(s)
∑

a

πθ(a|s)Qπ(s, a) (3.85)

Differentiating this and ignoring the term∇θQπ(s, a), as suggested by [DWS12], gives a way to (approximately)
estimate the off-policy policy-gradient using a one-step IS correction ratio:

∇θJπb
(πθ) ≈

∑

s

∑

a

pγπb
(s)∇θπθ(a|s)Qπ(s, a) (3.86)

= Epγπb
(s),πb(a|s)

[
πθ(a|s)
πb(a|s)

∇θ log πθ(a|s)Qπ(s, a)
]

(3.87)

In practice, we can approximate Qπ(st, at) by qt = rt+ γvt+1, where vt+1 is the V-trace estimate for state
st+1. If we use V (st) as a baseline, to reduce the variance, we get the following gradient estimate for the
policy:

∇J(θ) = Et∼D [ρt∇θ log πθ(at|st)(rt + γvt − Vw(st))] (3.88)

We can also replace the 1-step IS-weighted TD error ρt(rt+ γvt−Vw(st)) with an IS-weighted GAE value
by modifying the generalized advantage estimation method in Section 3.3.2. In particular, we just need to
define λt = λmin(1, ρt). We denote the IS-weighted GAE estimate as Aρt .4

3.5.2.3 IMPALA

As an example of an off-policy AC method, we consider IMPALA, which stands for “Importance Weighted
Actor-Learning Architecture”. [Esp+18]. This uses shared parameters for the policy and value function (with
different output heads), and adds an entropy bonus to ensure the policy remains stochastic. Thus we end up
with the following objective, which is very similar to on-policy actor-critic shown in Algorithm 6:

L(ϕ) = Et∼D
[
λTD(Vϕ(st)− vt)2 − λPGAρt log πϕ(at|st)− λentH(πϕ(·|st))

]
(3.89)

4For an implementation, see https://github.com/google-deepmind/rlax/blob/master/rlax/_src/multistep.py#L39

61

https://github.com/google-deepmind/rlax/blob/master/rlax/_src/multistep.py#L39

The only difference from standard A2C is that we need to store the probabilities of each action, πb(at|st), in
addition to (st, at, rt, st+1) in the dataset D, which can be used to compute ρt. [Esp+18] was able to use this
method to train a single agent (using a shared CNN and LSTM for both value and policy) to play all 57
games at a high level. Furthermore, they showed that their method — thanks to its off-policy corrections —
outperformed the A3C method (a parallel version of A2C) in Section 3.3.1.

3.5.3 Off-policy policy improvement methods

So far we have focused on actor-critic methods. However, policy improvement methods, such as PPO, are
often preferred to AC methods, since they monotonically improve the objective. In [QPC21] they propose
one way to extend PPO to the off-policy case. This method was generalized in [QPC24] to cover a variety of
policy improvement algorithms, including TRPO and VMPO. We give a brief summary below.

The key insight is to realize that we can generalize the lower bound in Equation (3.56) to any reference
policy

J(π)− J(πk) ≥
1

1− γEp
γ
πref (s)πk(a|s)

[
π(a|s)
πref(a|s)

Aπk(s, a)

]
− 2γCπ,πk

(1− γ)2Ep
γ
πref (s)

[TV(π(·|s), πref(·|s))] (3.90)

The reference policy can be any previous policy, or a convex combination of them. In particular, if πk is the
current policy, we can consider the reference policy to be πref =

∑M
i=1 νiπk−i, where 0 ≤ νi ≤ 1 and

∑
i νi = 1

are mixture weights. We can approximate the expectation by sampling from the replay buffer, which contains
samples from older policies. That is, (s, a) ∼ pγπref

can be implemented by i ∼ ν and (s, a) ∼ pγπk−i
.

To compute the advantage function Aπk from off policy data, we can adapt the V-trace method of
Equation (3.82) to get

Aπk
trace(st, at) = δt +

n−1∑

j=0

γj

(
j∏

m=1

ct+m

)
δt+j (3.91)

where δt = rt + γV (st+1)− V (st), and ct = min
(
c, πk(at|st)
πk−i(at|st)

)
is the truncated importance sampling ratio.

To compute the TV penalty term from off policy data, we need to choose between the PPO (Section 3.4.3),
VMPO (Section 3.4.4) and TRPO (Section 3.4.2) approach. We discuss each of these cases below.

3.5.3.1 Off-policy PPO

The simplest is to use off-policy PPO, which gives an update of the following form (known as Generalized
PPO):

πk+1 = argmax
π

Ei∼ν
[
E(s,a)∼pγπk−i

[min(ρk−i(s, a)A
πk(s, a), ρ̃k−i(s, a)A

πk(s, a))]
]

(3.92)

where ρk−i(s, a) =
π(a|s)

πk−i(a|s) and ρ̃k−i(s, a) = clip(π(a|s)
πk−i(a|s) , l, u), where l = πk(a|s)

πk−i(a|s) − ϵ and u = πk(a|s)
πk−i(a|s) + ϵ.

(For other off-policy variants of PPO, see e.g., [Men+23; LMW24].)

3.5.3.2 Off-policy VMPO

For an off-policy version of VMPO, see the original MPO method of [Abd+18]; this is derived using an EM
framework, but EM is just another bound optimization algorithm [HL04], and the result is equivalent to the
version presented in [QPC24].

3.5.3.3 Off-policy TRPO

For details on the off-policy version of TRPO, see [QPC24].

62

3.5.4 Soft actor-critic (SAC)
The soft actor-critic (SAC) algorithm [Haa+18a; Haa+18b] is an off-policy actor-critic method based on a
framework known as maximum entropy RL, which we introduced in Section 1.5.3. Crucially, even though
SAC is off-policy and utilizes a replay buffer to sample past experiences, the policy update is done using
the actor’s own probability distribution, eliminating the need to use importance sampling to correct for
discrepancies between the behavior policy (used to collect data) and the target policy (used for updating), as
we will see below.

We start by slightly rewriting the maxent RL objective from Equation (1.67) using modified notation:

JSAC(θ) ≜ Epγπθ
(s)πθ(a|s) [R(s, a) + αH(πθ(·|s))] (3.93)

Note that the entropy term makes the objective easier to optimize, and encourages exploration.
To optimize this, we can perform a soft policy evaluation step, and then a soft policy improvement step.

In the policy evaluation step, we can repeatedly apply a modified Bellman backup operator T π defined as

T πQ(st,at) = r(st,at) + γEst+1∼p [V (st+1)] (3.94)

where

V (st) = Eat∼π [Q(st,at)− α log π(at|st)] (3.95)

is the soft value function. If we iterate Qk+1 = T πQk„ this will converge to the soft Q function for π.
In the policy improvement step, we derive the new policy based on the soft Q function by softmaxing over

the possible actions for each state. We then project the update back on to the policy class Π:

πnew = arg min
π′∈Π

DKL

(
π′(·|st) ∥

exp(1
αQ

πold(st, ·))
Zπold(st)

)
(3.96)

(The partition function Zπold(st) may be intractable to compute for a continuous action space, but it cancels
out when we take the derivative of the objective, so this is not a problem, as we show below.) After solving
the above optimization problem, we are guaranteed to satisfy the soft policy improvement theorem, i.e.,
Qπnew(st,at) ≥ Qπold(st,at) for all st and at.

The above equations are intractable in the non-tabular case, so we now extend to the setting where we
use function approximation.

3.5.4.1 Policy evaluation

For policy evaluation, we hold the policy parameters π fixed and optimize the parameters w of the Q function
by minimizing the soft Bellman residual

JQ(w) = E(st,at,rt+1,st+1)∼D

[
1

2
(Qw(st,at)− q(rt+1, st+1))

2

]
(3.97)

where D is a replay buffer,
q(rt+1, st+1) = rt+1 + γVw(st+1) (3.98)

is the frozen target value, and and Vw(s) is a frozen version of the soft value function from Equation (3.95):

Vw(st) = Eπ(at|st) [Qw(st,at)− α log π(at|st)] (3.99)

where w is the EMA version of w. (The use of a frozen target is to avoid bootstrapping instablilities discussed
in Section 2.5.2.4.)

To avoid the positive overestimation bias that can occur with actor-critic methods, [Haa+18a], suggest
fitting two soft Q functions, by optimizing JQ(wi), for i = 1, 2, independently. Inspired by clipped double Q
learning, used in TD3 (Section 3.6.2), the targets are defined as

q(rt+1, st+1;w1:2,θ) = rt+1 + γ

[
min
i=1,2

Qwi
(st+1, ãt+1)− α log πθ(ãt+1|st+1)

]
(3.100)

63

where ãt+1 ∼ πθ(st+1) is a sampled next action. In [Che+20], they propose the REDQ method (Section 2.5.3.3)
which uses a random ensemble of N ≥ 2 networks instead of just 2.

3.5.4.2 Policy improvement: Gaussian policy

For policy improvement, we hold the value function parameters w fixed and optimize the parameters θ of
the policy by minimizing the objective below, which is derived from the KL term by multiplying by α and
dropping the constant Z term:

Jπ(θ) = Est∼D [Eat∼πθ
[α log πθ(at|st)−Qw(st,at)]] (3.101)

Since we are taking gradients wrt θ, which affects the inner expectation term, we need to either use the
REINFORCE estimator from Equation (3.15) or the reparameterization trick (see e.g., [Moh+20]). The
latter is much lower variance, so is preferable.

To explain this in more detail, let us assume the policy distribution has the form πθ(at|st) = N (µθ(st), σ
2I).

We can write the random action as at = fθ(st, ϵt), where f is a deterministic function of the state and a
noise variable ϵt, since at = µ(st) + σ2ϵt, where ϵt ∼ N (0, I). The objective now becomes

Jπ(θ) = Est∼D,ϵt∼N [α log πθ(fθ(st, ϵt)|st)−Qw(st, fθ(st, ϵt))] (3.102)

where we have replaced the expectation of at wrt πθ with an expectation of ϵt wrt its noise distribution
N . Hence we can now safely take stochastic gradients. See Algorithm 8 for the pseudocode. (Note that,
for discrete actions, we can avoid the need for the reparameterization trick by computing the expectations
explicitly, as discussed in Section 3.5.4.3.)

3.5.4.3 Policy improvement: softmax policy

For discrete actions, we can replace the Gaussian reparameterization with the gumbel-softmax reparameter-
ization [JGP16; MMT17]. Alternatively, we can eschew sampling and compute the expectations over the
actions explicitly, to derive lower variance versions of the equations; this is known as SAC-Discrete [Chr19].
The Jπ objective can now be computed as

J ′
π(θ) = Est∼D

[∑

a

πθ(a|st)[α log πθ(a|st)−Qw(st, a)]
]

(3.103)

which avoids the need for reparameterization. (In [Zho+22], they propose to augment J ′
π with an entropy

penalty, adding a term of the form 1
2 (Hold−Hπ)2, to prevent drastic changes in the policy, where the entropy

of the policy can be computed analytically per sampled state.) The JQ term is similar to before

J ′
Q(w) = E(st,at,rt+1,st+1)∼D

[
1

2
(Qw(st,at)− q′(rt+1, st+1))

2
)

]
(3.104)

where now the frozen target function is given by

q′(rt+1, st+1) = rt+1 + γ

∑

at+1

πθ(at+1|st+1)[min
i=1,2

Qwi(st+1, at+1)− α log πθ(at+1|st+1)]

 (3.105)

3.5.4.4 Adjusting the temperature

In [Haa+18b] they propose to automatically adjust the temperature parameter α by optimizing

J(α) = Est∼D,at∼πθ

[
−α(log πθ(at|st) +H)

]

where H is the target entropy (a hyper-parameters). This objective is approximated by sampling actions
from the replay buffer.

64

Algorithm 8: SAC
1 Initialize environment state s, policy parameters θ, N critic parameters wi, target parameters
wi = wi, replay buffer D = ∅, discount factor γ, EMA rate ρ, step size ηw, ηπ.

2 repeat
3 Take action a ∼ πθ(·|s)
4 (s′, r) = step(a, s)
5 D := D ∪ {(s,a, r, s′)}
6 s← s′

7 for G updates do
8 Sample a minibatch B = {(sj ,aj , rj , s′j)} from D
9 w = update-critics(θ,w,B)

10 Sample a minibatch B = {(sj ,aj , rj , s′j)} from D
11 θ = update-policy(θ,w,B)
12 until converged
13 .
14 def update-critics(θ,w,B):
15 Let (sj ,aj , rj , s

′
j)
B
j=1 = B

16 qj = q(rj , s
′
j ;w1:N ,θ) for j = 1 : B

17 for i = 1 : N do
18 L(wi) = 1

|B|
∑

(s,a,r,s′)j∈B(Qwi(sj ,aj)− sg(qj))2

19 wi ← wi − ηw∇L(wi) // Descent
20 wi := ρwi + (1− ρ)wi //Update target networks

21 Return w1:N ,w1:N

22 .
23 def update-actor(θ,w,B):
24 Q̂(s, a) ≜ 1

N

∑N
i=1Qwi

(s, a) // Average critic

25 J(θ) = 1
|B|
∑
s∈B

(
Q̂(s, ãθ(s))− α log πθ(ã(s)|s)

)
, ãθ(s) ∼ πθ(·|s)

26 θ ← θ + ηθ∇J(θ) // Ascent
27 Return θ

65

For discrete actions, temperature objective is given by

J ′(α) = Est∼D

[∑

a

πt(a|st)[−α(log πt(at|st) +H)]

]
(3.106)

3.6 Deterministic policy gradient methods

In this section, we consider the case of a deterministic policy, that predicts a unique action for each state, so
at = µθ(st), rather than at ∼ πθ(st). (We require that the actions are continuous, because we will take the
Jacobian of the Q function wrt the actions; if the actions are discrete, we can just use DQN.) The advantage
of using a deterministic policy is that we can modify the policy gradient method so that it can work off policy
without needing importance sampling, as we will see.

Following Equation (3.7), we define the value of a policy as the expected discounted reward per state:

J(µθ) ≜ Eρµθ
(s) [R(s, µθ(s))] (3.107)

The deterministic policy gradient theorem [Sil+14] tells us that the gradient of this expression is given
by

∇θJ(µθ) = Eρµθ
(s) [∇θQµθ

(s, µθ(s))] (3.108)

= Eρµθ
(s)

[
∇θµθ(s)∇aQµθ

(s, a)|a=µθ(s)

]
(3.109)

where ∇θµθ(s) is the M ×N Jacobian matrix, and M and N are the dimensions of A and θ, respectively.
For stochastic policies of the form πθ(a|s) = µθ(s) + noise, the standard policy gradient theorem reduces to
the above form as the noise level goes to zero.

Note that the gradient estimate in Equation (3.109) integrates over the states but not over the actions,
which helps reduce the variance in gradient estimation from sampled trajectories. However, since the
deterministic policy does not do any exploration, we need to use an off-policy method for training. This
collects data from a stochastic behavior policy πb, whose stationary state distribution is pγπb

. The original
objective, J(µθ), is approximated by the following:

Jb(µθ) ≜ Epγπb
(s) [Vµθ

(s)] = Epγπb
(s) [Qµθ

(s, µθ(s))] (3.110)

with the off-policy deterministic policy gradient from [DWS12] is approximated by

∇θJb(µθ) ≈ Epγπb
(s) [∇θ [Qµθ

(s, µθ(s))]] = Epγπb
(s)

[
∇θµθ(s)∇aQµθ

(s, a)|a=µθ(s)

]
(3.111)

where we have a dropped a term that depends on ∇θQµθ
(s, a) and is hard to estimate [Sil+14].

To apply Equation (3.111), we may learn Qw ≈ Qµθ
with TD, giving rise to the following updates:

δ = rt + γQw(st+1, µθ(st+1))−Qw(st, at) (3.112)
wt+1 ← wt + ηwδ∇wQw(st, at) (3.113)
θt+1 ← θt + ηθ∇θµθ(st)∇aQw(st, a)|a=µθ(st) (3.114)

So we learn both a state-action critic Qw and an actor µθ. This method avoids importance sampling in the
actor update because of the deterministic policy gradient, and we avoids it in the critic update because of the
use of Q-learning.

If Qw is linear in w, and uses features of the form ϕ(s, a) = aT∇θµθ(s), then we say the function
approximator for the critic is compatible with the actor; in this case, one can show that the above
approximation does not bias the overall gradient.

The basic off-policy DPG method has been extended in various ways, some of which we describe below.

66

3.6.1 DDPG
The DDPG algorithm of [Lil+16], which stands for “deep deterministic policy gradient”, uses the DQN
method (Section 2.5.2.2) to update Q that is represented by deep neural networks. In more detail, the actor
tries to minimize the output of the critic by optimize

Lθ(s) = Qw(s, µθ(s)) (3.115)

averaged over states s drawn from the replay buffer. The critic tries to minimize the 1-step TD loss

Lw(s, a, r, s′) = [Qw(s, a)− (r + γQw(s
′, µθ(s

′)))]2 (3.116)

where Qw is the target critic network, and the samples (s, a, r, a′) are drawn from a replay buffer. (See
Section 2.5.2.5 for a discussion of target networks.)

The D4PG algorithm [BM+18], which stands for “distributed distributional DDPG”, extends DDPG to
handle distributed training, and to handle distributional RL (see Section 5.1).

3.6.2 Twin Delayed DDPG (TD3)
The TD3 (“twin delayed deep deterministic”) method of [FHM18] extends DDPG in 3 main ways. First, it
uses target policy smoothing, in which noise is added to the action, to encourage generalization:

ã = µθ(s) + noise = πθ(s) (3.117)

Second it uses clipped double Q learning, which is an extension of the double Q-learning discussed in
Section 2.5.3.1 to avoid over-estimation bias. In particular, the target values for TD learning are defined using

q(r, s′;w1:2,θ) = r + γ min
i=1,2

Qwi
(s′, πθ(s

′)) (3.118)

Third, it uses delayed policy updates, in which it only updates the policy after the value function has
stabilized. (See also Section 3.3.3.) See Algorithm 9 for the pseudcode.

67

Algorithm 9: TD3
1 Initialize environment state s, policy parameters θ, target policy parameters θ, critic parameters wi,

target critic parameters wi = wi, replay buffer D = ∅, discount factor γ, EMA rate ρ, step size ηw,
ηθ.

2 repeat
3 a = µθ(s) + noise
4 (s′, r) = step(a, s)
5 D := D ∪ {(s,a, r, s′)}
6 s← s′

7 for G updates do
8 Sample a minibatch B = {(sj ,aj , rj , s′j)} from D
9 w = update-critics(θ,w,B)

10 Sample a minibatch B = {(sj ,aj , rj , s′j)} from D
11 θ = update-policy(θ,w,B)
12 until converged
13 .
14 def update-critics(θ,w,B):
15 Let (sj ,aj , rj , s

′
j)
B
j=1 = B

16 for j = 1 : B do
17 ãj = µθ(s

′
j) + clip(noise,−c, c)

18 qj = rj + γmini=1,2Qwi
(s′j , ãj)

19 for i = 1 : 2 do
20 L(wi) = 1

|B|
∑

(s,a,r,s′)j∈B(Qwi
(sj ,aj)− sg(qj))2

21 wi ← wi − ηw∇L(wi) // Descent
22 wi := ρwi + (1− ρ)wi //Update target networks with EMA

23 Return w1:N ,w1:N

24 .
25 def update-actor(θ,w,B):
26 J(θ) = 1

|B|
∑
s∈B (Qw1

(s, µθ(s)))
2

27 θ ← θ + ηθ∇J(θ) // Ascent
28 θ := ρθ + (1− ρ)θ //Update target policy network with EMA
29 Return θ,θ

68

Chapter 4

Model-based RL

Model-free approaches to RL typically need a lot of interactions with the environment to achieve good
performance. For example, state of the art methods for the Atari benchmark, such as rainbow (Section 2.5.2.2),
use millions of frames, equivalent to many days of playing at the standard frame rate. By contrast, humans
can achieve the same performance in minutes [Tsi+17]. Similarly, OpenAI’s robot hand controller [And+20]
needs 100 years of simulated data to learn to manipulate a rubiks cube.

One promising approach to greater sample efficiency is model-based RL (MBRL). In the simplest
approach to MBRL, we first learn the state transition or dynamics model pS(s′|s, a) — also called a world
model — and the reward function R(s, a), using some offline trajectory data, and then we use these models
to compute a policy (e.g., using dynamic programming, as discussed in Section 2.2, or using some model-free
policy learning method on simulated data, as discussed in Chapter 3). It can be shown that the sample
complexity of learning the dynamics is less than the sample complexity of learning the policy [ZHR24].

However, the above two-stage approach — where we first learn the model, and then plan with it — can
suffer from the usual problems encountered in offline RL (Section 5.5), i.e., the policy may query the model
at a state for which no data has been collected, so predictions can be unreliable, causing the policy to learn
the wrong thing. To get better results, we have to interleave the model learning and policy learning, so that
one helps the other (since the policy determines what data is collected).

There are two main ways to perform MBRL. In the first approach, known as decision-time planning or
model predictive control, we use the model to choose the next action by searching over possible future
trajectories. We then score each trajectory, pick the action corresponding to the best one, take a step in the
environment, and repeat. (We can also optionally update the model based on the rollouts.) This is discussed
in Section 4.1.

The second approach is to use the current model and policy to rollout imaginary trajectories, and to use
this data (optionally in addition to empirical data) to improve the policy using model-free RL; this is called
background planning, and is discussed in Section 4.2.

The advantage of decision-time planning is that it allows us to train a world model on reward-free data,
and then use that model to optimize any reward function. This can be particularly useful if the reward
contains changing constraints, or if it is an intrinsic reward (Section 5.2.4) that frequently changes based on
the knowledge state of the agent. The downside of decision-time planning is that it is much slower. However,
it is possible to combine the two methods, as we discuss below. For an empirical comparison of background
planning and decision-time planning, see [AP24].

Some generic pseudo-code for an MBRL agent is given in Algorithm 10. (The rollout function is defined
in Algorithm 11; some simple code for model learning is shown in Algorithm 12, although we discuss other
loss functions in Section 4.3; finally, the code for the policy learning is given in other parts of this manuscript.)
For more details on general MBRL, see e.g., [Wan+19; Moe+23; PKP21].

69

Algorithm 10: MBRL agent
1 def MBRL-agent(Menv;T,H,N):
2 Initialize state s ∼Menv

3 Initialize data buffer D = ∅, model M̂
4 Initialize value function V , policy proposal π
5 repeat
6 // Collect data from environment
7 τenv = rollout(s, π, T,Menv),
8 s = τenv[−1],
9 D = D ∪ τenv

10 // Update model
11 if Update model online then
12 M̂ = update-model(M̂, τenv)

13 if Update model using replay then
14 τnreplay = sample-trajectory(D), n = 1 : N

15 M̂ = update-model(M̂, τ1:Nreplay)

16 // Update policy
17 if Update on-policy with real then
18 (π, V) = update-on-policy(π, V, τenv)

19 if Update on-policy with imagination then
20 τnimag = rollout(sample-init-state(D), π, T, M̂), n = 1 : N

21 (π, V) = update-on-policy(π, V, τ1:Nimag)

22 if Update off-policy with real then
23 τnreplay = sample-trajectory(D), n = 1 : N

24 (π, V) = update-off-policy(π, V, τ1:Nreplay)

25 if Update off-policy with imagination then
26 τnimag = rollout(sample-state(D), π, T, M̂), n = 1 : N

27 (π, V) = update-off-policy(π, V, τ1:Nimag)

28 until until converged

Algorithm 11: Rollout
1 def rollout(s1, π, T,M)
2 τ = [s1]
3 for t = 1 : T do
4 at = π(st)
5 (st+1, rt+1) ∼M(st, at)
6 τ+ = [at, rt+1, st+1]

7 Return τ

Algorithm 12: Model learning
1 def update-model(M, τ1:N) :

2 ℓ(M) = − 1
NT

∑N
n=1

∑
(st,at,rt+1,st+1)∈τn logM(st+1, rt+1|st, at) // NLL

3 M =M − ηM∇M ℓ(M)
4 Return M

70

4.1 Decision-time planning
If the model is known, and the state and action space is discrete and low dimensional, we can use exact
techniques based on dynamic programming to compute the policy, as discussed in Section 2.2. However, for
the general case, approximate methods must be used for planning, whether the model is known (e.g., for
board games like Chess and Go) or learned.

One approach to approximate planning is to be lazy, and just wait until we know what state we are in,
call it st, and then decide what to do, rather than trying to learn a policy that maps any state to the best
action. This is called decision time planning or “planning in the now” [KLP11]. We discuss some
variants of this approach below.

4.1.1 Model predictive control (MPC)
We now describe a method known as receeding horizon control or model predictive control (MPC)
[MM90; CA13; RMD22]: We use the world model to predict future states and rewards that might follow
from the current state for each possible sequence of future actions we might pursue, and we then take the
action from the sequence that looks most promising. More precisely, at each step, we compute

a∗
t:t+H−1 = planning(st,M,R, V̂,H) (4.1)

= argmax
at:t+H−1

Est+1:t+H∼M(·|st,at:t+H−1)

[
H−1∑

h=0

R(st+h, at+h) + V̂ (st+H)

]
(4.2)

πMPC(st) = a∗t (4.3)

Here, H is called the planning horizon, and V̂ (st+H) is an estimate of the reward-to-go at the end of this
H-step look-ahead process. We can often speed up the optimization process by using a pre-trained proposal
policy at = π(st), which can be used to guide the search process, as we discuss below.

Note that MPC computes a fixed sequence of actions, at:t+H−1, also called a plan, given the current state
st; since the future actions at′ for t′ > t are independent of the future states st′ , this is called an open loop
controller. Such a controller can work well in deterministic environments (where st′ can be computed from
st and the action sequence), but in general, we will need to replan at each step, as the actual next state is
observed. Thus MPC is a way of creating a closed loop controller.

We can combine MPC with model and policy/proposal learning using the pseudocode in Algorithm 10,
where the decision policy at = πMPC(st) is implemented by Equation (4.2). If we want to learn the propsoal
policy at = π(st), we should use off-policy methods, since the training data (even if imaginary) will be
collected by πMPC rather than by π. When learning the world model, we only need it to be locally accurate,
around the current state, which means we can often use simpler models in MPC than in background planning
approaches.

In the sections below, we discuss particular kinds of MPC methods. Further connections between MPC
and RL are discussed in [Ber24].

4.1.2 Heuristic search
If the state and action spaces are finite, we can solve Equation (4.2) exactly, although the time complexity
will typically be exponential in H. However, in many situations, we can prune off unpromising trajectories,
thus making the approach feasible in large scale problems.

In particular, consider a discrete, deterministic MDP where reward maximization corresponds to finding a
shortest path to a goal state. We can expand the successors of the current state according to all possible
actions, trying to find the goal state. Since the search tree grows exponentially with depth, we can use a
heuristic function to prioritize which nodes to expand; this is called best-first search, as illustrated in
Figure 4.1.

If the heuristic function is an optimistic lower bound on the true distance to the goal, it is called
admissible. If we aim to maximize total rewards, admissibility means the heuristic function is an upper

71

Figure 4.1: Illustration of heuristic search. In this figure, the subtrees are ordered according to a depth-first search
procedure. From Figure 8.9 of [SB18]. Used with kind permission of Richard Sutton.

bound of the true value function. Admissibility ensures we will never incorrectly prune off parts of the search
space. In this case, the resulting algorithm is known as A∗ search, and is optimal. For more details on
classical AI heuristic search methods, see [Pea84; RN19].

4.1.3 Monte Carlo tree search

Monte Carlo tree search or MCTS is similar to heuristic search, but learns a value function for each
encountered state, rather than relying on a manually designed heuristic (see e.g., [Mun14] for details). MCTS
is inspired by the upper confidence bound (UCB) method for bandits, but works for general MDPs [KS06].

4.1.3.1 AlphaGo and AlphaZero

The famous AlphaGo system [Sil+16], which was the first AI system to beat a human grandmaster at
the board game Go, used the MCTS method, combined with a value function learned using RL, and a
policy that was initialized using supervised learning from human demonstrations. This was followed up by
AlphaGoZero [Sil+17a], which had a much simpler design, and did not train on any human data, i.e., it
was trained entirely using RL and self play. It significantly outperformed the original AlphaGo. This was
generalized to AlphaZero [Sil+18], which can play expert-level Go, chess, and shogi (Japanese chess), using
a known model of the environment.

4.1.3.2 MuZero

AlphaZero assumes the world model is known. The MuZero method of [Sch+20] learns a world model, by
training a latent representation of the observations, zt = ϕ(ot), and a corresponding latent dynamics model
zt = M(zt, at). The world model is trained to predict the immediate reward, the future reward (i..e, the
value), and the optimal policy, where the optimal policy is computed using MCTS.

In more detail, to learn the model, MuZero uses a sum of 3 loss terms applied to each (zt−1, at, zt, rt) tuple
in the replay buffer. The first loss is L(rt, r̂t), where rt is the observed reward and r̂t = R(zt) is the predicted
reward. The second loss is L(πMCTS

t ,πt), where πMCTS
t is the target policy from MCTS search (see below)

and πt = f(zt) is the predicted policy. The third loss is L(GMCTS
t , vt), where GMCTS

t =
∑n−1
i=0 γ

irt+i+γ
kvt+n

is the n-step bootstrap target value derived from MCTS search (see below), and vt = V (zt) is the predicted
value from the current model.

To pick an action, MuZero does not use the policy directly. Instead it uses MCTS to rollout a search tree
using the dynamics model, starting from the current state zt. It uses the predicted policy πt and value vt as
heuristics to limit the breadth and depth of the search. Each time it expands a node in the tree, it assigns it
a unique integer id (since we are assuming the dynamics are deterministic), thus lazily creating a discrete
MDP. It then partially solves for the tabular Q function for this MDP using Monte Carlo rollouts, similar to
real-time dynamic programming (Section 2.2.2).

72

In more detail, the MCTS process is as follows. Let sk = zt be the root node, for k = 0. We initialize
Q(sk, a) = 0 and P (sk, a) = πt(a|sk), where the latter is the prior for each action. To select the action ak

to perform next (in the rollout), we use the UCB heuristic (Section 1.4.3) based on the empirical counts
N(s, a) combined with the prior policy, P (s, a), which act as pseudocounts. After expanding this node, we
create the child node sk+1 =M(sk, ak); we initialize Q(sk+1, a) = 0 and P (sk+1, a) = πt(a|sk+1), and repeat
the process until we reach a maximum depth, where we apply the value function to the corresponding leaf
node. We then compute the empirical sum of discounted rewards along each of the explored paths, and
use this to update the Q(s, a) and N(s, a) values for all visited nodes. After performing 50 such rollouts,
we compute the empirical distribution over actions at the root node to get the MCTS visit count policy,
πMCTS
t (a) = [N(s0, a)/(

∑
bN(s0, b))]1/τ , where τ is a temperature. Finally we sample an action at from

πMCTS
t , take a step, add (ot, at, rt,π

MCTS
t , GMCTS

t) to the replay buffer, compute the losses, update the model
and policy parameters, and repeat.

The Stochastic MuZero method of [Ant+22] extends MuZero to allow for stochastic environments. The
Sampled MuZero method of [Hub+21] extends MuZero to allow for large action spaces.

4.1.3.3 EfficientZero

The Efficient Zero paper [Ye+21] extends MuZero by adding an additional self-prediction loss to help train
the world model. (See Section 4.3.2.2 for a discussion of such losses.) It also makes several other changes. In
particular, it replaces the empirical sum of instantaneous rewards,

∑n−1
i=0 γ

irt+i, used in computing GMCTS
t ,

with an LSTM model that predicts the sum of rewards for a trajectory starting at zt; they call this the value
prefix. In addition, it replaces the stored value at the leaf nodes of trajectories in the replay buffer with
new values, by rerunning MCTS using the current model applied to the leaves. They show that all three
changes help, but the biggest gain is from the self-prediction loss. The recent Efficient Zero V2 [Wan+24b]
extends this to also work with continuous actions, by replacing tree search with sampling-based Gumbel
search, amongst other changes.

4.1.4 Trajectory optimization for continuous actions

For continuous actions, we cannot enumerate all possible branches in the search tree. Instead, we can view
Equation (4.2) as a standard optimization problem over the real valued sequence of vectors at:t+H−1.

4.1.4.1 Random shooting

For general nonlinear models (such as neural networks), a simple approach is to pick a sequence of random
actions to try, evaluate the reward for each trajectory, and pick the best. This is called random shooting
[Die+07; Rao10].

4.1.4.2 LQG

If the system dynamics are linear and the reward function corresponds to negative quadratic cost, the optimal
action sequence can be solved mathematically, as in the linear-quadratic-Gaussian (LQG) controller (see
e.g., [AM89; HR17]).

If the model is nonlinear, we can use differential dynamic programming (DDP) [JM70; TL05]. In
each iteration, DDP starts with a reference trajectory, and linearizes the system dynamics around states
on the trajectory to form a locally quadratic approximation of the reward function. This system can be
solved using LQG, whose optimal solution results in a new trajectory. The algorithm then moves to the next
iteration, with the new trajectory as the reference trajectory.

4.1.4.3 CEM

It common to use black-box (gradient-free) optimization methods like the cross-entropy method or CEM
in order to find the best action sequence. The CEM method is a simple derivative-free optimization method for

73

continuous black-box functions f : RD → R. We start with a multivariate Gaussian, N (µ0,Σ0), representing
a distribution over possible action a. We sample from this, evaluate all the proposals, pick the top K, then
refit the Gaussian to these top K, and repeat, until we find a sample with sufficiently good score (or we
perform moment matching on the top K scores). For details, see [Rub97; RK04; Boe+05].

In Section 4.1.4.4, we discuss the MPPI method, which is a common instantiation of CEM method.
Another example is in the TD-MPC paper [HSW22a]. They learn the world model (dynamics model) in a
latent space so as to predict future value and reward using temporal difference learning, and then use CEM
to implement MPC for this world model. In [BXS20] they discuss how to combine CEM with gradient-based
planning.

4.1.4.4 MPPI

The model predictive path integral or MPPI approach [WAT17] is a version of CEM. Originally MPPI
was limited to models with linear dynamics, but it was extended to general nonlinear models in [Wil+17].
The basic idea is that the initial mean of the Gaussian at step t, namely µt = at:t+H , is computed based on
shifting µ̂t−1 forward by one step. (Here µt is known as a reference trajectory.)

In [Wag+19], they apply this method for robot control. They consider a state vector of the form
st = (qt, q̇t), where qt is the configuration of the robot. The deterministic dynamics has the form

st+1 = F (st,at) =

(
qt + q̇t∆t

q̇t + f(st,at)∆t

)
(4.4)

where f is a 2 layer MLP. This is trained using the Dagger method of [RGB11], which alternates between
fitting the model (using supervised learning) on the current replay buffer (initialized with expert data), and
then deploying the model inside the MPPI framework to collect new data.

4.1.4.5 GP-MPC

[KD18] proposed GP-MPC, which combines a Gaussian process dynamics model with model predictive
control. They compute a Gaussian approximation to the future state trajectory given a candidate action
trajectory, p(st+1:t+H |at:t+H−1, st), by moment matching, and use this to deterministically compute the
expected reward and its gradient wrt at:t+H−1. Using this, they can solve Equation (4.2) to find a∗

t:t+H−1;
finally, they execute the first step of this plan, a∗t , and repeat the whole process.

The key observation is that moment matching is a deterministic operator that maps p(st|a1:t−1) to
p(st+1|a1:t), so the problem becomes one of deterministic optimal control, for which many solution methods
exist. Indeed the whole approach can be seen as a generalization of the LQG method from classical control,
which assumes a (locally) linear dynamics model, a quadratic cost function, and a Gaussian distribution over
states [Rec19]. In GP-MPC, the moment matching plays the role of local linearization.

The advantage of GP-MPC over the earlier method known as PILCO (“probabilistic inference for learning
control”), which learns a policy by maximizing the expected reward from rollouts (see [DR11; DFR15] for
details), is that GP-MPC can handle constraints more easily, and it can be more data efficient, since it
continually updates the GP model after every step (instead of at the end of an trajectory).

4.1.5 SMC for MPC

A general way to tackle MPC — which supports discrete and continuous actions, as well as discrete and
continuous states and linear and nonlinear world models — is to formulate it as the problem of posterior
inference over state-action sequences with high reward. That is, following the control as inference framework
discussed in Section 1.5, we define the goal as computing the following posterior:

p(x1:T |s1, O1:T) ∝ p(x1:T , O1:T |s1) =
T−1∏

t=1

p(st+1|at, st) exp
(

T∑

t=1

R(st,at) + log p(at)

)
(4.5)

74

where xt = (st,at), and Ot is the “optimality variable” which is clamped to the value 1, with distribution
p(Ot = 1|st,at) = exp(R(st, at)). (Henceforth we will assume a uniform prior over actions, so p(at) ∝ 1.) If
we can sample from this distribution, we can find state-action sequences with high expected reward, and then
we can just extract the first action from one of these sampled trajectories.1

In practice we only compute the posterior for h steps into the future, although we still condition on
optimality out to the full horizon T . Thus we define our goal as computing

p(x1:h|O1:T) ∝ p(x1:h|O1:h)︸ ︷︷ ︸
αh(x1:h)

p(Oh+1:T |xh)︸ ︷︷ ︸
βh(xh)

(4.6)

where p(Ot = 1|st, at) = exp(R(st, at)) is the probability that the “optimality variable” obtains its observed
(clamped) value of 1. We have decomposed the posterior as a forwards filtering term, αh(x1:h), and a
backwards likelihood or smoothing term, βh(xh), as is standard in the literature on inference in state-space
models (see e.g., [Mur23, Ch.8-9]). Note that if we define the value function as V (sh) = log p(Oh:T |sh), then
the backwards message can be rewritten as follows [Pic+19]:

p(Oh+1:T |xh) = Ep(sh+1|xh) [exp(V (sh+1))] (4.7)

A standard way to perform posterior inference in models such as these is to use Sequential Monte Carlo
or SMC, which is an extension of particle filtering (i.e., sequential importance sampling with resampling) to a
general sequence of distributions over a growing state space (see e.g., [Mur23, Ch 13.]). When combined with
an approximation to the backwards message, the approach is called twisted SMC [BDM10; WL14; AL+16;
Law+22; Zha+24]. This was applied to MPC in [Pic+19]. In particular, they suggest using SAC to learn a
value function V , analogous to the backwards twist function, and policy π, which can be used to create the
forwards proposal. More precisely, the policy can be combined with the world model M(st|st−1,at−1) to
give a (Markovian) proposal disribution over the next state and action:

q(xt|x1:t−1) =M(st|st−1,at−1)π(at|st) (4.8)

This can then be used inside of an SMC algorithm to sample trajectories from the posterior in Equation (4.6).
In particular, at each step, we sample from the proposal to extend each previous particle (sampled trajectory)
by one step, and then reweight the corresponding particle using

wt =
p(x1:T |O1:T)

q(x1:t)
=
p(x1:t−1|O1:T)p(xt|x1:t−1, O1:T)

q(x1:t−1)q(xt|x1:t−1)
(4.9)

= wt−1
p(xt|x1:t−1, O1:T)

q(xt|x1:t−1)
∝ wt−1

1

q(xt|x1:t−1)

p(x1:t|O1:T)

p(x1:t−1|O1:T)
(4.10)

Now plugging in the forward-backward equation from Equation (4.6), and doing some algebra, we get the
following (see [Pic+19, App. A.4] for the detailed derivation):

wt ∝ wt−1
1

q(xt|x1:t−1)

p(x1:t|O1:t)p(Ot+1:T |xt)
p(x1:t−1|O1:t−1)p(Ot:T |xt−1)

(4.11)

∝ wt−1Ep(st+1|st,at) [exp(A(st,at, st+1))] (4.12)

where
A(st,at, st+1) = rt − log π(at|st) + V (st+1)− Ep(st|st−1,at−1) [exp(V (st))] (4.13)

is a maximum entropy version of an advantage function. We show the overall pseudocode in Algorithm 13.
An improved version of the above method, called Critic SMC, is presented in [Lio+22]. The main

difference is that they first extend each of the N particles (sampled trajectories) by K possible “putative
actions” anki , then score them using a learned heuristic function Q(sni , a

nk
i), then resample N winners ani from

1We should really marginalize over the state sequences, and then find the maximum marginal probability action sequence, as
in Equation (4.2), but we approximate this by joint sampling, for simplicity. For more discussion on this point, see [LG+24].

75

Algorithm 13: SMC for MPC
1 def SMC-MPC(st,M, π, V,H)

2 Initialize particles: {snt = st}Nn=1

3 Initialize weights: {wnt = 1}Nn=1

4 for i = t : t+H do
5 // Propose one-step extension
6 {ani ∼ π(·|sni)}
7 {(sni+1, r

n
i) ∼M(·|sni ,ani)}

8 // Update weights
9 {wni ∝ wni−1 exp(A(s

n
i ,a

n
i , s

n
i+1))}

10 // Resampling
11 {xn1:i} ∼ Multinom(n;w1

i , . . . , w
N
i)

12 {wni = 1}
13 Sample n ∼ Unif(1 : N) // Pick one of the top samples
14 Return ant

this set of N×K particles, and then push these winners through the dynamics model to get sni+1 ∼M(·|sni , ani).
Finally, they reweight the N particles by the advantage and resample, as before. This can be advantageous if
the dynamics model is slow to evaluate, since we can evaluate K possible extensions just using the heuristic
function. We can think of this as a form of stochastic beam search, where the beam has N candidates, and
you expand each one using K possible actions, and then reduce the population (beam) back to N

4.2 Background planning

In Section 4.1, we discussed how to use models to perform decision time planning. However, this can be
slow. Fortunately, we can amortize the planning process into a reactive policy. To do this, we can use the
model to generate synthetic trajectories “in the background” (while executing the current policy), and use
this imaginary data to train the policy; this is called “background planning”. We discuss a game theoretic
formulation of this setup in Section 4.2.1. Then in Section 4.2.2, we discuss ways to combine model-based
and model-free learning. Finally, in Section 4.2.3, we discuss ways to deal with model errors, that might lead
the policy astray.

4.2.1 A game-theoretic perspective on MBRL

In this section, we discuss a game-theoretic framework for MBRL, as proposed in [RMK20]. This provides a
theoretical foundation for many of the more heuristic methods in the literature.

We denote the true world model by Menv. To simplify the notation, we assume an MDP setup with a
known reward function, so all that needs to be learned is the world model, M̂ , representing p(s′|s, a). (It is
trivial to also learn the reward function.) We define the value of a policy π when rolled out in some model
M ′ as the (discounted) sum of expected rewards:

J(π,M ′) = EM ′,π

[∞∑

t=0

γtR(st)

]

We define the loss of a model M̂ given a distribution µ(s, a) over states and actions as

ℓ(M̂, µ) = E(s,a)∼µ
[
DKL

(
Menv(·|s, a) ∥ M̂(·|s, a)

)]

76

We now define MBRL as a two-player general-sum game:

policy player︷ ︸︸ ︷
max
π

J(π, M̂),

model player︷ ︸︸ ︷
min
M̂

ℓ(M̂, µπMenv
)

where µπMenv
= 1

T

∑T
t=0Menv(st = s, at = a) as the induced state visitation distribution when policy π is

applied in the real world Menv, so that minimizing ℓ(M̂, µπMenv
) gives the maximum likelhood estimate

for M̂ .
Now consider a Nash equilibrium of this game, that is a pair (π, M̂) that satisfies ℓ(M̂, µπMenv

) ≤ ϵMenv

and J(π, M̂) ≥ J(π′, M̂)− ϵπ for all π′. (That is, the model is accurate when predicting the rollouts from π,
and π cannot be improved when evaluated in M̂). In [RMK20] they prove that the Nash equilibirum policy
π is near optimal wrt the real world, in the sense that J(π∗,Menv)− J(π,Menv) is bounded by a constant,
where π∗ is an optimal policy for the real world Menv. (The constant depends on the ϵ parameters, and the
TV distance between µπ

∗

Menv
and µπ∗

M̂
.)

A natural approach to trying to find such a Nash equilibrium is to use gradient descent ascent or
GDA, in which each player updates its parameters simultaneously, using

πk+1 = πk + ηπ∇πJ(πk, M̂k)

M̂k+1 = M̂k − ηM∇M̂ ℓ(M̂k, µ
πk

Menv
)

Unfortunately, GDA is often an unstable algorithm, and often needs very small learning rates η. In addition,
to increase sample efficiency in the real world, it is better to make multiple policy improvement steps using
synthetic data from the model M̂k at each step.

Rather than taking small steps in parallel, the best response strategy fully optimizes each player given
the previous value of the other player, in parallel:

πk+1 = argmax
π

J(π, M̂k)

M̂k+1 = argmin
M̂

ℓ(M̂, µπk

Menv
)

Unfortunately, making such large updates in parallel can often result in a very unstable algorithm.
To avoid the above problems, [RMK20] propose to replace the min-max game with a Stackelberg game,

which is a generalization of min-max games where we impose a specific player ordering. In particular, let the
players be A and B, let their parameters be θA and θB, and let their losses be LA(θA, θB) and LB(θA, θB).
If player A is the leader, the Stackelberg game corresponds to the following nested optimization problem,
also called a bilevel optimization problem:

min
θA
LA(θA, θ∗B(θA)) s.t. θ∗B(θA) = argmin

θ
LB(θA, θ)

Since the follower B chooses the best response to the leader A, the follower’s parameters are a function of the
leader’s. The leader is aware of this, and can utilize this when updating its own parameters.

The main advantage of the Stackelberg approach is that one can derive gradient-based algorithms that
will provably converge to a local optimum [CMS07; ZS22]. In particular, suppose we choose the policy as
leader (PAL). We then just have to solve the following optimization problem:

M̂k+1 = argmin
M̂

ℓ(M̂, µπk

Menv
)

πk+1 = πk + ηπ∇πJ(πk, M̂k+1)

We can solve the first step by executing πk in the environment to collect data Dk and then fitting a local
(policy-specific) dynamics model by solving M̂k+1 = argmin ℓ(M̂,Dk). (For example, this could be a locally

77

linear model, such as those used in trajectory optimization methods discussed in Section 4.1.4.4.) We then
(slightly) improve the policy to get πk+1 using a conservative update algorithm, such as natural actor-critic
(Section 3.3.4) or TRPO (Section 3.4.2), on “imaginary” model rollouts from M̂k+1.

Alternatively, suppose we choose the model as leader (MAL). We now have to solve

πk+1 = argmax
π

J(π, M̂k)

M̂k+1 = M̂k − ηM∇M̂ ℓ(M̂, µ
πk+1

Menv
)

We can solve the first step by using any RL algorithm on “imaginary” model rollouts from M̂k to get πk+1. We
then apply this in the real world to get data Dk+1, which we use to slightly improve the model to get M̂k+1

by using a conservative model update applied to Dk+1. (In practice we can implement a conservative model
update by mixing Dk+1 with data generated from earlier models, an approach known as data aggregation
[RB12].) Compared to PAL, the resulting model will be a more global model, since it is trained on data from
a mixture of policies (including very suboptimal ones at the beginning of learning).

4.2.2 Dyna

The Dyna paper [Sut90] proposed an approach to MBRL that is related to the approach discussed in
Section 4.2.1, in the sense that it trains a policy and world model in parallel, but it differs in one crucial way: the
policy is also trained on real data, not just imaginary data. That is, we define πk+1 = πk+ηπ∇πJ(πk, D̂k∪Dk),
where Dk is data from the real environment and D̂k = rollout(πk, M̂k) is imaginary data from the model.
This makes Dyna a hybrid model-free and model-based RL method, rather than a “pure” MBRL method.

In more detail, at each step of Dyna, the agent collects new data from the environment and adds it to a
real replay buffer. This is then used to do an off-policy update. It also updates its world model given the real
data. Then it simulates imaginary data, starting from a previously visited state (see sample-init-state
function in Algorithm 10), and rolling out the current policy in the learned model. The imaginary data is
then added to the imaginary replay buffer and used by an on-policy learning algorithm. This process continue
until the agent runs out of time and must take the next step in the environment.

4.2.2.1 Tabular Dyna

The original Dyna paper was developed under the assumption that the world model s′ = M(s, a) is
deterministic and tabular, and the Q function is also tabular. See Algorithm 14 for the simplified pseudocode
for this case. Since we assume a deterministic world model of the form s′ =M(s, a), then sampling a single
step from this starting at a previously visited state is equivalent to experience replay (Section 2.5.2.3). Thus
we can think of ER as a kind of non-parametric world model [HHA19].

4.2.2.2 Dyna with function approximation

It is easy to extend Dyna to work with function approximation and policy gradient methods. The code is
identical to the MBRL code in Algorithm 10, where now we train the policy on real as well as imaginary data.
([Lai+21] argues that we should gradually increase the fraction of real data that is used to train the policy, to
avoid suboptimal performance due to model limitations.) If we use real data from the replay buffer, we have
to use an off-policy learner, since the replay buffer contains trajectories that may have been generated from
old policies. (The most recent real trajectory, and all imaginary trajectories, are always from the current
policy.)

We now mention some examples of this “generalized Dyna” framework. In [Sut+08] they extended Dyna to
the case where the Q function is linear, and in [HTB18] they extended it to the DQN case. In [Jan+19a], they
present the MBPO (model based policy optimization) algorithm, which uses Dyna with the off-policy SAC
method. Their world model is an ensemble of DNNs, which generates diverse predictions (an approach
which was originally proposed in the PETS (probabilistic ensembles with trajectory sampling) paper of
[Chu+18]). In [Kur+19], they combine Dyna with TRPO (Section 3.4.2) and ensemble world models, and

78

Algorithm 14: Tabular Dyna-Q
1 def dyna-Q-agent(s,Menv; ϵ, η, γ):
2 Initialize data buffer D = ∅, Q(s, a) = 0 and M̂(s, a) = 0
3 repeat
4 // Collect real data from environment
5 a = eps-greedy(Q, ϵ)
6 (s′, r) = env.step(s, a)
7 D = D ∪ {(s, a, r, s′)}
8 // Update policy on real data
9 Q(s, a) := Q(s, a) + η[r + γmaxa′ Q(s′, a′)−Q(s, a)]

10 // Update model on real data
11 M̂(s, a) = (s′, r)
12 s := s′

13 // Update policy on imaginary data
14 for n=1:N do
15 Select (s, a) from D
16 (s′, r) = M̂(s, a)
17 Q(s, a) := Q(s, a) + η[r + γmaxa′ Q(s′, a′)−Q(s, a)]

18 until until converged

in [Wu+23] they combine Dyna with PPO and GP world models. (Technically speaking, these on-policy
approaches are not valid with Dyna, but they can work if the replay buffer used for policy training is not too
stale.)

4.2.3 Dealing with model errors and uncertainty
The theory in Section 4.2.1 tells us that the model-as-leader approach, which trains a new policy in imagination
at each inner iteration while gradually improving the model in the outer loop, will converge to the optimal
policy, provided the model converges to the true model (or one that is value equivalent to it, see Section 4.3.2.1).
This can be assured provided the model is sufficiently powerful, and the policy explores sufficiently widely to
collect enough diverse but task-relevant data. Nevertheless, models will inevitably have errors, and it can be
useful for the policy learning to be aware of this. We discuss some approaches to this below.

4.2.3.1 Avoiding compounding errors in rollouts

In MBRL, we have to rollout imaginary trajectories to use for training the policy. It makes intuitive sense
to start from a previously visited real-world state, since the model will likely be reliable there. We should
start rollouts from different points along each real trajectory, to ensure good state coverage, rather than just
expanding around the initial state [Raj+17]. However, if we roll out too far from a previously seen state, the
trajectories are likely to become less realistic, due to compounding errors from the model [LPC22].

In [Jan+19a], they present the MBPO method, which uses short rollouts (inside Dyna) to prevent
compounding error (an approach which is justified in [Jia+15]). [Fra+24] is a recent extension of MBPO
which dynamically decides how much to roll out, based on model uncertainty.

Another approach to mitigating compounding errors is to learn a trajectory-level dynamics model, instead
of a single-step model, see e.g., [Zho+24] which uses diffusion to train p(st+1:t+H |st, at:t+H−1), and uses this
inside an MPC loop.

If the model is able to predict a reliable distribution over future states, then we can leverage this
uncertainty estimate to compute an estimate of the expected reward. For example, PILCO [DR11; DFR15]
uses Gaussian processes as the world model, and uses this to analytically derive the expected reward over
trajectories as a function of policy parameters, which are then optimized using a deterministic second-order

79

gradient-based solver. In [Man+19], they combine the MPO algorithm (Section 3.4.4) for continuous control
with uncertainty sets on the dynamics to learn a policy that optimizes for a worst case expected return
objective.

4.2.3.2 End-to-end differentiable learning of model and planner

One solution to the mismatch problem between model fitting and policy learning is to use differentiable
planning, in which we learn the model so as to minimize the planning loss. This bilevel optimization problem
was first proposed in the Value Iteration Network paper of [Tam+16] and extended in the TreeQN paper
of [Far+18]. In [AY20] they proposed a version of this for continuous actions based on the differentiable cross
entropy method. In [Nik+22; Ban+23] they propose to use implicit differentation to avoid explicitly unrolling
the inner optimization.

4.2.3.3 Unified model and planning variational lower bound

In [Eys+22], they propose a method called Mismatched No More (MNM) to solve the objective mismatch
problem. They define an optimality variable (see Section 1.5) based on the entire trajectory, p(O = 1|τ) =
R(τ) =

∑∞
t=1 γ

tR(st, at). This gives rise to the following variational lower bound on the log probability of
optimality:

log p(O = 1) = log

∫

τ

P (O = 1, τ) = logEP (τ) [P (O = 1|τ)] ≥ EQ(τ) [logR(τ) + logP (τ)− logQ(τ)]

where P (τ) is the distribution over trajectories induced by policy applied to the true world model, P (τ) =
µ(s0)

∏∞
t=0M(st+1|st, at)π(at|st), and Q(τ) is the distribution over trajectories using the estimated world

model, Q(τ) = µ(s0)
∏∞
t=0 M̂(st+1|st, at)π(at|st). They then maximize this bound wrt π and M̂ .

In [Ghu+22] they extend MNM to work with images (and other high dimensional states) by learning a
latent encoder Ê(zt|ot) as well as latent dynamics M̂(zt+1|zt, at), similar to other self-predictive methods
(Section 4.3.2.2). They call their method Aligned Latent Models.

4.2.3.4 Dynamically switching between MFRL and MBRL

One problem with the above methods is that, if the model is of limited capacity, or if it learns to model
“irrelevant” aspects of the environment, then any MBRL method may be dominated by a MFRL method that
directly optimizes the true expected reward. A safer approach is to use a model-based policy only when the
agent is confident it is better, but otherwise to fall back to a model-free policy. This is the strategy proposed
in the Unified RL method of [Fre+24].

4.3 World models

In this section, we discuss various kinds of world models that have been proposed in the literature. These can
be used for decision-time planning or for background planning

4.3.1 Generative world models

In this section, we discuss different kinds of world model M(s′|s, a). We can use this to generate imaginary
trajectories by sampling from the following joint distribution:

p(st+1:T , rt+1:T ,at:T−1|st) =
T−1∏

i=t

π(ai|si)M(si+1|si,ai)R(ri+1|si,ai) (4.14)

80

4.3.1.1 Observation-space world models

The simplest approach is to define M(s′|s, a) as a conditional generative model over states. If the state space
is high dimensional (e.g., images), we can use standard techniques for image generation such as diffusion
(see e.g., the Diamond method of [Alo+24]). If the observed states are low-dimensional vectors, such as
proprioceptive states, we can use transformers (see e.g., the Transformer Dynamics Model of [Sch+23a]).

4.3.1.2 Factored models

In some cases, the dimensions of the state vector s represent distinct variables, and the joint Markov transition
matrix p(s′|s, a) has conditional independence properties which can be represented as a sparse graphical
model, This is called a factored MDP [BDG00].

4.3.1.3 Latent-space world models

In this section, we describe some methods that use latent variables as part of their world model. We let
zt denote the latent (or hidden) state at time t; this can be a discrete or continuous variable (or vector of
variables). The generative model has the form of a controlled HMM:

p(ot+1:T , zt+1:T , rt+1:T ,at:T−1|zt) =
T−1∏

i=t

[π(ai|zi)M(zi+1|zi,ai)R(ri|zi+1,ai)D(oi|zi+1)] (4.15)

where p(ot|zt) = D(ot|zt) is the decoder, or likelihood function, and π(at|zt) is the policy.
The world model is usually trained by maximizing the marginal likelihood of the observed outputs given

an action sequence. (We discuss non-likelihood based loss functions in Section 4.3.2.) Computing the marginal
likelihood requires marginalizing over the hidden variables zt+1:T . To make this computationally tractable,
it is common to use amortized variational inference, in which we train an encoder network, p(zt|ot), to
approximate the posterior over the latents. Many papers have followed this basic approach, such as the
“world models” paper [HS18], and the methods we discuss below.

4.3.1.4 Dreamer

In this section, we summarize the approach used in Dreamer paper [Haf+20] and its recent extensions,
such as DreamerV2 [Haf+21] and DreamerV3 [Haf+23]. These are all based on the background planning
approach, in which the policy is trained on imaginary trajectories generated by a latent variable world model.
(Note that Dreamer is based on an earlier approach called PlaNet [Haf+19], which used MPC instead of
background planning.)

In Dreamer, the stochastic dynamic latent variables in Equation (4.15) are replaced by deterministic
dynamic latent variables ht, since this makes the model easier to train. (We will see that ht acts like the
posterior over the hidden state at time t− 1; this is also the prior predictive belief state before we see ot.) A
“static” stochastic variable ϵt is now generated for each time step, and acts like a “random effect” in order
to help generate the observations, without relying on ht to store all of the necessary information. (This
simplifies the recurrent latent state.) In more detail, Dreamer defines the following functions:2

• A hidden dynamics (sequence) model: ht+1 = U(ht,at, ϵt)

• A latent state prior: ϵ̂t ∼ P (ϵ̂t|ht)

• A latent state decoder (observation predictor): ôt ∼ D(ôt|ht, ϵ̂t).

• A reward predictor: r̂t ∼ R(r̂t|ht, ϵ̂t)

• A latent state encoder: ϵt ∼ E(ϵt|ht,ot).
2To map from our notation to the notation in the paper, see the following key: ot → xt, U → fϕ (sequence model),

P → pϕ(ẑt|ht) (dynamics predictor),ion model), D → pϕ(x̂t|ht, ẑt) (decoder), E → qϕ(ϵt|ht, xt) (encoder).

81

otLop

ôt

D E

ǫ̂t ǫt

P

ht U ht+1

Lkl

π at

Figure 4.2: Illustration of Dreamer world model as a factor graph (so squares are functions, circles are variables). We
have unrolled the forwards prediction for only 1 step. Also, we have omitted the reward prediction loss.

82

• A policy function: at ∼ π(at|ht)
See Figure 4.2 for an illustration of the system.

We now give a simplified explanation of how the world model is trained. The loss has the form

LWM = Eq(ϵ1:T)

[
T∑

t=1

βoLo(ot, ôt) + βzLz(ϵt, ϵ̂t)
]

(4.16)

where the β terms are different weights for each loss, and q is the posterior over the latents, given by

q(ϵ1:T |h0,o1:T ,a1:T) =

T∏

t=1

E(ϵt|ht,ot)δ(ht − U(ht−1,at−1, ϵt−1)) (4.17)

The loss terms are defined as follows:

Lo = − lnD(ot|ϵt,ht) (4.18)
Lz = DKL (E(ϵt|ht,ot)) ∥ P (ϵt|ht))) (4.19)

where we abuse notation somewhat, since Lz is a function of two distributions, not of the variables ϵt and ϵ̂t.
In addition to the world model loss, we have the following actor-critic losses

Lcritic =

T∑

t=1

(V (ht)− sg(Gλt))
2 (4.20)

Lactor = −
T∑

t=1

sg((Gλt − V (ht))) log π(at|ht) (4.21)

where Gλt is the GAE estimate of the reward to go:

Gλt = rt + γ
(
(1− λ)V (ht) + λGλt+1

)
(4.22)

There have been several extensions to the original Dreamer paper. DreamerV2 [Haf+21] adds categorical
(discrete) latents and KL balancing between prior and posterior estimates. This was the first imagination-
based agent to outperform humans in Atari games. DayDreamer [Wu+22] applies DreamerV2 to real robots.
DreamerV3 [Haf+23] builds upon DreamerV2 using various tricks — such as symlog encodings3 for the reward,
critic, and decoder — to enable more stable optimization and domain independent choice of hyper-parameters.
It was the first method to create diamonds in the Minecraft game without requiring human demonstration
data. (However, reaching this goal took 17 days of training.) [Lin+24a] extends DreamerV3 to also model
language observations.

Variants of Dreamer such as TransDreamer [Che+21a] and STORM [Zha+23b] have also been explored,
where transformers replace the recurrent network. The DreamingV2 paper of [OT22] replaces the generative
loss with a non-generative self-prediction loss (see Section 4.3.2.2).

4.3.1.5 Iris

The Iris method of [MAF22] follows the MBRL paradigm, in which it alternates beween (1) learning a world
model using real data Dr and then generate imaginary rollouts Di using the WM, and (2) learning the policy
given Di and collecting new data D′

r for learning. In the model learning stage, Iris learns a discrete latent
encoding using the VQ-VAE method, and then fits a transformer dynamics model to the latent codes. In
the policy learning stage, it uses actor critic methods. The Delta-Iris method of [MAF24] extends this by
training the model to only predict the delta between neighboring frames. Note that, in both cases, the policy
has the form at = π(ot), where ot is an image, so the the rollouts need to ground to pixel space, and cannot
only be done in latent space.

3The symlog function is defined as symlog(x) = sign(x) ln(|x|+ 1), and its inverse is symexp(x) = sign(x)(exp(|x|)− 1). The
symlog function squashes large positive and negative values, while preserving small values.

83

Loss Policy Usage Examples
OP Observables Dyna Diamond [Alo+24], Delta-Iris [MAF24]
OP Observables MCTS TDM [Sch+23a]
OP Latents Dyna Dreamer [Haf+23]
RP, VP, PP Latents MCTS MuZero [Sch+20]
RP, VP, PP, ZP Latents MCTS EfficientZero [Ye+21]
RP, VP, ZP Latents MPC-CEM TD-MPC [HSW22b]
VP, ZP Latents Aux. Minimalist [Ni+24]
VP, ZP Latents Dyna DreamingV2 [OT22]
VP, ZP, OP Latents Dyna AIS [Sub+22]
POP Latents Dyna Denoised MDP [Wan+22]

Table 4.1: Summary of some world-modeling methods. The “loss” column refers to the loss used to train the latent
encoder (if present) and the dynamics model (OP = observation prediction, ZP = latent state prediction, RP = reward
prediction, VP = value prediction, PP = policy prediction, POP = partial observation prediction). The “policy” column
refers to the input that is passed to the policy. (For MCTS methods, the policy is just used as a proposal over action
sequences to initialize the search/ optimization process.) The “usage” column refers to how to the world model is used:
for background planning (which we call “Dyna”), or for decision-time planning (which we call “MCTS”), or just as
an auxiliary loss on top of standard policy/value learning (which we call “Aux”). Thus Aux methods are single-stage
(“end-to-end”), whereas the other methods alternate are two-phase, and alternate between improving the world model
and then using it for improving the policy (or searching for the optimal action).

4.3.2 Non-generative world models

In Section 4.2.1, we argued that, if we can learn a sufficiently accurate world model, then solving for the
optimal policy in simulation will give a policy that is close to optimal in the real world. However, a simple
agent may not be able to capture the full complexity of the true environment; this is called the “small agent,
big world” problem [DVRZ22; Lu+23; Aru+24a; Kum+24].

Consider what happens when the agent’s model is misspecified (i.e., it cannot represent the true world
model), which is nearly always the case. The agent will train its model to reduce state (or observation)
prediction error, by minimizing ℓ(M̂, µπM). However, not all features of the state are useful for planning. For
example, if the states are images, a dynamics model with limited representational capacity may choose to focus
on predicting the background pixels rather than more control-relevant features, like small moving objects,
since predicting the background reliably reduces the MSE more. This is due to “objective mismatch”
[Lam+20; Wei+24], which refers to the discrepancy between the way a model is usually trained (to predict
the observations) vs the way its representation is used for control. To tackle this problem, in this section we
discuss methods for learning representations and models that don’t rely on predicting all the observations.
Our presentation is based in part on [Ni+24] (which in turn builds on [Sub+22]). See Table 4.1 for a summary
of some of the methods we will discuss.

4.3.2.1 Value prediction

Let Dt = (Dt−1,at−1, rt−1,ot) be the observed history at time t, and let zt = ϕ(Dt) be a latent representation
(compressed encoding) of this history, where ϕ is called an encoder or a state abstraction function. We will
train the policy at = π(zt) in the usual way, so our focus will be on how to learn good latent representations.

An optimal representation zt = ϕ(Dt) is a sufficient statistic for the optimal action-value function Q∗.
Thus it satifies the value equivalence principle [LWL06; Cas11; Gri+20; GBS22; AP23; ARKP24], which
says that two states s1 and s2 are value equivalent (given a policy) if V π(s1) = V π(s2). In particular, if the
representation is optimal, it will satisfy value equivalence wrt the optimal policy, i.e., if ϕ(Di) = ϕ(Dj) then
Q∗(Di, a) = Q∗(Dj , a). We can train such a representation function by using its output z = ϕ(D) as input to
the Q function or to the policy. (We call such a loss VP, for value prediction.) This will cause the model to
focus its representational power on the relevant parts of the observation history.

Note that there is a stronger property than value equivalence called bisimulation [GDG03]. This says

84

Figure 4.3: Illustration of an encoder zt = E(ot), which is passed to a value estimator vt = V (zt), and a world model,
which predicts the next latent state ẑt+1 = M(zt, at), the reward rt = R(zt, at), and the termination (done) flag,
dt = done(zt). From Figure C.2 of [AP23]. Used with kind permission of Doina Precup.

that two states s1 and s2 are bisimiliar if P (s′|s1, a) ≈ P (s′|s2, a) and R(s1, a) = R(s2, a). From this, we can
derive a continuous measure called the bisimulation metric [FPP04]. This has the advantage (compared
to value equivalence) of being policy independent, but the disadvantage that it can be harder to compute
[Cas20; Zha+21], although there has been recent progress on computaitonally efficient methods such as MICo
[Cas+21] and KSMe [Cas+23].

4.3.2.2 Self prediction

Unfortunately, in problems with sparse reward, predicting the value may not provide enough of a feedback
signal to learn quickly. Consequently it is common to augment the training with a self-prediction loss
where we train ϕ to ensure the following condition hold:

∃M s.t. EM∗ [z′|D, a] = EM [z′|ϕ(D), a)] ∀D, a (4.23)

where the LHS is the predicted mean of the next latent state under the true model, and the RHS is the
predicted mean under the learned dynamics model. We call this the EZP, which stands for expected z
prediction.4

A trivial way to minimize the (E)ZP loss is for the embedding to map everything to a constant vector,
say E(D) = 0, in which case zt+1 will be trivial for the dynamics model M to predict. However this is not a
useful representation. This problem is representational collapse [Jin+22]. Fortunately, we can provably
prevent collapse (at least for linear encoders) by using a frozen target network [Tan+23; Ni+24]. That is, we
use the following auxiliary loss

LEZP(ϕ,θ;D, a,D′) = ||Mθ(Eϕ(D, a))− Eϕ(D′)||22 (4.24)

where
ϕ = ρϕ+ (1− ρ)sg(ϕ) (4.25)

is the (stop-gradient version of) the EMA of the encoder weights. (If we set ρ = 0, this is called a detached
network.)

4In [Ni+24], they also describe the ZP loss, which requires predicting the full distribution over z′ using a stochastic transition
model. This is strictly more powerful, but somewhat more complicated, so we omit it for simplicity.

85

We can also train the latent encoder to predict the reward. Formally, we want to ensure we can satisfy
the following condition, which we call RP for “reward prediction”:

∃R s.t. ER∗ [r|D, a] = ER [r|ϕ(D), a)] ∀D, a (4.26)

See Figure 4.3 for an illustration. In [Ni+24], they prove that a representation that satisfies ZP and RP is
enough to satisfy value equivalence (sufficiency for Q∗).

Methods that optimize ZP and VP loss have been used in many papers, such as Predictron [Sil+17b],
Value Prediction Networks [OSL17], Self Predictive Representations (SPR) [Sch+21], Efficient
Zero (Section 4.1.3.3), BYOL-Explore (Section 4.3.2.6), etc.

4.3.2.3 Policy prediction

The value function and reward losses may be too sparse to learn efficiently. Although self-prediction loss can
help somewhat, it does not use any extra information from the environment as feedback. Consequently it is
natural to consider other kinds of prediction targets for learning the latent encoder (and dynamics). When
using MCTS, it is possible compute what the policy should be for a given state, and this can be used as a
prediction target for the reactive policy at = π(zt), which in turn can be used as a feedback signal for the
latent state. This method is used by MuZero (Section 4.1.3.2) and EfficientZero (Section 4.1.3.3).

4.3.2.4 Observation prediction

Another natural target to use for learning the encoder and dynamics is the next observation, using a one-step
version of Equation (4.14). Indeed, [Ni+24] say that a representation ϕ satsifies the OP (observation
prediction) criterion if it satisfies the following condition:

∃D s.t. p∗(o′|D, a) = D(o′|ϕ(D), a) ∀D, a (4.27)

where D is the decoder. In order to repeatedly apply this, we need to be able to update the encoding z = ϕ(D)
in a recursive or online way. Thus we must also satisfify the following recurrent encoder condition, which
[Ni+24] call Rec:

∃U s.t. ϕ(D′) = U(ϕ(D), a,o′) ∀D, a,o′ (4.28)

where U is the update operator. Note that belief state updates (as in a POMDP) satisfy this property.
Furthermore, belief states are a sufficient statistic to satisfy the OP condition. See Section 4.3.1.3 for a
discussion of generative models of this form. However, there are other approaches to partial observability
which work directly in prediction space (see Section 4.4.2).

4.3.2.5 Partial observation prediction

We have argued that predicting all the observations is problematic, but not predicting them is also problematic.
A natural compromise is to predict some of the observations, or at least sone function of them. This is known
as a partial world model (see e.g., [AP23]).

The best way to do this is an open research problem. A simple approach would be to predict all the
observations, but put a penalty on the resulting OP loss term. A more sophisticated approach would be
to structure the latent space so that we distinguish latent variables that are useful for learning Q∗ (i.e.,
which affect the reward and which are affected by the agent’s actions) from other latent variables that are
needed to explain parts of the observation but otherwise are not useful. We can then impose an information
bottleneck penalty on the latter, to prevent the agent focusing on irrelevant observational details. (See e.g.,
the denoised MDP method of [Wan+22].)

86

ot

ẑt

D

ôt

Lop

P E

zt−1 U zt

V π at V

Vt−1 Lvp Gt TD V t

rt

Lzp

Figure 4.4: Illustration of (a simplified version of) the BYOL-Explore architecture, represented as a factor graph (so
squares are functions, circles are variables). The dotted lines represent an optional observation prediction loss. The
map from notation in this figure to the paper is as follows: U → hc (closed-loop RNN update), P → ho (open-loop
RNN update), D → g (decoder), E → f (encoder). We have unrolled the forwards prediction for only 1 step. Also, we
have omitted the reward prediction loss. The V node is the EMA version of the value function. The TD node is the
TD operator.

87

4.3.2.6 BYOL-Explore

As an example of the above framework, consider the BYOL-Explore paper [Guo+22a], which uses a
non-generative world model trained with ZP and VP loss. (BYOL stands for “build your own latent”.) See
Figure 4.4 for the computation graph, which we see is slightly simpler than the Dreamer computation graph
in Figure 4.2 due to the lack of stochastic latents. In addition to using self-prediction loss to help train the
latent representation, the error in this loss can be used to define an intrinsic reward, to encourage the agent
to explore states where the model is uncertain. See Section 5.2.4 for further discussion of this topic.

4.4 Beyond one-step models: predictive representations

The “world models” we described in Section 4.3 are one-step models of the form p(s′|s, a), or p(z′|z, a)
for z = ϕ(s), where ϕ is a state-abstraction function. However, such models are problematic when it comes
to predicting many kinds of future events, such as “will a car pull in front of me?” or “when will it start
raining?”, since it is hard to predict exactly when these events will occur, and these events may correspond to
many different “ground states”. In principle we can roll out many possible long term futures, and apply some
abstraction function to the resulting generated trajectories to extract features of interest, and thus derive a
predictive model of the form p(t′, ϕ(st+1:t′)|st, π), where t′ is the random duration of the sampled trajectory.
However, it would be more efficient if we could directly predict this distribution without having to know the
value of t′, and without having to predict all the details of all the intermediate future states, many of which
will be irrelevant given the abstraction function ϕ. This motivates the study of multi-step world models,
that predict multiple steps into the future, either at the state level, or at the feature level. These are called
predictive representations, and are a compromise between standard model-based RL and model-free RL,
as we will see. Our presentation on this topic is based on [Car+24]. (See also Section 5.3, where we discuss
the related topic of temporal abstraction from a model-free perspective.)

4.4.1 General value functions

The value function is based on predicting the sum of expected discounted future rewards. But the reward is
just one possible signal of interest we can extract from the environment. We can generalize this by considering
a cumulant Ct ∈ R, which is some scalar of interest derived from the state or observation (e.g., did a loud
bang just occur? is there a tree visible in the image?). We then define the general value function or GVF
as follows [Sut95]:

V π,C,γ(s) = E

[∞∑

t=0

γtC(st+1)|s0 = s, a0:∞ ∼ π
]

(4.29)

If C(st+1) = Rt+1, this reduces to the value function.5 However, we can also define the GVF to predict
components of the observation vector; this is called nexting [MWS14], since it refers to next state prediction
at different timescales.

4.4.2 Successor representations

In this section we consider a variant of GVF where the cumulant corresponds to a state occupancy vector
C(st+1) = I (st+1 = s̃), which provides a dense feedback signal. This give us the successor representation
or SR [Day93]:

Mπ(s, s̃) = E

[∞∑

t=0

γtI (st+1 = s̃) |S0 = s

]
(4.30)

5This follows the convention of [SB18], where we write (st, at, rt+1, st+1) to represent the transitions, since rt+1 and st+1

are both generated by applying at in state st.

88

If we define the policy-dependent state-transition matrix by

Tπ(s, s′) =
∑

a

π(a|s)T (s′|s, a) (4.31)

then the SR matrix can be rewritten as

Mπ =

∞∑

t=0

γt[Tπ]t+1 = Tπ(I− γTπ)−1 (4.32)

Thus we see that the SR replaces information about individual transitions with their cumulants, just as the
value function replaces individual rewards with the reward-to-go.

Like the value function, the SR obeys a Bellman equation

Mπ(s, s̃) =
∑

a

π(a|s)
∑

s′

T (s′|s, a) (I (s′ = s̃) + γMπ(s′, s̃)) (4.33)

= E [I (s′ = s̃) + γMπ(s′, s̃)] (4.34)

Hence we can learn an SR using a TD update of the form

Mπ(s, s̃)←Mπ(s, s̃) + η (I (s′ = s̃) + γMπ(s′, s̃)−Mπ(s, s̃))︸ ︷︷ ︸
δ

(4.35)

where s′ is the next state sampled from T (s′|s, a). Compare this to the value-function TD update in
Equation (2.16):

V π(s)← V π(s) + η (R(s′) + γV π(s′)− V π(s))︸ ︷︷ ︸
δ

(4.36)

However, with an SR, we can easily compute the value function for any reward function (as approximated by
a given policy) as follows:

V R,π =
∑

s̃

Mπ(s, s̃)R(s̃) (4.37)

See Figure 4.5 for an example.
We can also make a version of SR that depends on the action as well as the state to get

Mπ(s, a, s̃) = E

[∞∑

t=0

γtI (st+1 = s̃) |s0 = s, a0 = a, a1:∞ ∼ π
]

(4.38)

= E [I (s′ = s̃) + γMπ(s′, a, s̃)|s0 = s, a0 = a, a1:∞ ∼ π] (4.39)

This gives rise to a TD update of the form

Mπ(s, a, s̃)←Mπ(s, a, s̃) + η (I (s′ = s̃) + γMπ(s′, a′, s̃)−Mπ(s, a, s̃))︸ ︷︷ ︸
δ

(4.40)

where s′ is the next state sampled from T (s′|s, a) and a′ is the next action sampled from π(s′). Compare this
to the (on-policy) SARSA update from Equation (2.28):

Qπ(s, a)← Qπ(s, a) + η (R(s′) + γQπ(s′, a′)−Qπ(s, a))︸ ︷︷ ︸
δ

(4.41)

However, from an SR, we can compute the state-action value function for any reward function:

QR,π(s, a) =
∑

s̃

Mπ(s, a, s̃)R(s̃) (4.42)

89

Goal

Agent

<latexit sha1_base64="3fl7AMR82nporqgYiPa0q5VI1tY=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Ie0oWw203bpbhJ2N0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSNsGm4EdhKFVAYC28H4dua3n1BpHkcPZpKgL+kw4gPOqLHSY89wEWKmp/1yxa26c5BV4uWkAjka/fJXL4xZKjEyTFCtu56bGD+jynAmcFrqpRoTysZ0iF1LIypR+9n84Ck5s0pIBrGyFRkyV39PZFRqPZGB7ZTUjPSyNxP/87qpGVz7GY+S1GDEFosGqSAmJrPvScgVMiMmllCmuL2VsBFVlBmbUcmG4C2/vEpaF1WvVq3dX1bqN3kcRTiBUzgHD66gDnfQgCYwkPAMr/DmKOfFeXc+Fq0FJ585hj9wPn8AP1aQuA==</latexit>

s̃
<latexit sha1_base64="uWioic9Sc3+uT7pr32g9YUpvtBk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq6H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A4jeNAg==</latexit>s

<latexit sha1_base64="uWioic9Sc3+uT7pr32g9YUpvtBk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq6H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A4jeNAg==</latexit>s

Figure 4.5: Illustration of successor representation for the 2d maze environment shown in (a) with reward shown in (d),
which assings all states a reward of -0.1 except for the goal state which has a reward of 1.0. In (b-c) we show the SRs
for a random policy and the optimal policy. In (e-f) we show the corresponding value functons. In (b), we see that the
SR under the random policy assigns high state occupancy values to states which are close (in Manhattan distance) to the
current state s13 (e.g., Mπ(s13, s14) = 5.97) and low values to states that are further away (e.g., Mπ(s13, s12) = 0.16).
In (c), we see that the SR under the optimal policy assigns high state occupancy values to states which are close to the
optimal path to the goal (e.g., Mπ(s13, s14) = 1.0) and which fade with distance from the current state along that path
(e.g., Mπ(s13, s12) = 0.66). From Figure 3 of [Car+24]. Used with kind permission of Wilka Carvalho. Generated by
https: // github. com/ wcarvalho/ jaxneurorl/ blob/ main/ successor_ representation. ipynb .

90

https://github.com/wcarvalho/jaxneurorl/blob/main/successor_representation.ipynb

This can be used to improve the policy as we discuss in Section 4.4.4.1.
We see that the SR representation has the computational advantages of model-free RL (no need to do

explicit planning or rollouts in order to compute the optimal action), but also the flexibility of model-based
RL (we can easily change the reward function without having to learn a new value function). This latter
property makes SR particularly well suited to problems that use intrinsic reward (see Section 5.2.4), which
often changes depending on the information state of the agent.

Unfortunately, the SR is limited in several ways: (1) it assumes a finite, discrete state space; (2) it
depends on a given policy. We discuss ways to overcome limitation 1 in Section 4.4.3, and limitation 2 in
Section 4.4.4.1.

4.4.3 Successor models

In this section, we discuss the successor model (also called a γ-model), which is a probabilistic extension
of SR [JML20; Eys+21]. This allows us to generalize SR to work with continuous states and actions, and
to simulate future state trajectories. The approach is to define the cumulant as the k-step conditional
distribution C(sk+1) = P (sk+1 = s̃|s0 = s, π), which is the probability of being in state s̃ after following π
for k steps starting from state s. (Compare this to the SR cumulant, which is C(sk+1) = I (sk+1 = s̃).) The
SM is then defined as

µπ(s̃|s) = (1− γ)
∞∑

t=0

γtP (st+1 = s̃|s0 = s) (4.43)

where the 1− γ term ensures that µπ integrates to 1. (Recall that
∑∞
t=0 γ

t = 1
1−γ for γ < 1.) In the tabular

setting, the SM is just the normalized SR, since

µπ(s̃|s) = (1− γ)Mπ(s, s̃) (4.44)

= (1− γ)E
[∞∑

t=0

γtI (st+1 = s̃) |s0 = s, a0:∞ ∼ π
]

(4.45)

= (1− γ)
∞∑

t=0

γtP (st+1 = s̃|s0 = s, π) (4.46)

Thus µπ(s̃|s) tells us the probability that s̃ can be reached from s within a horizon determined by γ when
following π, even though we don’t know exactly when we will reach s̃.

SMs obey a Bellman-like recursion

µπ(s̃|s) = E [(1− γ)T (s̃|s, a) + γµπ(s̃|s′)] (4.47)

We can use this to perform policy evaluation by computing

V π(s) =
1

1− γEµπ(s̃|s) [R(s̃)] (4.48)

We can also define an action-conditioned SM

µπ(s̃|s, a) = (1− γ)
∞∑

t=0

γtP (st+1 = s̃|s0 = s, a0 = a) (4.49)

= (1− γ)T (s̃|s, a) + γE [µπ(s̃|s′, a′, π)] (4.50)

Hence we can learn an SM using a TD update of the form

µπ(s̃|s, a)← µπ(s̃|s, a) + η ((1− γ)T (s′|s, a) + γµπ(s̃|s′, a′)− µπ(s̃|s, a))︸ ︷︷ ︸
δ

(4.51)

91

where s′ is the next state sampled from T (s′|s, a) and a′ is the next action sampled from π(s′). With an
SM, we can compute the state-action value for any reward:

QR,π(s, a) =
1

1− γEµπ(s̃|s,a) [R(s̃)] (4.52)

This can be used to improve the policy as we discuss in Section 4.4.4.1.

4.4.3.1 Learning SMs

Although we can learn SMs using the TD update in Equation (4.51), this requires evaluating T (s′|s, a) to
compute the target update δ, and this one-step transition model is typically unknown. Instead, since µπ is a
conditional density model, we will optimize the cross-entropy TD loss [JML20], defined as follows

Lµ = E(s,a)∼p(s,a),s̃∼(Tπµπ)(·|s,a) [logµθ(s̃|s, a)] (4.53)

where (Tπµπ)(·|s, a) is the Bellman operator applied to µπ and then evaluated at (s, a), i.e.,

(Tπµπ)(s̃|s, a) = (1− γ)T (s′|s, a) + γ
∑

s′

T (s′|s, a)
∑

a′

π(a′|s′(µπ(s̃|s′, a′) (4.54)

We can sample from this as follows: first sample s′ ∼ T (s′|s, a) from the environment and then with probability
1− γ set s̃ = s′ and terminate. Otherwise sample a′ ∼ π(a′|s′) and then create a bootstrap sample from the
model using s̃ ∼ µπ(s̃|s′, a′).

There are many possible density models we can use for µπ. In [Tha+22], they use a VAE. In [Tom+24],
they use an autoregressive transformer applied to a set of discrete latent tokens, which are learned using
VQ-VAE or a non-reconstructive self-supervised loss. They call their method Video Occcupancy Models.

An alternative approach to learning SMs, that avoids fitting a normalized density model over states, is to
use contrastive learning to estimate how likely s̃ is to occur after some number of steps, given (s, a), compared
to some randomly sampled negative state [ESL21; ZSE24]. Although we can’t sample from the resulting
learned model (we can only use it for evaluation), we can use it to improve a policy that achieves a target
state (an approach known as goal-conditioned policy learning, discussed in Section 5.3.1).

4.4.3.2 Jumpy models using geometric policy composition

In [Tha+22], they propose geometric policy composition or GPC as a way to learn a new policy by
sequencing together a set of N policies, as opposed to taking N primitive actions in a row. This can be
thought of as a jumpy model, since it predicts multiple steps into the future, instead of one step at a time
(c.f., [Zha+23a]).

In more detail, in GPC, the agent picks a sequence of n policies πi for i = 1 : n, and then samples states
according to their corresponding SMs: starting with (s0, a0), we sample s1 ∼ µπ1

γ (·|s0, a0), then a1 ∼ π1(·|s1),
then s2 ∼ µπ2

γ (·|s1, a1), etc. This continues for n− 1 steps. Finally we sample sn ∼ µπn

γ′ (·|sn−1, an−1), where
γ′ > γ represents a longer horizon SM. The reward estimates computed along this sampled path can then be
combined to compute the value of each candidate policy sequence.

4.4.4 Successor features
Both SRs and SMs require defining expectations or distributions over the entire future state vector, which can
be problematic in high dimensional spaces. In [Bar+17] they introduced successor features, that generalize
SRs by working with features ϕ(s) instead of primitive states. In particular, if we define the cumulant to be
C(st+1) = ϕ(st+1), we get the following definition of SF:

ψπ,ϕ(s) = E

[∞∑

t=0

γtϕ(st+1)|s0 = s, a0:∞ ∼ π
]

(4.55)

92

We will henceforth drop the ϕ superscript from the notation, for brevity. SFs obey a Bellman equation

ψ(s) = E [ϕ(s′) + γψ(s′)] (4.56)

If we assume the reward function can be written as

R(s,w) = ϕ(s)Tw (4.57)

then we can derive the value function for any reward as follows:

V π,w(s) = E [R(s1) + γR(s2) + · · · |s0 = s] (4.58)

= E
[
ϕ(s1)

Tw + γϕ(s2)
Tw + · · · |s0 = s

]
(4.59)

= E

[∞∑

t=0

γtϕ(st+1)|s0 = s

]T
w = ψπ(s)Tw (4.60)

Similarly we can define an action-conditioned version of SF as

ψπ,ϕ(s, a) = E

[∞∑

t=0

ϕ(st+1)|s0 = s, a0 = a, a1:∞ ∼ π
]

(4.61)

= E [ϕ(s′) + γψ(s′, a′)] (4.62)

We can learn this using a TD rule

ψπ(s, a)← ψπ(s, a) + η (ϕ(s′) + γψπ(s′, a′)−ψπ(s, a))︸ ︷︷ ︸
δ

(4.63)

And we can use it to derive a state-action value function:

Qπ,w(s) = ψπ(s, a)Tw (4.64)

This allows us to define multiple Q functions (and hence policies) just by changing the weight vector w, as
we discuss in Section 4.4.4.1.

4.4.4.1 Generalized policy improvement

So far, we have discussed how to compute the value function for a new reward function but using the SFs
from an existing known policy. In this section we discuss how to create a new policy that is better than an
existing set of policies, by using Generalized Policy Improvement or GPI [Bar+17; Bar+20].

Suppose we have learned a set of N (potentially optimal) policies πi and their corresponding SFs ψπi for
maximizing rewards defined by wi. When presented with a new task wnew, we can compute a new policy
using GPI as follows:

a∗(s;wnew) = argmax
a

max
i
Qπi(s, a,wnew) = argmax

a
max
i
ψπi(s, a)Twnew (4.65)

If wnew is in the span of the training tasks (i.e., there exist weights αi such that wnew
∑
i αiwi), then the GPI

theorem states that π(a|s) = I (a = a∗(s,wnew)) will perform at least as well as any of the existing policies,
i.e., Qπ(s, a) ≥ maxiQ

πi(s, a) (c.f., policy improvement in Section 3.4). See Figure 4.6 for an illustration.
Note that GPI is a model-free approach to computing a new policy, based on an existing library of policies.

In [Ale+23], they propose an extension that can also leverage a (possibly approximate) world model to learn
better policies that can outperform the library of existing policies by performing more decision-time search.

93

Legend

Apple

Milk

Fork

Knife

State features
<latexit sha1_base64="hpnySaJh+/CAhHti5mNvHw101yA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOule1b1mvfHQqLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEWdo5I</latexit>

�

<latexit sha1_base64="kQkDxPnVv0Mgc/tsfqEuJYOLy9w=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9USk0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AL8Nj0E=</latexit>. . .

<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t

<latexit sha1_base64="atwBTWaewmruY30kSfX/vOndlS0=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq5eMeN/vlyte1ZsDrxI/JxXI0eiXv3oDRdOYSUsFMabre4kNMqItp4JNS73UsITQMRmyrqOSxMwE2fzaKT5zygBHSruSFs/V3xMZiY2ZxKHrjIkdmWVvJv7ndVMbXQcZl0lqmaSLRVEqsFV49joecM2oFRNHCNXc3YrpiGhCrQuo5ELwl19eJa2Lqn9Zrd3XKvWbPI4inMApnIMPV1CHO2hAEyg8wjO8whtS6AW9o49FawHlM8fwB+jzBz40juw=</latexit>

�1
<latexit sha1_base64="qQ8W6PPGg+MLPiwWXFeQFQUGATw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbOLuRiihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEsG1cd1vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY9kwkwT9iA4lDzmjxkqdXjLi/awx7ZcrbtWdg6wSLycVyFHvl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n83vnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwhs/4zJJDUq2WBSmgpiYzJ4nA66QGTGxhDLF7a2EjaiizNiISjYEb/nlVdK6qHpX1cuHy0rtNo+jCCdwCufgwTXU4B7q0AQGAp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8AOl6QGw==</latexit>

�T

State features agent experiences over time

<latexit sha1_base64="Kg2YPF3194EvR9fJmGppeZNxF/U=">AAACDnicbVA9SwNBEN3z2/gVtbRZDAGrcCeiNkJQCzsVzAfkjrC3mSSLe3vH7pwajvwCG/+KjYUittZ2/hs3yRV+PRh4vDfDzLwwkcKg6346U9Mzs3PzC4uFpeWV1bXi+kbdxKnmUOOxjHUzZAakUFBDgRKaiQYWhRIa4fXJyG/cgDYiVlc4SCCIWE+JruAMrdQulv1EtDMfkXY0uwU9pEfUR7jD7DwBRU8nYrtYcivuGPQv8XJSIjku2sUPvxPzNAKFXDJjWp6bYJAxjYJLGBb81EDC+DXrQctSxSIwQTZ+Z0jLVunQbqxtKaRj9ftExiJjBlFoOyOGffPbG4n/ea0Uu4dBJlSSIig+WdRNJcWYjrKhHaGBoxxYwrgW9lbK+0wzjjbBgg3B+/3yX1LfrXj7lb3LvVL1OI9jgWyRbbJDPHJAquSMXJAa4eSePJJn8uI8OE/Oq/M2aZ1y8plN8gPO+xdNP5xI</latexit>

⇡drawer = Open Drawer
Task Policies

Open Drawer

<latexit sha1_base64="G4NrL4+FchmdNAyoq1HYtt9oFXI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOejjQQ=</latexit>wTask

<latexit sha1_base64="aaob0i0A55J+HffMxei18XxR810=">AAACBHicbVDLSsNAFJ34rPUVddnNYBFclUR8LYtuXFawD2hCmEwm7dDJg5kbpYQs3Pgrblwo4taPcOffOG2z0NYDFw7n3Mu99/ip4Aos69tYWl5ZXVuvbFQ3t7Z3ds29/Y5KMklZmyYikT2fKCZ4zNrAQbBeKhmJfMG6/uh64nfvmVQ8ie9gnDI3IoOYh5wS0JJn1oiXQ4EdxSPspNzLHQAcSPLAZOGZdathTYEXiV2SOirR8swvJ0hoFrEYqCBK9W0rBTcnEjgVrKg6mWIpoSMyYH1NYxIx5ebTJwp8pJUAh4nUFQOeqr8nchIpNY583RkRGKp5byL+5/UzCC/dnMdpBiyms0VhJjAkeJIIDrhkFMRYE0Il17diOiSSUNC5VXUI9vzLi6Rz0rDPG2e3p/XmVRlHBdXQITpGNrpATXSDWqiNKHpEz+gVvRlPxovxbnzMWpeMcuYA/YHx+QPo/JhJ</latexit>at ⇠ ⇡drawer
<latexit sha1_base64="YoX6KhxbTerZB8O3mp8Q8Gf5Oeg=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARXJVEirosunFZwT6giWEymbRDJw9mbpQSsvFX3LhQxK2f4c6/cdpmoa0HLhzOuZd77/FTwRVY1rextLyyurZe2ahubm3v7Jp7+x2VZJKyNk1EIns+UUzwmLWBg2C9VDIS+YJ1/dH1xO8+MKl4Et/BOGVuRAYxDzkloCXPPHRSxe9zJ+Ve7gDgQJJHJovCM2tW3ZoCLxK7JDVUouWZX06Q0CxiMVBBlOrbVgpuTiRwKlhRdTLFUkJHZMD6msYkYsrNpw8U+EQrAQ4TqSsGPFV/T+QkUmoc+bozIjBU895E/M/rZxBeujmP0wxYTGeLwkxgSPAkDRxwySiIsSaESq5vxXRIJKGgM6vqEOz5lxdJ56xun9cbt41a86qMo4KO0DE6RTa6QE10g1qojSgq0DN6RW/Gk/FivBsfs9Ylo5w5QH9gfP4Ak0iXDQ==</latexit>

 ⇡drawer

<latexit sha1_base64="kQkDxPnVv0Mgc/tsfqEuJYOLy9w=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9USk0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AL8Nj0E=</latexit>. . .

<latexit sha1_base64="R9osOw/dYDAjZREfWK3W+rGCyaM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokUtRl0Y3LCvYBTQyTyaQdOnkwcyOUkI2/4saFIm79DHf+jdM2C209cOFwzr3ce4+fCq7Asr6Nysrq2vpGdbO2tb2zu2fuH3RVkknKOjQRiez7RDHBY9YBDoL1U8lI5AvW88c3U7/3yKTiSXwPk5S5ERnGPOSUgJY888hJFX/InZR7uQOAQ8mDISsKz6xbDWsGvEzsktRRibZnfjlBQrOIxUAFUWpgWym4OZHAqWBFzckUSwkdkyEbaBqTiCk3nz1Q4FOtBDhMpK4Y8Ez9PZGTSKlJ5OvOiMBILXpT8T9vkEF45eY8TjNgMZ0vCjOBIcHTNHDAJaMgJpoQKrm+FdMRkYSCzqymQ7AXX14m3fOGfdFo3jXrresyjio6RifoDNnoErXQLWqjDqKoQM/oFb0ZT8aL8W58zFsrRjlziP7A+PwBdM6W+Q==</latexit>

 ⇡fridge

<latexit sha1_base64="pPTfju0Z4qLrEuyMsfS7lSSD+dg=">AAACDnicbVDLSgNBEJyNrxhfUY9eBoPgKeyKqBchKIg3I5gHZEOYnfQmg7Ozy0yvGJZ8gRd/xYsHRbx69ubfOHkcNFrQUFR1090VJFIYdN0vJzc3v7C4lF8urKyurW8UN7fqJk41hxqPZaybATMghYIaCpTQTDSwKJDQCG7PR37jDrQRsbrBQQLtiPWUCAVnaKVOcc9PRCfzEWmoRbcHQ3pKfYR7zK4SUPRiInaKJbfsjkH/Em9KSmSKaqf46XdjnkagkEtmTMtzE2xnTKPgEoYFPzWQMH7LetCyVLEITDsbvzOke1bp0jDWthTSsfpzImORMYMosJ0Rw76Z9Ubif14rxfCknQmVpAiKTxaFqaQY01E2tCs0cJQDSxjXwt5KeZ9pxtEmWLAheLMv/yX1g7J3VD68PixVzqZx5MkO2SX7xCPHpEIuSZXUCCcP5Im8kFfn0Xl23pz3SWvOmc5sk19wPr4BDs+cIA==</latexit>

⇡fridge = Open Fridge

Open Fridge
<latexit sha1_base64="93wdZ10L3t3S7aEV393Ipgnd7W8=">AAACBHicbVDLSsNAFJ3UV62vqMtuBovgqiTia1l047KCfUATwmQyaYdOHszcCCVk4cZfceNCEbd+hDv/xmmbhbYeuHA4517uvcdPBVdgWd9GZWV1bX2julnb2t7Z3TP3D7oqySRlHZqIRPZ9opjgMesAB8H6qWQk8gXr+eObqd97YFLxJL6HScrciAxjHnJKQEueWSdeDgV2FI+wk3IvdwBwKHkwZIVnNqymNQNeJnZJGqhE2zO/nCChWcRioIIoNbCtFNycSOBUsKLmZIqlhI7JkA00jUnElJvPnijwsVYCHCZSVwx4pv6eyEmk1CTydWdEYKQWvan4nzfIILxycx6nGbCYzheFmcCQ4GkiOOCSURATTQiVXN+K6YhIQkHnVtMh2IsvL5PuadO+aJ7fnTVa12UcVVRHR+gE2egStdAtaqMOougRPaNX9GY8GS/Gu/Exb60Y5cwh+gPj8wfKlpg1</latexit>at ⇠ ⇡fridge

(a) Successor Features
<latexit sha1_base64="Waw5YcCTllGahBnnmSg7wjYGcIk=">AAACUXicbVFBaxQxFH47am23Wtd67CW4CIKwzGylehFKRfBYwW0Lm+mQyWR2wiaTIXkjLMP8RQ968n/00kOLmdlFtPVBeN/7vvdI3pe0UtJhGP4aBA8ePtp6vL0z3H3ydO/Z6Pn+mTO15WLGjTL2ImVOKFmKGUpU4qKygulUifN0+bHTz78J66Qpv+KqErFmi1LmkjP0VDIqaGpU5lbap4ZWTraXPsmWfCBUMyzStPnUJj1FlchxTqtCJhF5Q+iCac1IX0//1JfTNXPYMSoz6KiViwLjZDQOJ2Ef5D6INmAMmzhNRj9oZnitRYlcMefmUVhh3DCLkivRDmntRMX4ki3E3MOSaeHipnekJa88k5HcWH9KJD3790TDtOuW9p3dlu6u1pH/0+Y15u/jRpZVjaLk64vyWhE0pLOXZNIKjmrlAeNW+rcSXjDLOPpPGHoTorsr3wdn00l0NDn68nZ8fLKxYxsO4CW8hgjewTF8hlOYAYfvcAU3cDv4ObgOIAjWrcFgM/MC/olg9zfKb7Or</latexit>

 ⇡ = E⇡
⇥
�1 + ��2 + �2�3 + . . .

⇤

<latexit sha1_base64="8LVrqJucQl9xNwsjgr7UF8xAfX0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bssV+qVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4+7jMo=</latexit>=

<latexit sha1_base64="2M9Uun3jhzFBOkbVOCuyBd1NlPo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWMF0xbaUDabTbt0sxt2J0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelAlu0PO+ndLa+sbmVnm7srO7t39QPTxqGZVrygKqhNKdiBgmuGQBchSsk2lG0kiwdjS6m/ntJ6YNV/IRxxkLUzKQPOGUoJWCnooV9qs1r+7N4a4SvyA1KNDsV796saJ5yiRSQYzp+l6G4YRo5FSwaaWXG5YROiID1rVUkpSZcDI/duqeWSV2E6VtSXTn6u+JCUmNGaeR7UwJDs2yNxP/87o5JjfhhMssRybpYlGSCxeVO/vcjblmFMXYEkI1t7e6dEg0oWjzqdgQ/OWXV0nrou5f1S8fLmuN2yKOMpzAKZyDD9fQgHtoQgAUODzDK7w50nlx3p2PRWvJKWaO4Q+czx/uTI7H</latexit>�

<latexit sha1_base64="YoX6KhxbTerZB8O3mp8Q8Gf5Oeg=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARXJVEirosunFZwT6giWEymbRDJw9mbpQSsvFX3LhQxK2f4c6/cdpmoa0HLhzOuZd77/FTwRVY1rextLyyurZe2ahubm3v7Jp7+x2VZJKyNk1EIns+UUzwmLWBg2C9VDIS+YJ1/dH1xO8+MKl4Et/BOGVuRAYxDzkloCXPPHRSxe9zJ+Ve7gDgQJJHJovCM2tW3ZoCLxK7JDVUouWZX06Q0CxiMVBBlOrbVgpuTiRwKlhRdTLFUkJHZMD6msYkYsrNpw8U+EQrAQ4TqSsGPFV/T+QkUmoc+bozIjBU895E/M/rZxBeujmP0wxYTGeLwkxgSPAkDRxwySiIsSaESq5vxXRIJKGgM6vqEOz5lxdJ56xun9cbt41a86qMo4KO0DE6RTa6QE10g1qojSgq0DN6RW/Gk/FivBsfs9Ylo5w5QH9gfP4Ak0iXDQ==</latexit>

 ⇡drawer

<latexit sha1_base64="dwqnoHlLqdsg8BuVgD6mRKkkLpQ=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ac0oWy223bpbhJ2J0oJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCanhUkS8iQIl7ySaUxVK3g7HtzO//ci1EXH0gJOEB4oOIzEQjKKV/Kde5iMSJeR42itX3Ko7B1klXk4qkKPRK3/5/ZilikfIJDWm67kJBhnVKJjk05KfGp5QNqZD3rU0ooqbIJvfPCVnVumTQaxtRUjm6u+JjCpjJiq0nYriyCx7M/E/r5vi4DrIRJSkyCO2WDRIJcGYzAIgfaE5QzmxhDIt7K2EjaimDG1MJRuCt/zyKmldVL3Lau2+Vqnf5HEU4QRO4Rw8uII63EEDmsAggWd4hTcndV6cd+dj0Vpw8plj+APn8wdGwJHa</latexit>wmilk

<latexit sha1_base64="2M9Uun3jhzFBOkbVOCuyBd1NlPo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWMF0xbaUDabTbt0sxt2J0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelAlu0PO+ndLa+sbmVnm7srO7t39QPTxqGZVrygKqhNKdiBgmuGQBchSsk2lG0kiwdjS6m/ntJ6YNV/IRxxkLUzKQPOGUoJWCnooV9qs1r+7N4a4SvyA1KNDsV796saJ5yiRSQYzp+l6G4YRo5FSwaaWXG5YROiID1rVUkpSZcDI/duqeWSV2E6VtSXTn6u+JCUmNGaeR7UwJDs2yNxP/87o5JjfhhMssRybpYlGSCxeVO/vcjblmFMXYEkI1t7e6dEg0oWjzqdgQ/OWXV0nrou5f1S8fLmuN2yKOMpzAKZyDD9fQgHtoQgAUODzDK7w50nlx3p2PRWvJKWaO4Q+czx/uTI7H</latexit>�
<latexit sha1_base64="dwqnoHlLqdsg8BuVgD6mRKkkLpQ=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ac0oWy223bpbhJ2J0oJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCanhUkS8iQIl7ySaUxVK3g7HtzO//ci1EXH0gJOEB4oOIzEQjKKV/Kde5iMSJeR42itX3Ko7B1klXk4qkKPRK3/5/ZilikfIJDWm67kJBhnVKJjk05KfGp5QNqZD3rU0ooqbIJvfPCVnVumTQaxtRUjm6u+JjCpjJiq0nYriyCx7M/E/r5vi4DrIRJSkyCO2WDRIJcGYzAIgfaE5QzmxhDIt7K2EjaimDG1MJRuCt/zyKmldVL3Lau2+Vqnf5HEU4QRO4Rw8uII63EEDmsAggWd4hTcndV6cd+dj0Vpw8plj+APn8wdGwJHa</latexit>wmilk

<latexit sha1_base64="R9osOw/dYDAjZREfWK3W+rGCyaM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokUtRl0Y3LCvYBTQyTyaQdOnkwcyOUkI2/4saFIm79DHf+jdM2C209cOFwzr3ce4+fCq7Asr6Nysrq2vpGdbO2tb2zu2fuH3RVkknKOjQRiez7RDHBY9YBDoL1U8lI5AvW88c3U7/3yKTiSXwPk5S5ERnGPOSUgJY888hJFX/InZR7uQOAQ8mDISsKz6xbDWsGvEzsktRRibZnfjlBQrOIxUAFUWpgWym4OZHAqWBFzckUSwkdkyEbaBqTiCk3nz1Q4FOtBDhMpK4Y8Ez9PZGTSKlJ5OvOiMBILXpT8T9vkEF45eY8TjNgMZ0vCjOBIcHTNHDAJaMgJpoQKrm+FdMRkYSCzqymQ7AXX14m3fOGfdFo3jXrresyjio6RifoDNnoErXQLWqjDqKoQM/oFb0ZT8aL8W58zFsrRjlziP7A+PwBdM6W+Q==</latexit>

 ⇡fridge

<latexit sha1_base64="AyR5teNAat/Susz4Jr45Wl5qJQ8=">AAACDHicbVDLSsNAFJ3UV62vqEs3g0FwVRIRdVl047IF+4Cmhslk0g6dPJi5sZTQD3Djr7hxoYhbP8Cdf+O0zUJbD1w4c869zL3HTwVXYNvfRmlldW19o7xZ2dre2d0z9w9aKskkZU2aiER2fKKY4DFrAgfBOqlkJPIFa/vDm6nffmBS8SS+g3HKehHpxzzklICWPNNq3Oduyr3cBcCBJCMmJxMvH82FiIuhfpqWXbVnwMvEKYiFCtQ988sNEppFLAYqiFJdx06hlxMJnAo2qbiZYimhQ9JnXU1jEjHVy2fHTPCJVgIcJlJXDHim/p7ISaTUOPJ1Z0RgoBa9qfif180gvOrlPE4zYDGdfxRmAkOCp8nggEtGQYw1IVRyvSumAyIJBZ1fRYfgLJ68TFpnVeeiet44t2rXRRxldISO0Sly0CWqoVtUR01E0SN6Rq/ozXgyXox342PeWjKKmUP0B8bnDz1mnGQ=</latexit>

Q⇡drawer
wmilk

<latexit sha1_base64="q0/rPJF2cF/fpjDRGwxwnNC+7Cg=">AAACDHicbVDLSsNAFJ3UV62vqEs3g0FwVRIp6rLoxmUL9gFtDJPppB06eTBzo5SQD3Djr7hxoYhbP8Cdf+O0zUJbD1w4c869zL3HTwRXYNvfRmlldW19o7xZ2dre2d0z9w/aKk4lZS0ai1h2faKY4BFrAQfBuolkJPQF6/jj66nfuWdS8Ti6hUnC3JAMIx5wSkBLnmk177J+wr2sD4ADyQdDlude9jAXQi7G+mladtWeAS8TpyAWKtDwzK/+IKZpyCKggijVc+wE3IxI4FSwvNJPFUsIHZMh62kakZApN5sdk+MTrQxwEEtdEeCZ+nsiI6FSk9DXnSGBkVr0puJ/Xi+F4NLNeJSkwCI6/yhIBYYYT5PBAy4ZBTHRhFDJ9a6YjogkFHR+FR2Cs3jyMmmfVZ3zaq1Zs+pXRRxldISO0Sly0AWqoxvUQC1E0SN6Rq/ozXgyXox342PeWjKKmUP0B8bnDx3AnFA=</latexit>

Q
⇡fridge
wmilk

<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...

<latexit sha1_base64="8LVrqJucQl9xNwsjgr7UF8xAfX0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bssV+qVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4+7jMo=</latexit>=

(b) Generalized Policy Improvement

Max
<latexit sha1_base64="uAph9Fync0syabW4IbKWtkcTpLo=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaWDbbTbt0Nwm7E6WE/g8vHhTx6n/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKSLeQIGStxPNqQokbwWjm6nfeuTaiDi6x3HCfUUHkQgFo2ilh24ielkXkSghR5NeueJW3RnIMvFyUoEc9V75q9uPWap4hExSYzqem6CfUY2CST4pdVPDE8pGdMA7lkZUceNns6sn5MQqfRLG2laEZKb+nsioMmasAtupKA7NojcV//M6KYZXfiaiJEUesfmiMJUEYzKNgPSF5gzl2BLKtLC3EjakmjK0QZVsCN7iy8ukeVb1Lqrnd+eV2nUeRxGO4BhOwYNLqMEt1KEBDDQ8wyu8OU/Oi/PufMxbC04+cwh/4Hz+ALoPkqw=</latexit>⇡milk

<latexit sha1_base64="yWN7FMIcSQGJYSArI0BBEESubl0=">AAACRnicbVBNT9wwEJ0s/aDbry099mJ1VWmRqlWCKsoRwaXHrdRdkDZp5HgdsHBsy55AV8G/jgtnbv0JvXCgqnqts+TQQkey/PzePHnmFUYKh3H8PeqtPXj46PH6k/7TZ89fvBy82pg5XVvGp0xLbQ8L6rgUik9RoOSHxnJaFZIfFCf7rX5wyq0TWn3BpeFZRY+UKAWjGKh8kKVGjOi52ySpsdqgJmlFv+VNoHPh0yYttFy4ZRWuwDnhv3bSyL2nm+GB2njSBBMeF2Vz5oMVkSh+5n3q88EwHserIvdB0oEhdDXJB1fpQrO64gqZpM7Nk9hg1lCLgknu+2ntuKHshB7xeYCKVtxlzSoGT94FZkFKbcNRSFbs346GVq5dJXS247q7Wkv+T5vXWO5kjVCmRq7Y7UdlLUlIq82ULITlDOUyAMqsCLMSdkwtZRiS74cQkrsr3wezrXGyPd7+/GG4u9fFsQ5v4C2MIIGPsAufYAJTYHABP+AGfkaX0XX0K/p929qLOs9r+Kd68Aef/rRL</latexit>

⇡(a|s) / max
⇡i

{ ⇡i(s, a)>wnew}

New task: Get milk

Figure 4.6: Illustration of successor features representation. (a) Here ϕt = ϕ(st) is the vector of features for the state
at time t, and ψπ is the corresponding SF representation, which depends on the policy π. (b) Given a set of existing
policies and their SFs, we can create a new one by specifying a desired weight vector wnew and taking a weighted
combination of the existing SFs. From Figure 5 of [Car+24]. Used with kind permission of Wilka Carvalho.

4.4.4.2 Option keyboard

One limitation of GPI is that it requires that the reward function, and the resulting policy, be defined in
terms of a fixed weight vector wnew, where the preference over features is constant over time. However, for
some tasks we might want to initially avoid a feature or state and then later move towards it. To solve this,
[Bar+19; Bar+20] introduced the option keyboard, in which the weight vector for a task can be computed
dynamically in a state-dependent way, using ws = g(s,wnew). (Options are discussed in Section 5.3.2.)
Actions can then be chosen as follows:

a∗(s;wnew) = argmax
a

max
i
ψπi(s, a)Tws (4.66)

Thus the policy πi that is chosen depends in the current state. Thus ws induces a set of policies that are
active for a period of time, similar to playing a chord on a piano.

4.4.4.3 Learning SFs

A key question when using SFs is how to learn the cumulants or state-features ϕ(s). Various approaches
have been suggested, including leveraging meta-gradients [Vee+19], image reconstruction [Mac+18b], and
maximizing the mutual information between task encodings and the cumulants that an agent experiences
when pursuing that task [Han+19]. The cumulants are encouraged to satisfies the linear reward constraint by
minimizing

Lr = ||r − ϕθ(s)Tw||22 (4.67)

Once the cumulant function is known, we have to learn the corresponding SF. The standard approach
learns a different SF for every policy, which is limiting. In [Bor+19] they introduced Universal Successor
Feature Approximators which takes an input a policy encoding zw, representing a policy πw (typically
we set zw = w). We then define

ψπw(s, a) = ψθ(s, a,zw) (4.68)

94

The GPI update then becomes

a∗(s;wnew) = argmax
a

max
zw

ψθ(s, a,zw)
Twnew (4.69)

so we replace the discrete max over a finite number of policies with a continuous optimization problem (to be
solved per state).

If we want to learn the policies and SFs at the same time, we can optimize the following losses in parallel:

LQ = ||ψθ(s, a,zw)Tw − yQ||, yQ = R(s′;w) + γψθ(s
′, a∗, zw)

Tw (4.70)
Lψ = ||ψθ(s, a,zw)− yψ||, yψ = ϕ(s′) + γψθ(s

′, a∗, zw) (4.71)

where a∗ = argmaxa′ ψθ(s
′, a′, zw)Tw. The first equation is standard Q learning loss, and the second is

the TD update rule in Equation (4.63) for the SF. In [Car+23], they present the Successor Features
Keyboard, that can learn the policy, the SFs and the task encoding zw, all simultaneously. They also
suggest replacing the squared error regression loss in Equation (4.70) with a cross-entropy loss, where each
dimension of the SF is now a discrete probability distribution over M possible values of the corresponding
feature. (c.f. Section 5.1.2).

4.4.4.4 Choosing the tasks

A key advantage of SFs is that they provide a way to compute a value function and policy for any given
reward, as specified by a task-specific weight vector w. But how do we choose these tasks? In [Han+19] they
sample w from a distribution at the start of each task, to encourage the agent to learn to explore different
parts of the state space (as specified by the feature function ϕ). In [LA21] they extend this by adding an
intrinsic reward that favors exploring parts of the state space that are surprising (i.e., which induce high
entropy), c.f., Section 5.2.4. In [Far+23], they introduce proto-value networks, which is a way to define
auxiliary tasks based on successor measures.

95

96

Chapter 5

Other topics in RL

In this section, we briefly mention some other important topics in RL.

5.1 Distributional RL

The distributional RL approach of [BDM17; BDR23], predicts the distribution of (discounted) returns, not
just the expected return. More precisely, let Zπ =

∑T
t=0 γ

trt be a random variable representing the reward-to-
go. The standard value function is defined to compute the expectation of this variable: V π(s) = E [Zπ|s0 = s].
In DRL, we instead attempt to learn the full distribution, p(Zπ|s0 = s). For a general review of distributional
regression, see [KSS23]. Below we briefly mention a few algorithms in this class that have been explored in
the context of RL.

5.1.1 Quantile regression methods

An alternative to predicting a full distribution is to predict a fixed set of quantiles. This is called quantile
regression, and has been used with DQN in [Dab+17] to get QR-DQN, and with SAC in [Wur+22] to get
QR-SAC. (The latter was used in Sony’s GTSophy Gran Turismo AI racing agent.)

5.1.2 Replacing regression with classification

An alternative to quantile regression is to approximate the distribution over returns using a histogram, and
then fit it using cross entropy loss (see Figure 5.1). This approach was first suggested in [BDM17], who called
it categorical DQN. (In their paper, they use 51 discrete categories (atoms), giving rise to the name C51.)

Categorical Distributional RLTwo-Hot HLGauss

Figure 5.1: Illustration of how to encode a scalar target y or distributional target Z using a categorical distribution.
From Figure 1 of [Far+24]. Used with kind permission of Jesse Farebrother.

97

An even simpler approach is to replace the distributional target with the standard scalar target (representing
the mean), and then discretize this target and use cross entropy loss instead of squared error.1 Unfortunately,
this encoding is lossy. In [Sch+20], they proposed the two-hot transform, that is a lossless encoding of the
target based on putting appropriate weight on the nearest two bins (see Figure 5.1). In [IW18], they proposed
the HL-Gauss histogram loss, that convolves the target value y with a Gaussian, and then discretizes the
resulting continuous distribution. This is more symetric than two-hot encoding, as shown in Figure 5.1.
Regardless of how the discrete target is chosen, predictions are made using ŷ(s;θ) =

∑
k pk(s)bk, where pk(s)

is the probability of bin k, and bk is the bin center.
In [Far+24], they show that the HL-Gauss trick works much better than MSE, two-hot and C51 across a

variety of problems (both offline and online), especially when they scale to large networks. They conjecture
that the reason it beats MSE is that cross entropy is more robust to noisy targets (e.g., due to stochasticity)
and nonstationary targets. They also conjecture that the reason HL works better than two-hot is that HL is
closer to ordinal regression, and reduces overfitting by having a softer (more entropic) target distribution
(similiar to label smoothing in classification problems).

5.2 Reward functions

Sequential decision making relies on the user to define the reward function in order to encourage the agent to
exhibit some desired behavior. In this section, we discuss this crucial aspect of the problem.

5.2.1 Reward hacking

In some cases, the reward function may be misspecified, so even though the agent may maximize the reward, this
might turn out not to be what the user desired. For example, suppose the user rewards the agent for making as
many paper clips as possible. An optimal agent may convert the whole world into a paper clip factory, because
the user forgot to specify various constraints, such as not killing people or not destroying the environment.
In the AI alignment community, this example is known as the paperclip maximizer problem, and is
due to Nick Bostrom [Bos16]. (See e.g., https://openai.com/index/faulty-reward-functions/ for some
examples that have occurred in practice.) This is an example of a more general problem known as reward
hacking [Ska+22]. For a potential solution, based on the assistance game paradigm, see Section 5.6.1.2.

5.2.2 Sparse reward

Even if the reward function is correct, optimizing it is not always easy. In particular, many problems suffer
from sparse reward, in which R(s, a) = 0 for almost all states and actions, so the agent only every gets
feedback (either positive or negative) on the rare occasions when it achieves some unknown goal. This
requires deep exploration [Osb+19] to find the rewarding states. One approach to this is use to use PSRL
(Section 1.4.4.2). However, various other heuristics have been developed, some of which we discuss below.

5.2.3 Reward shaping

In reward shaping, we add prior knowledge about what we believe good states should look like, as a way to
combat the difficulties of learning from sparse reward. That is, we define a new reward function r′ = r + F ,
where F is called the shaping function. In general, this can affect the optimal policy. For example, if a
soccer playing agent is “artificially” rewarded for making contact with the ball, it might learn to repeatedly
touch and untouch the ball (toggling between s and s′), rather than trying to win the original game. But in
[NHR99], the prove that if the shaping function has the form

F (s, a, s′) = γΦ(s′)− Φ(s) (5.1)

1Technically speaking, this is no longer a distributional RL method, since the prediction target is the mean, but the mechanism
for predicting the mean leverages a distribution, for robustness and ease of optimization.

98

https://openai.com/index/faulty-reward-functions/

where Φ : S → R is a potential function, then we can guarantee that the sum of shaped rewards will match
the sum of original rewards plus a constant. This is called Potential-Based Reward Shaping.

In [Wie03], they prove that (in the tabular case) this approach is equivalent to initializing the value
function to V (s) = Φ(s). In [TMM19], they propose an extension called potential-based advice, where they
show that a potential of the form F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a) is also valid (and more expressive). In
[Hu+20], they introduce a reward shaping function z which can be used to down-weight or up-weight the
shaping function:

r′(s, a) = r(s, a) + zϕ(s, a)F (s, a) (5.2)

They use bilevel optimization to optimize ϕ wrt the original task performance.

5.2.4 Intrinsic reward
When the extrinsic reward is sparse, it can be useful to (also) reward the agent for solving “generally useful”
tasks, such as learning about the world. This is called intrinsically motivated RL [AMH23; Lin+19;
Ami+21; Yua22; Yua+24; Col+22]. It can be thought of as a special case of reward shaping, where the
shaping function is dynamically computed.

We can classify these methods into two main types: knowledge-based intrinsic motivation, or
artificial curiosity, where the agent is rewarded for learning about its environment; and competence-
based intrinsic motivation, where the agent is rewarded for achieving novel goals or mastering new
skills.

5.2.4.1 Knowledge-based intrinsic motivation

One simple approach to knowledge-based intrinsic motivation is to add to the extrinsic reward an intrinsic
exploration bonus Rit(st), which is high when the agent visits novel states. For tabular environments, we
can just count the number of visits to each state, Nt(s), and define Rit(s) = 1/Nt(s) or Rit(s) = 1/

√
Nt(s),

which is similar to the UCB heuristic used in bandits (see Section 1.4.3). We can extend exploration bonuses
to high dimensional states (e.g. images) using density models [Bel+16]. Alternatively, [MBB20] propose to
use the ℓ1 norm of the successor feature (Section 4.4.4) representation as an alternative to the visitation
count, giving rise to an intrinsic reward of the form Ri(s) = 1/||ψπ(s)||1. Recently [Yu+23] extended this to
combine SFs with predecessor representations, which encode retrospective information about the previous
state (c.f., inverse dynamics models, mentioned below). This encourages exploration towards bottleneck
states.

Another approach is the Random Network Distillation or RND method of [Bur+18]. This uses a
fixed random neural network feature extractor zt = f(st;θ

∗) to define a target, and then trains a predictor
ẑt = f(st; θ̂t) to predict these targets. If st is similar to previously seen states, then the trained model
will have low prediction error. We can thus define the intrinsic reward as proportional to the squared
error ||ẑt − zt||22. The BYOL-Explore method of [Guo+22b] goes beyond RND by learning the target
representation (for the next state), rather than using a fixed random projection, but is still based on prediction
error.

We can also define an intrinsic reward in terms of the information theoretic surprise of the next state
given the current one:

R(s,a, s′) = − log q(s′|s,a) (5.3)

This is the same as methods based on rewarding states for prediction error. Unfortunately such methods can
suffer from the noisy TV problem (also called a stochastic trap), in which an agent is attracted to states
which are intrinsically to predict. To see this, note that by averaging over future states we see that the above
reward reduces to

R(s,a) = −Ep∗(s′|s,a) [log q(s′|s,a)] = Hce(p∗, q) (5.4)

where p∗ is the true model and q is the learned dynamics model, and Hce is the cros -entropy. As we learn
the optimal model, q = p∗, this reduces to the conditional entropy of the predictive distribution, which can
be non-zero for inherently unpredictable states.

99

To help filter out such random noise, [Pat+17] proposes an Intrinsic Curiosity Module. This first
learns an inverse dynamics model of the form a = f(s, s′), which tries to predict which action was used,
given that the agent was in s and is now in s′. The classifier has the form softmax(g(ϕ(s), ϕ(s′), a)), where
z = ϕ(s) is a representation function that focuses on parts of the state that the agent can control. Then the
agent learns a forwards dynamics model in z-space. Finally it defines the intrinsic reward as

R(s,a, s′) = − log q(ϕ(s′)|ϕ(s), a) (5.5)

Thus the agent is rewarded for visiting states that lead to unpredictable consequences, where the difference
in outcomes is measured in a (hopefully more meaningful) latent space.

Another solution is to replace the cross entropy with the KL divergence, R(s,a) = DKL(p||q) = Hce(p, q)−
H(p), which goes to zero once the learned model matches the true model, even for unpredictable states.
This has the desired effect of encouraging exploration towards states which have epistemic uncertainty
(reducible noise) but not aleatoric uncertainty (irreducible noise) [MP+22]. The BYOL-Hindsight method
of [Jar+23] is one recent approach that attempts to use the R(s,a) = DKL(p||q) objective. Unfortunately,
computing the DKL(p||q) term is much harder than the usual variational objective of DKL(q||p). A related
idea, proposed in the RL context by [Sch10], is to use the information gain as a reward. This is defined
as Rt(st,at) = DKL(q(st|ht,at,θt)||q(st|ht,at,θt−1), where ht is the history of past observations, and
θt = update(θt−1,ht,at, st) are the new model parameters. This is closely related to the BALD (Bayesian
Active Learning by Disagreement) criterion [Hou+11; KAG19], and has the advantage of being easier to
compute, since it is does not reference the true distribution p.

5.2.4.2 Goal-based intrinsic motivation

We will discuss goal-conditioned RL in Section 5.3.1. If the agent creates its own goals, then it provides
a way to explore the environment. The question of when and how an agent to switch to pursuing a new
goal is studied in [Pis+22] (see also [BS23]). Some other key work in this space includes the scheduled
auxiliary control method of [Rie+18], and the Go Explore algorithm in [Eco+19; Eco+21] and its recent
LLM extension [LHC24].

5.3 Hierarchical RL

So far we have focused on MDPs that work at a single time scale. However, this is very limiting. For example,
imagine planning a trip from San Francisco to New York: we need to choose high level actions first, such as
which airline to fly, and then medium level actions, such as how to get to the airport, followed by low level
actions, such as motor commands. Thus we need to consider actions that operate multiple levels of temporal
abstraction. This is called hierarchical RL or HRL. This is a big and important topic, and we only brief
mention a few key ideas and methods. Our summary is based in part on [Pat+22]. (See also Section 4.4
where we discuss multi-step predictive models; by contrast, in this section we focus on model-free methods.)

5.3.1 Feudal (goal-conditioned) HRL

In this section, we discuss an approach to HRL known as feudal RL [DH92]. Here the action space of the
higher level policy consists of subgoals that are passed down to the lower level policy. See Figure 5.2 for an
illustration. The lower level policy learns a universal policy π(a|s, g), where g is the goal passed into it
[Sch+15a]. This policy optimizes an MDP in which the reward is define as R(s, a|g) = 1 iff the goal state is
achieved, i.e., R(s, a|s) = I (s = g). (We can also define a dense reward signal using some state abstraction
function ϕ, by definining R(s, a|g) = sim(ϕ(s), ϕ(g)) for some similarity metric.) This approach to RL is
known as goal-conditioned RL [LZZ22].

100

State

𝜋
0

(s,g)

Primitive Action

Goal

State

𝜋
1

(s,g)

Subgoal

Goal

State

𝜋
2

(s,g)

Subgoal

Goal

Figure 5.2: Illustration of a 3 level hierarchical goal-conditioned controller. From http: // bigai. cs. brown. edu/
2019/ 09/ 03/ hac. html . Used with kind permission of Andrew Levy.

5.3.1.1 Hindsight Experience Relabeling (HER)

In this section, we discuss an approach to efficiently learning goal-conditioned policies, in the special case
where the set of goal states G is the same as the set of original states S. We will extend this to the hierarchical
case below.

The basic idea is as follows. We collect various trajectores in the environment, from a starting state s0 to
some terminal state sT , and then define the goal of each trajectory as being g = sT ; this trajectory then
serves as a demonstration of how to achieve this goal. This is called hindsight experience relabeling
or HER [And+17]. This can be used to relabel the trajectories stored in the replay buffer. That is, if we
have (s, a,R(s|g), s′, g) tuples, we replace them with (s, a,R(s|g′), g′) where g′ = sT . We can then use any
off-policy RL method to learn π(a|s, g). In [Eys+20], they show that HER can be viewed as a special case of
maximum-entropy inverse RL, since it is estimating the reward for which the corresponding trajectory was
optimal.

5.3.1.2 Hierarchical HER

We can leverage HER to learn a hierarchical controller in several ways. In [Nac+18] they propose HIRO
(Hierarchical Reinforcement Learning with Off-policy Correction) as a way to train a two-level controller.
(For a two-level controller, the top level is often called the manager, and the low level the worker.) The
data for the manager are transition tuples of the form (st, gt,

∑
rt:t+c, st+c), where c is the time taken for

the worker to reach the goal (or some maximum time), and rt is the main task reward function at step t.
The data for the worker are transition tuples of the form (st+i, gt, at+i, r

gt
t+i, st+i+1) for i = 0 : c, where rgt

is the reward wrt reaching goal g. This data can be used to train the two policies. However, if the worker
fails to achieve the goal in the given time limit, all the rewards will be 0, and no learning will take place. To
combat this, if the worker does not achieve gt after c timesteps, the subgoal is relabeled in the transition
data with another subgoal g′t which is sampled from p(g|τ), where τ is the observed trajectory. Thus both
policies treat g′t as the goal in hindsight, so they can use the actually collected data for training

The hierarchical actor critic (HAC) method of [Lev+18] is a simpler version of HIRO that can be
extended to multiple levels of hierarchy, where the lowest level corresponds to primitive actions (see Figure 5.2).
In the HAC approach, the output subgoal in the higher level data, and the input subgoal in the lower-level
data, are replaced with the actual state that was achieved in hindsight. This allows the training of each level of
the hierarchy independently of the lower levels, by assuming the lower level policies are already optimal (since
they achieved the specified goal). As a result, the distribution of (s, a, s′) tuples experienced by a higher level

101

http://bigai.cs.brown.edu/2019/09/03/hac.html
http://bigai.cs.brown.edu/2019/09/03/hac.html

will be stable, providing a stationary learning target. By contrast, if all policies are learned simultaneously,
the distribution becomes non-stationary, which makes learning harder. For more details, see the paper, or
the corresponding blog post (with animations) at http://bigai.cs.brown.edu/2019/09/03/hac.html.

5.3.1.3 Learning the subgoal space

In the previous approaches, the subgoals are defined in terms of the states that were achieved at the end of
each trajectory, g′ = sT . This can be generalized by using a state abstraction function to get g′ = ϕ(sT). The
methods in Section 5.3.1.2) assumed that ϕ was manually specified. We now mention some ways to learn ϕ.

In [Vez+17], they present Feudal Networks for learning a two level hierarchy. The manager samples
subgoals in a learned latent subgoal space. The worker uses distance to this subgoal as a reward, and is
trained in the usual way. The manager uses the “transition gradient” as a reward, which is derived from the
task reward as well as the distance between the subgoal and the actual state transition made by the worker.
This reward signal is used to learn the manager policy and the latent subgoal space.

Feudal networks do not guarantee that the learned subgoal space will result in optimal behavior. In
[Nac+19], they present a method to optimize the policy and ϕ function so as to minimize a bound on the
suboptimality of the hierarchical policy. This approach is combined with HIRO (Section 5.3.1.2) to tackle the
non-stationarity issue.

5.3.2 Options

The feudal approach to HRL is somewhat limited, since not all subroutines or skills can be defined in terms
of reaching a goal state (even if it is a partially specified one, such as being in a desired location but without
specifying the velocity). For example, consider the skill of “driving in a circle”, or “finding food”. The options
framework is a more general framework for HRL first proposed in [SPS99]. We discuss this below.

5.3.2.1 Definitions

An option ω = (I, π, β) is a tuple consisting of: the initiation set Iω ⊂ S, which is a subset of states that this
option can start from (also called the affordances of each state [Khe+20]); the subpolicy πω(a|s) ∈ [0, 1];
and the termination condition βω(s) ∈ [0, 1], which gives the probability of finishing in state s. (This
induces a geometric distribution over option durations, which we denote by τ ∼ βω.) The set of all options is
denoted Ω.

To execute an option at step t entails choosing an action using at = πω(st) and then deciding whether to
terminate at step t+ 1 with probability 1− βω(st+1) or to continue following the option at step t+ 1. (This
is an example of a semi-Markov decision process [Put94].) If we define πω(s) = a and βω(s) = 0 for all
s, then this option corresponds to primitive action a that terminates in one step. But with options we can
expand the repertoire of actions to include those that take many steps to finish.

To create an MDP with options, we need to define the reward function and dynamics model. The reward
is defined as follows:

R(s, ω) = E
[
R1 + γR2 + · · ·+ γτ−1Rτ |S0 = s,A0:τ−1 ∼ πω, τ ∼ βω

]
(5.6)

The dynamics model is defined as follows:

pγ(s
′|s, ω) =

∞∑

k=1

γk Pr (Sk = s′, τ = k|S0 = s,A0:k−1 ∼ πω, τ ∼ βω) (5.7)

Note that pγ(s′|s, ω) is not a conditional probability distribution, because of the γk term, but we can usually
treat it like one. Note also that a dynamics model that can predict multiple steps ahead is sometimes called
a jumpy model (see also Section 4.4.3.2).

102

http://bigai.cs.brown.edu/2019/09/03/hac.html

We can use these definitions to define the value function for a hierarchical policy using a generalized
Bellman equation, as follows:

Vπ(s) =
∑

ω∈Ω(s)

π(ω|s)
[
R(s, ω) +

∑

s′

pγ(s
′|s, ω)Vπ(s′)

]
(5.8)

We can compute this using value iteration. We can then learn a policy using policy iteration, or a policy
gradient method. In other words, once we have defined the options, we can use all the standard RL machinery.

Note that GCRL can be considered a special case of options where each option corresponds to a different
goal. Thus the reward function has the form R(s, ω) = I (s = ω), the termination function is βω(s) = I (s = ω),
and the initiation set is the entire state space.

5.3.2.2 Learning options

The early work on options, including the MAXQ approach of [Die00], assumed that the set of options was
manually specified. Since then, many methods for learning options have been proposed. We mention a few of
these below.

The first set of methods for option learning rely on two stage training. In the first stage, exploration
methods are used to collect trajectories. Then this data is analysed, either by inferring hidden segments using
EM applied to a latent variable model [Dan+16], or by using the skill chaining method of [KB09], which
uses classifiers to segment the trajectories. The labeled data can then be used to define a set of options,
which can be trained using standard methods.

The second set of methods for option learning use end-to-end training, i.e., the options and their policies
are jointly learned online. For example, [BHP17] propose the option-critic architecture. The number
of options is manually specified, and all policies are randomly initialized. Then they are jointly trained
using policy gradient methods designed for semi-MDPs. (See also [RLT18] for a hierarchical extension of
option-critic to support options calling options.) However, since the learning signal is just the main task
reward, the method can work poorly in problems with sparse reward compared to subgoal methods (see
discussion in [Vez+17; Nac+19]).

Another problem with option-critic is that it requires specialized methods that are designed for optimizing
semi-MDPs. In [ZW19], they propose double actor critic, which allows the use of standard policy gradient
methods. This works by defining two parallel augmented MDPs, where the state space of each MDP is the
cross-product of the original state space and the set of options. The manager learns a policy over options, and
the worker learns a policy over states for each option. Both MDPs just use task rewards, without subgoals or
subtask rewards.

It has been observed that option learning using option-critic or double actor-critic can fail, in the sense
that the top level controller may learn to switch from one option to the next at almost every time step [ZW19;
Har+18]. The reason is that the optimal policy does not require the use of temporally extended options, but
instead can be defined in terms of primitive actions (as in standard RL). Therefore in [Har+18] they propose
to add a regularizer called the deliberation cost, in which the higher level policy is penalized whenever it
switches options. This can speed up learning, at the cost of a potentially suboptimal policy.

Another possible failure mode in option learning is if the higher level policy selects a single option for
the entire task duration. To combat this, [KP19] propose the Interest Option Critic, which learns the
initiation condition Iω so that the option is selected only in certain states of interest, rather than the entire
state space.

In [Mac+23], they discuss how the successor representation (discussed in Section 4.4) can be used to
define options, using a method they call the Representation-driven Option Discovery (ROD) cycle.

In [Lin+24b] they propose to represent options as programs, which are learned using LLMs.

103

5.4 Imitation learning
In previous sections, an RL agent is to learn an optimal sequential decision making policy so that the total
reward is maximized. Imitation learning (IL), also known as apprenticeship learning and learning
from demonstration (LfD), is a different setting, in which the agent does not observe rewards, but has access
to a collection Dexp of trajectories generated by an expert policy πexp; that is, τ = (s0, a0, s1, a1, . . . , sT)
and at ∼ πexp(st) for τ ∈ Dexp. The goal is to learn a good policy by imitating the expert, in the absence
of reward signals. IL finds many applications in scenarios where we have demonstrations of experts (often
humans) but designing a good reward function is not easy, such as car driving and conversational systems.
(See also Section 5.5, where we discuss the closely related topic of offline RL, where we also learn from a
collection of trajectories, but no longer assume they are generated by an optimal policy.)

5.4.1 Imitation learning by behavior cloning
A natural method is behavior cloning, which reduces IL to supervised learning; see [Pom89] for an early
application to autonomous driving. It interprets a policy as a classifier that maps states (inputs) to actions
(labels), and finds a policy by minimizing the imitation error, such as

min
π

Epγπexp (s)
[DKL (πexp(s) ∥ π(s))] (5.9)

where the expectation wrt pγπexp
may be approximated by averaging over states in Dexp. A challenge with

this method is that the loss does not consider the sequential nature of IL: future state distribution is not
fixed but instead depends on earlier actions. Therefore, if we learn a policy π̂ that has a low imitation error
under distribution pγπexp

, as defined in Equation (5.9), it may still incur a large error under distribution pγπ̂
(when the policy π̂ is actually run). This problem has been tackled by the offline RL literature, which we
discuss in Section 5.5.

5.4.2 Imitation learning by inverse reinforcement learning
An effective approach to IL is inverse reinforcement learning (IRL) or inverse optimal control (IOC).
Here, we first infer a reward function that “explains” the observed expert trajectories, and then compute a
(near-)optimal policy against this learned reward using any standard RL algorithms studied in earlier sections.
The key step of reward learning (from expert trajectories) is the opposite of standard RL, thus called inverse
RL [NR00].

It is clear that there are infinitely many reward functions for which the expert policy is optimal, for
example by several optimality-preserving transformations [NHR99]. To address this challenge, we can follow
the maximum entropy principle, and use an energy-based probability model to capture how expert trajectories
are generated [Zie+08]:

p(τ) ∝ exp
(T−1∑

t=0

Rθ(st, at)
)

(5.10)

where Rθ is an unknown reward function with parameter θ. Abusing notation slightly, we denote by
Rθ(τ) =

∑T−1
t=0 Rθ(st, at)) the cumulative reward along the trajectory τ . This model assigns exponentially

small probabilities to trajectories with lower cumulative rewards. The partition function, Zθ ≜
∫
τ
exp(Rθ(τ)),

is in general intractable to compute, and must be approximated. Here, we can take a sample-based approach.
Let Dexp and D be the sets of trajectories generated by an expert, and by some known distribution q,
respectively. We may infer θ by maximizing the likelihood, p(Dexp|θ), or equivalently, minimizing the negative
log-likelihood loss

L(θ) = − 1

|Dexp|
∑

τ∈Dexp

Rθ(τ) + log
1

|D|
∑

τ∈D

exp(Rθ(τ))

q(τ)
(5.11)

104

(a) online reinforcement learning

rollout(s)

update

rollout data

(b) off-policy reinforcement learning

rollout(s)

update

rollout data

buffer

(c) offline reinforcement learning

rollout(s)

learn

buffer

data collected once
with any policy

deployment

training phase

Figure 5.3: Comparison of online on-policy RL, online off-policy RL, and offline RL. From Figure 1 of [Lev+20a].
Used with kind permission of Sergey Levine.

The term inside the log of the loss is an importance sampling estimate of Z that is unbiased as long as
q(τ) > 0 for all τ . However, in order to reduce the variance, we can choose q adaptively as θ is being updated.
The optimal sampling distribution, q∗(τ) ∝ exp(Rθ(τ)), is hard to obtain. Instead, we may find a policy π̂
which induces a distribution that is close to q∗, for instance, using methods of maximum entropy RL discussed
in Section 1.5.3. Interestingly, the process above produces the inferred reward Rθ as well as an approximate
optimal policy π̂. This approach is used by guided cost learning [FLA16], and found effective in robotics
applications.

5.4.3 Imitation learning by divergence minimization
We now discuss a different, but related, approach to IL. Recall that the reward function depends only on
the state and action in an MDP. It implies that if we can find a policy π, so that pγπ(s, a) and pγπexp

(s, a) are
close, then π receives similar long-term reward as πexp, and is a good imitation of πexp in this regard. A
number of IL algorithms find π by minimizing the divergence between pγπ and pγπexp

. We will largely follow
the exposition of [GZG19]; see [Ke+19] for a similar derivation.

Let f be a convex function, and Df be the corresponding f -divergence [Mor63; AS66; Csi67; LV06; CS04].
From the above intuition, we want to minimize Df

(
pγπexp

∥∥∥pγπ
)
. Then, using a variational approximation of

Df [NWJ10], we can solve the following optimization problem for π:

min
π

max
w

Epγπexp (s,a)
[Tw(s, a)]− Epγπ(s,a) [f

∗(Tw(s, a))] (5.12)

where f∗ is the convex conjugate of f , and Tw : S ×A → R is some function parameterized by w. We can
think of π as a generator (of actions) and Tw as an adversarial critic that is used to compare the generated
(s, a) pairs to the real ones. Thus the first expectation can be estimated using Dexp, as in behavior cloning,
and the second can be estimated using trajectories generated by policy π. Furthermore, to implement this
algorithm, we often use a parametric policy representation πθ, and then perform stochastic gradient updates
to find a saddle-point to Equation (5.12). With different choices of the convex function f , we can obtain
many existing IL algorithms, such as generative adversarial imitation learning (GAIL) [HE16] and
adversarial inverse RL (AIRL) [FLL18], etc.

5.5 Offline RL
Offline reinforcement learning (also called batch reinforcement learning [LGR12]) is concerned with
learning a reward maximizing policy from a fixed, static dataset, collected by some existing policy, known as
the behavior policy. Thus no interaction with the environment is allowed (see Figure 5.3). This makes
policy learning harder than the online case, since we do not know the consequences of actions that were not
taken in a given state, and cannot test any such “counterfactual” predictions by trying them. (This is the
same problem as in off-policy RL, which we discussed in Section 3.5.) In addition, the policy will be deployed

105

on new states that it may not have seen, requiring that the policy generalize out-of-distribution, which is the
main bottleneck for current offline RL methods [Par+24b].

A very simple and widely used offline RL method is known as behavior cloning or BC. This amounts to
training a policy to predict the observed output action at associated with each observed state st, so we aim
to ensure π(st) ≈ at, as in supervised learning. This assumes the offline dataset was created by an expert,
and so falls under the umbrella of imitation learning (see Section 5.4.1 for details). By contrast, offline RL
methods can leverage suboptimal data. We give a brief summary of some of these methods below. For more
details, see e.g., [Lev+20b; Che+24b; Cet+24]. For some offline RL benchmarks, see DR4L [Fu+20], RL
Unplugged [Gul+20], OGBench (Offline Goal-Conditioned benchmark) [Par+24a], and D5RL [Raf+24].

5.5.1 Offline model-free RL

In principle, we can tackle offline RL using the off-policy methods that we discussed in Section 3.5. These
use some form of importance sampling, based on π(a|s)/πb(a|s), to reweight the data in the replay buffer D,
which was collected by the behavior policy, towards the current policy (the one being evaluated/ learned).
Unfortunately, such methods only work well if the behavior policy is is close to the new policy. In the online
RL case, this can be ensured by gradually updating the new policy away from the behavior policy, and then
sampling new data from the updated policy (which becomes the new behavior policy). Unfortunately, this is
not an option in the offline case. Thus we need to use other strategies to control the discrepancy between
the behavior policy and learned policy, as we discuss below. (Besides the algorithmic techniques we discuss,
another reliable way to get better offline RL performance is to train on larger, more diverse datasets, as
shown in [Kum+23].)

5.5.1.1 Policy constraint methods

In the policy constraint method, we use a modified form of actor-critic, which, at iteration k, uses an
update of the form

Qπk+1 ← argmin
Q

E(s,a,s′)∼D
[(
Q(s, a)− (R(s, a) + γEπk(a′|s′) [Q

π
k (s

′, a′)])
)2] (5.13)

πk+1 ← argmax
π

Es∼D
[
Eπ(a|s)

[
Qπk+1(s, a)

]]
s.t. D(π, πb) ≤ ϵ (5.14)

where D(π(·|s), πb(·|s)) is a divergence measure on distributions, such as KL divergence or another f -
divergence. This ensures that we do not try to evaluate the Q function on actions a′ that are too dissimilar
from those seen in the data buffer (for each sampled state s), which might otherwise result in artefacts similar
an adversarial attack.

As an alternative to adding a constraint, we can add a penalty of αD(π(·|s), πb(·|s)) to the target Q value
and the actor objective, resulting in the following update:

Qπk+1 ← argmin
Q

E(s,a,s′)∼D
[(
Q(s, a)− (R(s, a) + γEπk(a′|s′) [Q

π
k (s

′, a′)− αγD(πk(·|s′), πb(·|s′))])
)2] (5.15)

πk+1 ← argmax
π

Es∼D
[
Eπ(a|s)

[
Qπk+1(s, a)

]
− αD(π(·|s′), πb(·|s′))

]
(5.16)

One problem with the above method is that we have to fit a parametric model to πb(a|s) in order to
evaluate the divergence term. Fortunately, in the case of KL, the divergence can be enforced implicitly, as in
the advantage weighted regression or AWR method of [Pen+19], the reward weighted regression
method of [PS07], the advantage weighted actor critic or AWAC method of [Nai+20], the advantage
weighted behavior model or ABM method of [Sie+20], In this approach, we first solve (nonparametrically)
for the new policy under the KL divergence constraint to get πk+1, and then we project this into the required

106

policy function class via supervised regression, as follows:

πk+1(a|s)←
1

Z
πb(a|s) exp

(
1

α
Qπk (s, a)

)
(5.17)

πk+1 ← argmin
π

DKL (πk+1 ∥ π) (5.18)

In practice the first step can be implemented by weighting samples from πb(a|s) (i.e., from the data buffer)
using importance weights given by exp

(
1
αQ

π
k (s, a)

)
, and the second step can be implemented via supervised

learning (i.e., maximum likelihood estimation) using these weights.
It is also possible to replace the KL divergence with an integral probability metric (IPM), such as the

maximum mean discrepancy (MMD) distance, which can be computed from samples, without needing to fit
a distribution πb(a|s). This approach is used in [Kum+19]. This has the advantage that it can constrain
the support of the learned policy to be a subset of the behavior policy, rather than just remaining close to
it. To see why this can be advantageous, consider the case where the behavior policy is uniform. In this
case, constraining the learned policy to remain close (in KL divergence) to this distribution could result in
suboptimal behavior, since the optimal policy may just want to put all its mass on a single action (for each
state).

5.5.1.2 Behavior-constrained policy gradient methods

Recently a class of methods has been developed that is simple and effective: we first learn a baseline policy
π(a|s) (using BC) and a Q function (using Bellman minimization) on the offline data, and then update the
policy parameters to pick actions that have high expected value according to Q and which are also likely
under the BC prior. An early example of this is the Q† algorithm of [Fuj+19]. In [FG21], they present the
DDPG+BC method, which optimizes

max
π

J(π) = E(s,a)∼D [Q(s, µπ(s)) + α log π(a|s)] (5.19)

where µπ(s) = Eπ(a|s) [a] is the mean of the predicted action, and α is a hyper-parameter. As another example,
the DQL method of [WHZ23] optimizes a diffusion policy using

min
π
L(π) = Ldiffusion(π) + Lq(π) = Ldiffusion(π)− αEs∼D,a∼π(·|s) [Q(s, a)] (5.20)

Finally, [Aga+22b] discusses how to transfer the policy from a previous agent to a new agent by combining
BC with Q learning.

5.5.1.3 Uncertainty penalties

An alternative way to avoid picking out-of-distribution actions, where the Q function might be unreliable, is
to add a penalty term to the Q function based on the estimated epistemic uncertainty, given the dataset
D, which we denote by Unc(PD(Qπ)), where PD(Qπ) is the distribution over Q functions, and Unc is some
metric on distributions. For example, we can use a deep ensemble to represent the distribution, and use the
variance of Q(s, a) across ensemble members as a measure of uncertainty. This gives rise to the following
policy improvement update:

πk+1 ← argmax
π

Es∼D
[
Eπ(a|s)

[
EPD(Qπ

k+1)

[
Qπk+1(s, a)

]]
− αUnc(PD(Qπk+1))

]
(5.21)

For examples of this approach, see e.g., [An+21; Wu+21; GGN22].

5.5.1.4 Conservative Q-learning and pessimistic value functions

An alternative to explicitly estimating uncertainty is to add a conservative penalty directly to the Q-learning
error term. That is, we minimize the following wrt w using each batch of data B:

E(B,w) = αC(B,w) + E(B,w) (5.22)

107

where E(B,w) = E(s,a,s′)∈B
[
(Qw(s, a)− (r + γmaxa′ Qw(s

′, a′)))2
]

is the usual loss for Q-learning, and
C(B,w) is some conservative penalty. In the conservative Q learning or CQL method of [Kum+20], we
use the following penalty term:

C(B,w) = Es∼B,a∼π(·|s) [Qw(s, a)]− E(s,a)∼B [Qw(s, a)] (5.23)

If π is the behavior policy, this penalty becomes 0.

5.5.2 Offline model-based RL

In Chapter 4, we discussed model-based RL, which can train a dynamics model given a fixed dataset, and
then use this to generate synthetic data to evaluate and then optimize different possible policies. However,
if the model is wrong, the method may learn a suboptimal policy, as we discussed in Section 4.2.3. This
problem is particularly severe in the offline RL case, since we cannot recover from any errors by collecting
more data. Therefore various conservative MBRL algorithms have been developed, to avoid exploiting model
errors. For example, [Kid+20] present the MOREL algorithm, and [Yu+20] present the MOPO algorithm.
Unlike the value function uncertainty method of Section 5.5.1.3, or the conservative value function method of
Section 5.5.1.4, these model-based methods add a penalty for visiting states where the model is likely to be
incorrect.

In more detail, let u(s, a) be an estimate of the uncertainty of the model’s predictions given input (s, a).
In MOPO, they define a conservative reward using R(s, a) = R(s, a)− λu(s, a), and in MOREL, they modify
the MDP so that the agent enters an absorbing state with a low reward when u(s, a) is sufficiently large.
In both cases, it is possible to prove that the model-based estimate of the policy’s performance under
the modified reward or dynamics is a lower bound of the performance of the policy’s true performance in
the real MDP, provided that the uncertainty function u is an error oracle, which means that is satisfies
D(Mθ(s

′|s, a),M∗(s′|s, a)) ≤ u(s, a), where M∗ is the true dynamics, and Mθ is the estimated dynamics.
For more information on offline MBRL methods, see [Che+24c].

5.5.3 Offline RL using reward-conditioned sequence modeling

Recently an approach to offline RL based on sequence modeling has become very popular. The basic idea
— known as upside down RL [Sch19] or RvS (RL via Supervised learning) [KPL19; Emm+21] — is to
train a generative model over future states and/or actions conditioned on the observed reward, rather than
predicting the reward given a state-action trajectory. At test time, the conditioning is changed to represent
the desired reward, and futures are sampled from the model. The implementation of this idea then depends
on what kind of generative model to use, as we discuss below.

The trajectory transformer method of [JLL21] learns a joint model of the form p(s1:T ,a1:T , r1:T) using
a transformer, and then samples from this using beam search, selecting the ones with high reward (similar to
MPC, Section 4.1.1). The decision transformer [Che+21b] is related, but just generates action sequences,
and conditions on the past observations and the future reward-to-go. That is, it fits

argmax
θ

EpD [log πθ(at|s0:t, a0:t−1,RTG0:t)] (5.24)

where RTGt =
∑T
k=t rt is the return to go. (For a comparison of decision transformers to other offline RL

methods, see [Bha+24].)
The diffuser method of [Jan+22] is a diffusion version of trajectory transformer, so it fits p(s1:T ,a1:T , r1:T)

using diffusion, where the action space is assumed to be continuous. They also replace beam search with
classifier guidance. The decision diffuser method of [Aja+23] extends diffuser by using classifer-free
guidance, where the conditioning signal is the reward-to-go, simlar to decision transformer. However, unlike
diffuser, the decision diffuser just models the future state trajectories (rather than learning a joint distribution
over states and actions), and infers the actions using an inverse dynamics model at = π(st, st+1), which is
trained using supervised learning.

108

One problem with the above approaches is that conditioning on a desired return and taking the predicted
action can fail dramatically in stochastic environments, since trajectories that result in a return may have
only achieved that return due to chance [PMB22; Yan+23; Bra+22; Vil+22]. (This is related to the optimism
bias in the control-as-inference approach discussed in Section 1.5.)

5.5.4 Hybrid offline/online methods

Despite the progress in offline RL, it is fundamentally more limited in what it can learn compared to online
RL [OCD21]. Therefore, various hybrids of offline and online RL have been proposed, such as [Bal+23] and
[Nak+23].

For example, [Nak+23] suggest pre-training with offline RL (specifically CQL) followed by online finetuning.
Naively this does not work that well, because CQL can be too conservative, requiring the online learning to
waste some time at the beginning fixing the pessimism. So they propose a small modification to CQL, known
as calibrated Q learning. This simply prevents CQL from being too conservative, by replacing the CQL
regularizer with

min
Q

max
π

J(Q, π) + αEs∼D,a∼π(a|s)
[
max(Q(s, a), V πβ (s))− αE(s,a)∼D [Q(s, a)]

]
(5.25)

where the Q(s, a) term inside the max ensures conservatism (so Q lower bounds the value of the learned
policy), and the V πβ (s) term ensures “calibration” (so Q upper bounds the value of the behavior policy).
Then online finetuning is performed in the usual way.

5.6 LLMs and RL
In this section, we discuss some connections between RL and “foundation models” (see e.g., [Cen21]).
These are large pretrained generative models of text and/or images such as large language models
(LLMs) and their multimodal extension, sometimes called vision language models (VLMs). Note that
this is a very fast growing field, so we only briefly mention a few highlights. For more details, see e.g.
https://github.com/WindyLab/LLM-RL-Papers.

5.6.1 RL for LLMs

We can think of LLMs as agents, where the state st is the entire sequence of previous words, st = (w1, . . . , wt−1),
the action is the next word wt2, the stochastic policy π(at|st) is the LLM, and the transition model is the
determistic function p(st+1|st, at) = δ(st = concat(st, at)). We see that the size of the state grows linearly
over time, which is a standard way to capture non-local dependencies in a Markov model.

We discuss how to train these models below. Once trained, they are used in a semi-MDP fashion, in
which at round t the agent generates an answer at = (at,1, . . . , at,Nt

), which is a sequence of Nt tokens,
in response to a prompt from the user, pt = (pt,1, . . . , pt,Mt

), and the previous context (dialog history),
ct = (p1,1:M1

, a1,1:N1
, p2,1:M2

, . . . , at−1,1:Nt−1
). We can now define the state as the sequence of tokens

st = (ct, pt). Similarly, the action sequence at can be flattened into a single atomic (string-valued) action,
since there is no intermediate feedback from the environment after each token is produced.3 Note that, if
there is a single round of prompting and answering (as is often assumed during training), then this is a
contextual bandit problem rather than a full MDP. In particular, the context is the string pt and the action
is the string at. However, in multi-turn dialog situations, the agent’s actions will affect the environment (i.e.,
the user’s mental state, and hence subsequent prompt pt+1), turning it into a full MDP.

2When using VLMs, the “words” are a tokenized representation of the visual input and/or output. Even when using language,
the elementary components wt are sub-words (which allows for generalization), not words. So a more precise term would be
“tokens” instead of “words”.

3The fact that the action (token) sequence is generated by an autoregressive policy inside the agent’s head is an implementation
detail, and not part of the problem specification; for example, the agent could instead use discrete diffusion to generate
at = (at,1, . . . , at,Nt).

109

https://github.com/WindyLab/LLM-RL-Papers

5.6.1.1 RLHF

LLMs are usually trained with behavior cloning, i.e., MLE on a fixed dataset, such as a large text (and
tokenized image) corpus scraped from the web. This is called “pre-training”. We can then improve their
performance using RL, as we describe below; this is called “post-training”.

A common way to perform post-training is to use reinforcement learning from human feedback or
RLHF. This technique, which was first introduced in the InstructGPT paper [Ouy+22], works as follows.
First a large number of (context, answer0, answer1) tuples are generated, either by a human or an LLM.
Then human raters are asked if they prefer answer 0 or answer 1. Let y = 0 denote the event that they prefer
answer 0, and y = 1 the event that they prefer answer 1. We can then fit a model of the form

p(y = 0|a0, a1, c) =
exp(ϕ(c, a0))

exp(ϕ(c, a0)) + exp(ϕ(c, a1))
(5.26)

using binary cross entropy loss, where ϕ(c, a) is some function that maps text to a scalar (interpreted as
logits). Typically ϕ(c, a) is a shallow MLP on top of the last layer of a pretrained LLM. Finally, we define
the reward function as R(s, a) = ϕ(s, a), where s is the context (e.g., a prompt or previous dialog state), and
a is the action (answer generated by LLM). We then use this reward to fine-tune the LLM using a policy
gradient method such as PPO (Section 3.4.3), or a simpler method such as RLOO [Ahm+24], which is based
on REINFORCE (Section 3.2).

Note that this form of training assumes the agent just interacts with a single action (answer) in response
to a single prompt, so is learning the reward for a bandit problem, rather than the full MDP. Also, the
learned reward function is a known parametric model (since it is fit to the human feedback data), whereas in
RL, the reward is an unknown non-differentiable blackbox function. When viewed in this light, it becomes
clear that one can also use non-RL algorithms to improve performance of LLMs, such as DPO [Raf+23] or
the density estimation methods of [Dum+24]. For more details on RL for LLMs, see e.g., [Kau+23].

5.6.1.2 Assistance game

In general, any objective-maximizing agent may suffer from reward hacking (Section 5.2.1), even if the reward
has been learned using lots of RLHF data. In [Rus19], Stuart Russell proposed a clever solution to this
problem. Specifically, the human and machine are both treated as agents in a two-player cooperative game,
called an assistance game, where the machine’s goal is to maximize the user’s utility (reward) function,
which is inferred based on the human’s behavior using inverse RL. That is, instead of trying to learn a point
estimate of the reward function using RLHF, and then optimizing that, we treat the reward function as an
unknown part of the environment. If we adopt a Bayesian perspective on this, we can maintain a posterior
belief over the model parameters. This will incentivize the agent to perform information gathering actions.
For example, if the machine is uncertain about whether something is a good idea or not, it will proceed
cautiously (e.g., by asking the user for their preference), rather than blindly solving the wrong problem. For
more details on this framework, see [Sha+20].

5.6.1.3 Run-time inference as MPC

Recently the LLM community has investigated ways to improve the “reasoning” performance of LLMs by
using MCTS-like methods (see Section 4.1.3). The basic idea is to perform Monte Carlo rollouts of many
possible action sequences (by generating different “chains of thought” in response to the context so far), and
then applying a value function to the leaves of this search tree to decide on which trajectory to return as the
final “decision”. The value function is usually learned using policy gradient methods, such as REINFORCE
(see e.g., [Zel+24]). It is believed that OpenAI’s recently released o1 (aka Strawberry) model4uses similar
techniques, most likely pre-training on large numbers of human reasoning traces.

Note that the resulting policy is an instance of MPC (Section 4.1.1) or decision time planning. This
means that, as in MPC, the agent must replan after every new state observation (which incorporates the

4See https://openai.com/index/learning-to-reason-with-llms/.

110

https://openai.com/index/learning-to-reason-with-llms/

response from the user), making the method much slower than “reactive” LLM policies, that does not use
look-ahead search (but still conditions on the entire past context). However, once trained, it may be possible
to distill this slower “system 2” policy into a faster reactive “system 1” policy.

5.6.2 LLMs for RL

There are many ways that (pretrained) LLMs can be used for RL, by leveraging their prior knowledge, their
ability to generate code, their “reasoning” ability, and their ability to perform in-context learning (which
can be viewed as a form of Bayesian inference [PAG24], which is a “gradient-free” way of optimally learning
that is well suited to rapid learning from limited data). The survey in [Cao+24] groups the literature into
four main categories: LLMs for pre-processing the inputs, LLMs for rewards, LLMs for world models, and
LLMs for decision making or policies. In our brief presentation below, we follow this categorization. (See also
[Spi+24] for a similar grouping.)

5.6.2.1 LLMs for pre-processing the input

If the input observations ot sent to the agent are in natural language (or some other textual representation, such
as JSON), it is natural to use an LLM to process them, in order to compute a more compact representation,
st = ϕ(ot), where ϕ can the hidden state of the last layer of an LLM. This encoder can either be frozen, or
fine-tuned with the policy network. Note that we can also pass in the entire past observation history, o1:t, as
well as static “side information”, such as instruction manuals or human hints; these can all be concatenated
to form the LLM prompt.

For example, the AlphaProof system5 uses an LLM (called the “formalizer network”) to translate an
informal specification of a math problem into the formal Lean representation, which is then passed to an
agent (called the “solver network”) which is trained, using the AlphaZero method (see Section 4.1.3.1), to
generate proofs inside the Lean theorem proving environment. In this environment, the reward is 0 or 1 (proof
is correct or not), the state space is a structured set of previously proved facts and the current goal, and the
action space is a set of proof tactics. The agent itself is a separate transformer policy network (distincy from
the formalizer network) that is trained from scratch in an incremental way, based on the AlphaZero method.

If the observations are images, it it is traditional to use a CNN to proccess the input, so st ∈ RN would
be an embedding vector. However, we could alternatively use a VLM to compute a structured representation,
where st might be a set of tokens describing the scene at a high level. We then proceed as in the text case.

Note that the information that is extracted will heavily depend on the prompt that is used. Thus we
should think of an LLM/VLM as an active sensor that we can control via prompts. Choosing how to control
this sensor requires expanding the action space of the agent to include computational actions [Che+24d].
Note also that these kinds of “sensors” are very expensive to invoke, so an agent with some limits on its time
and compute (which is all practical agents) will need to reason about the value of information and the cost of
computation. This is called metareasoning [RW91]. Devising good ways to train agents to perform both
computational actions (e.g., invoking an LLM or VLM) and environment actions (e.g., taking a step in the
environment or calling a tool) is an open research problem.

5.6.2.2 LLMs for rewards

It is difficult to design a reward function to cause an agent to exhibit some desired behavior, as we discussed
in Section 5.2. Fortunately LLMs can often help with this task. We discuss a few approaches below.

In [Kli+24], they present the Motif system, that uses an LLM in lieu of a human to provide preference
judgements to an RLHF system. In more detail, a pre-trained policy is used to collect trajectories, from
which pairs of states, (o,o′), are selected at random. The LLM is then asked which state is preferable, thus
generating (o,o′, y) tuples, which can be used to train a binary classifier from which a reward model is
extracted, as in Section 5.6.1.1. In [Kli+24], the observations o are text captions generated by the NetHack
game, but the same method could be applied to images if we used a VLM instead of an LLM for learning the

5See https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/.

111

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

reward. The learned reward model is then used as a shaping function (Section 5.2.3) when training an agent
in the NetHack environment, which has very sparse reward.

In [Ma+24], they present the Eureka system, that learns the reward using bilevel optimization, with
RL on the inner loop and LLM-powered evolutionary search on the outer loop. In particular, in the inner
loop, given a candidate reward function Ri, we use PPO to train a policy, and then return a scalar quality
score Si = S(Ri). In the outer loop, we ask an LLM to generate a new set of reward functions, R′

i, given
a population of old reward functions and their scores, (Ri, Si), which have been trained and evaluated in
parallel on a fleet of GPUs. The prompt also includes the source code of the environment simulator. Each
generated reward function Ri is represented as a Python function, that has access to the ground truth state
of the underlying robot simulator. The resulting system is able to learn a complex reward function that is
sufficient to train a policy (using PPO) that can control a simulated robot hand to perform various dexterous
manipulation tasks, including spinning a pen with its finger tips. In [Li+24], they present a somewhat related
approach and apply it to Minecraft.

In [Ven+24], they propose code as reward, in which they prompt a VLM with an initial and goal image,
and ask it to describe the corresponding sequence of tasks needed to reach the goal. They then ask the LLM
to synthesize code that checks for completion of each subtask (based on processing of object properties, such
as relative location, derived from the image). These reward functions are then “verified” by applying them to
an offline set of expert and random trajectories; a good reward function should allocate high reward to the
expert trajectories and low reward to the random ones. Finally, the reward functions are used as auxiliary
rewards inside an RL agent.

There are of course many other ways an LLM could be used to help learn reward functions, and this
remains an active area of research.

5.6.2.3 LLMs for world models

There are many papers that use transformers or diffusion models to represent the world model p(s′|s, a), and
learn them from data collected by the agent, as we discussed in Section 4.3. Here we focus our attention on
ways to use pre-trained foundation models as world models (WM).

[Yan+24] presents UniSim, which is an action-conditioned video diffusion model trained on large amounts
of robotics and visual navigation data. Combined with a VLM reward model, this can be used for decision-time
planning as follows: sample candidate action trajectories from a proposal, generate the corresponding images,
feed them to the reward model, score the rollouts, and then pick the best action from this set. (Note that
this is just standard MPC in image space with a diffusion WM and a random shooting planning algorithm.)

[TKE24] presents WorldCoder, which takes a very different approach. It prompts a frozen LLM to
generate code to represent the WM p(s′|s, a), which it then uses inside of a planning algorithm. The agent
then executes this in the environment, and passes back failed predictions to the LLM, asking it to improve
the WM. (This is related to the Eureka reward-learning system mentioned in Section 5.6.2.2.)

There are of course many other ways an LLM could be used to help learn world models, and this remains
an active area of research.

5.6.2.4 LLMs for policies

Finally we turn to LLMs as policies.
One approach is to pre-train a special purpose foundation model on state-action sequences (using behavior

cloning), then sample the next action from it using at ∼ p(at|ot, ht−1), where ot is the latest observation
and ht−1 = (o1:t−1, a1:t−1) is the history. See e.g., Gato model [Ree+22] RT-2 [Zit+23], and RoboCat
[Bou+23].

More recently it has become popular to leverage pre-trained LLMs that are trained on web data, and
then to repurpose them as “agents” using in-context learning. We can then sample an action from the policy
π(at|pt, ot, ht−1), where pt is a manually chosen prompt. This approach is used by the ReAct paper [Yao+22]
which works by prompting the LLM to “think step-by-step” (“reasoning”) and then to predict an action
(“acting”). This approach can be extended by prompting the LLM to first retrieve relevant past examples

112

Figure 5.4: Illustration of how to use a pretrained LLM (combined with RAG) as a policy. From Figure 5 of [Par+23].
Used with kind permission of Joon Park.

from an external “memory”, rather than explicitly storing the entire history ht in the context (this is called
retrieval augmented generation or RAG); see Figure 5.4 for an illustration. Note that no explicit
learning (in the form of parametric updates) is performed in these systems; instead they rely entirely on
in-context learning (and prompt engineering).

An alternative approach is to enumerate all possible discrete actions, and use the LLM to score them in
terms of their likelihoods given the goal, and their suitability given a learned value function applied to the
current state, i.e. π(at = k|g, pt, ot, ht) ∝ LLM(wk|gt, pt, ht)Vk(ot), where gt is the current goal, wk is a text
description of action k, and Vk is the value function for action k. This is the approach used in the robotics
SayCan approach [Ich+23], where the primitive actions ak are separately trained goal-conditioned policies.

Calling the LLM at every step is very slow, so an alternative is to use the LLM to generate code that
represents (parts of) the policy. For example, the Voyager system in [Wan+24a] builds up a reusable skill
library (represented as Python functions), by alternating between environment exploration and prompting
the (frozen) LLM to generate new tasks and skills, given the feedback collected so far.

There are of course many other ways an LLM could be used to help learn policies, and this remains an
active area of research.

5.7 General RL, AIXI and universal AGI
The term “general RL” (see e.g., [Hut05; LHS13; HQC24; Maj21]) refers to the setup in which an agent
receives a stream of observations o1, o2, . . . and rewards r1, r2, . . ., and performs a sequence of actions in
response, a1, a2, . . ., but where we do not make any Markovian (or even stationarity) assumptions about the
environment that generates the observation stream. Instead, we assume that the environment is a computable
function or program p∗, which generated the observations o1:t and r1:t seen so far in response to the actions
taken, a1:t−1. We denote this by U(p∗,a1:t) = (o1r1 · · · otrt), where U is a universal Turing machine. If we
use the receeding horizon control strategy (see Section 4.1.1), the optimal action at each step is the one that
maximizes the posterior expected reward-to-go (out to some horizon m steps into the future). If we assume
the agent represents the unknown environment as a program p ∈M, then the optimal action is given by the
following expectimax formula:

at = argmax
at

∑

ot,rt

· · ·max
am

∑

om,rm

[rt + · · ·+ rm]
∑

p:U(p,a1:m)=(o1r1···omrm)

Pr(p) (5.27)

where Pr(p) is the prior probability of p, and we assume the likelihood is 1 if p can generate the observations
given the actions, and is 0 otherwise.

The key question is: what is a reasonable prior over programs? In [Hut05], Marcus Hutter proposed
to apply the idea of Solomonoff induction [Sol64] to the case of an online decision making agent. This

113

amounts to using the prior Pr(p) = 2−ℓ(p), where ℓ(p) is the length of program p. This prior favors shorter
programs, and the likelihood filters out programs that cannot explain the data.

The resulting agent is known as AIXI, where “AI” stands for “Artificial Intelligence” and “XI” referring
to the Greek letter ξ used in Solomonoff induction. The AIXI agent has been called the “most intelligent
general-purpose agent possible” [HQC24], and can be viewed as the theoretical foundation of (universal)
artificial general intelligence or AGI.

Unfortunately, the AIXI agent is intractable to compute, since it relies on Solomonoff induction and
Kolmogorov complexity, both of which are intractable, but various approximations can be devised. For
example, we can approximate the expectimax with MCTS (see Section 4.1.3). Alternatively, [GM+24] showed
that it is possible to use meta learning to train a generic sequence predictor, such as a transformer or LSTM,
on data generated by random Turing machines, so that the transformer learns to approximate a universal
predictor. Another approach is to learn a policy (to avoid searching over action sequences) using TD-learning
(Section 2.3.2); the weighting term in the policy mixture requires that the agent predict its own future actions,
so this approach is known as self-AIXI [Cat+23].

Note that AIXI is a normative theory for optimal agents, but is not very practical, since it does not take
computational limitations into account. In [Aru+24a; Aru+24b], they describe an approach which extends
the above Bayesian framework, while also taking into account the data budget (due to limited environment
interactions) that real agents must contend with (which prohibits modeling the entire environment or
finding the optimal action). This approach, known as Capacity-Limited Bayesian RL (CBRL), combines
Bayesian inference, RL, and rate distortion theory, and can be seen as a normative theoretical foundation for
computationally bounded rational agents.

114

Bibliography

[Abd+18] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller. “Maximum
a Posteriori Policy Optimisation”. In: International Conference on Learning Representations.
Feb. 2018. url: https://openreview.net/pdf?id=S1ANxQW0b.

[ABM10] J.-Y. Audibert, S. Bubeck, and R. Munos. “Best Arm Identification in Multi-Armed Bandits”.
In: COLT. 2010, pp. 41–53.

[ACBF02] P. Auer, N. Cesa-Bianchi, and P. Fischer. “Finite-time Analysis of the Multiarmed Bandit
Problem”. In: MLJ 47.2 (May 2002), pp. 235–256. url: http://mercurio.srv.di.unimi.it/
~cesabian/Pubblicazioni/ml-02.pdf.

[Ach+17] J. Achiam, D. Held, A. Tamar, and P. Abbeel. “Constrained Policy Optimization”. In: ICML.
2017. url: http://arxiv.org/abs/1705.10528.

[Aga+14] D. Agarwal, B. Long, J. Traupman, D. Xin, and L. Zhang. “LASER: a scalable response
prediction platform for online advertising”. In: WSDM. 2014.

[Aga+21a] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan. “On the Theory of Policy Gradient
Methods: Optimality, Approximation, and Distribution Shift”. In: JMLR 22.98 (2021), pp. 1–76.
url: http://jmlr.org/papers/v22/19-736.html.

[Aga+21b] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G. Bellemare. “Deep Reinforcement
Learning at the Edge of the Statistical Precipice”. In: NIPS. Aug. 2021. url: http://arxiv.
org/abs/2108.13264.

[Aga+22a] A. Agarwal, N. Jiang, S. Kakade, and W. Sun. Reinforcement Learning: Theory and Algorithms.
2022. url: https://rltheorybook.github.io/rltheorybook_AJKS.pdf.

[Aga+22b] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare. “Reincarnating
Reinforcement Learning: Reusing Prior Computation to Accelerate Progress”. In: NIPS. Vol. 35.
2022, pp. 28955–28971. url: https://proceedings.neurips.cc/paper_files/paper/2022/
hash/ba1c5356d9164bb64c446a4b690226b0-Abstract-Conference.html.

[Ahm+24] A. Ahmadian, C. Cremer, M. Gallé, M. Fadaee, J. Kreutzer, A. Üstün, and S. Hooker. “Back
to basics: Revisiting REINFORCE style optimization for learning from Human Feedback in
LLMs”. In: arXiv [cs.LG] (Feb. 2024). url: http://arxiv.org/abs/2402.14740.

[Aja+23] A. Ajay, Y. Du, A. Gupta, J. B. Tenenbaum, T. S. Jaakkola, and P. Agrawal. “Is Conditional
Generative Modeling all you need for Decision Making?” In: ICLR. 2023. url: https://
openreview.net/forum?id=sP1fo2K9DFG.

[AJO08] P. Auer, T. Jaksch, and R. Ortner. “Near-optimal Regret Bounds for Reinforcement Learning”.
In: NIPS. Vol. 21. 2008. url: https://proceedings.neurips.cc/paper_files/paper/2008/
file/e4a6222cdb5b34375400904f03d8e6a5-Paper.pdf.

[AL+16] J. Ala-Luhtala, N. Whiteley, K. Heine, and R. Piche. “An Introduction to Twisted Particle
Filters and Parameter Estimation in Non-linear State-space Models”. In: IEEE Trans. Signal
Process. 64.18 (2016), pp. 4875–4890. url: http://arxiv.org/abs/1509.09175.

115

https://openreview.net/pdf?id=S1ANxQW0b
http://mercurio.srv.di.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
http://mercurio.srv.di.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
http://arxiv.org/abs/1705.10528
http://jmlr.org/papers/v22/19-736.html
http://arxiv.org/abs/2108.13264
http://arxiv.org/abs/2108.13264
https://rltheorybook.github.io/rltheorybook_AJKS.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/hash/ba1c5356d9164bb64c446a4b690226b0-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/ba1c5356d9164bb64c446a4b690226b0-Abstract-Conference.html
http://arxiv.org/abs/2402.14740
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://proceedings.neurips.cc/paper_files/paper/2008/file/e4a6222cdb5b34375400904f03d8e6a5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/e4a6222cdb5b34375400904f03d8e6a5-Paper.pdf
http://arxiv.org/abs/1509.09175

[Ale+23] L. N. Alegre, A. L. C. Bazzan, A. Nowé, and B. C. da Silva. “Multi-step generalized policy
improvement by leveraging approximate models”. In: NIPS. Vol. 36. Curran Associates, Inc.,
2023, pp. 38181–38205. url: https://proceedings.neurips.cc/paper_files/paper/2023/
hash/77c7faab15002432ba1151e8d5cc389a-Abstract-Conference.html.

[Alo+24] E. Alonso, A. Jelley, V. Micheli, A. Kanervisto, A. Storkey, T. Pearce, and F. Fleuret. “Diffusion
for world modeling: Visual details matter in Atari”. In: arXiv [cs.LG] (May 2024). url: http:
//arxiv.org/abs/2405.12399.

[AM89] B. D. Anderson and J. B. Moore. Optimal Control: Linear Quadratic Methods. Prentice-Hall
International, Inc., 1989.

[Ama98] S Amari. “Natural Gradient Works Efficiently in Learning”. In: Neural Comput. 10.2 (1998),
pp. 251–276. url: http://dx.doi.org/10.1162/089976698300017746.

[AMH23] A. Aubret, L. Matignon, and S. Hassas. “An information-theoretic perspective on intrinsic
motivation in reinforcement learning: A survey”. en. In: Entropy 25.2 (Feb. 2023), p. 327. url:
https://www.mdpi.com/1099-4300/25/2/327.

[Ami+21] S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup. “A survey of exploration
methods in reinforcement learning”. In: arXiv [cs.LG] (Aug. 2021). url: http://arxiv.org/
abs/2109.00157.

[An+21] G. An, S. Moon, J.-H. Kim, and H. O. Song. “Uncertainty-Based Offline Reinforcement Learning
with Diversified Q-Ensemble”. In: NIPS. Vol. 34. Dec. 2021, pp. 7436–7447. url: https://
proceedings.neurips.cc/paper_files/paper/2021/file/3d3d286a8d153a4a58156d0e02d8570c-
Paper.pdf.

[And+17] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. “Hindsight Experience Replay”. In: arXiv [cs.LG] (July 2017).
url: http://arxiv.org/abs/1707.01495.

[And+20] O. M. Andrychowicz et al. “Learning dexterous in-hand manipulation”. In: Int. J. Rob. Res.
39.1 (2020), pp. 3–20. url: https://doi.org/10.1177/0278364919887447.

[Ant+22] I. Antonoglou, J. Schrittwieser, S. Ozair, T. K. Hubert, and D. Silver. “Planning in Stochastic
Environments with a Learned Model”. In: ICLR. 2022. url: https://openreview.net/forum?
id=X6D9bAHhBQ1.

[AP23] S. Alver and D. Precup. “Minimal Value-Equivalent Partial Models for Scalable and Robust
Planning in Lifelong Reinforcement Learning”. en. In: Conference on Lifelong Learning Agents.
PMLR, Nov. 2023, pp. 548–567. url: https://proceedings.mlr.press/v232/alver23a.
html.

[AP24] S. Alver and D. Precup. “A Look at Value-Based Decision-Time vs. Background Planning
Methods Across Different Settings”. In: Seventeenth European Workshop on Reinforcement
Learning. Oct. 2024. url: https://openreview.net/pdf?id=Vx2ETvHId8.

[Arb+23] J. Arbel, K. Pitas, M. Vladimirova, and V. Fortuin. “A Primer on Bayesian Neural Networks:
Review and Debates”. In: arXiv [stat.ML] (Sept. 2023). url: http://arxiv.org/abs/2309.
16314.

[ARKP24] S. Alver, A. Rahimi-Kalahroudi, and D. Precup. “Partial models for building adaptive model-
based reinforcement learning agents”. In: COLLAS. May 2024. url: https://arxiv.org/abs/
2405.16899.

[Aru+17] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. “A Brief Survey of Deep
Reinforcement Learning”. In: IEEE Signal Processing Magazine, Special Issue on Deep Learning
for Image Understanding (2017). url: http://arxiv.org/abs/1708.05866.

116

https://proceedings.neurips.cc/paper_files/paper/2023/hash/77c7faab15002432ba1151e8d5cc389a-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/77c7faab15002432ba1151e8d5cc389a-Abstract-Conference.html
http://arxiv.org/abs/2405.12399
http://arxiv.org/abs/2405.12399
http://dx.doi.org/10.1162/089976698300017746
https://www.mdpi.com/1099-4300/25/2/327
http://arxiv.org/abs/2109.00157
http://arxiv.org/abs/2109.00157
https://proceedings.neurips.cc/paper_files/paper/2021/file/3d3d286a8d153a4a58156d0e02d8570c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/3d3d286a8d153a4a58156d0e02d8570c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/3d3d286a8d153a4a58156d0e02d8570c-Paper.pdf
http://arxiv.org/abs/1707.01495
https://doi.org/10.1177/0278364919887447
https://openreview.net/forum?id=X6D9bAHhBQ1
https://openreview.net/forum?id=X6D9bAHhBQ1
https://proceedings.mlr.press/v232/alver23a.html
https://proceedings.mlr.press/v232/alver23a.html
https://openreview.net/pdf?id=Vx2ETvHId8
http://arxiv.org/abs/2309.16314
http://arxiv.org/abs/2309.16314
https://arxiv.org/abs/2405.16899
https://arxiv.org/abs/2405.16899
http://arxiv.org/abs/1708.05866

[Aru+24a] D. Arumugam, M. K. Ho, N. D. Goodman, and B. Van Roy. “Bayesian Reinforcement Learning
With Limited Cognitive Load”. en. In: Open Mind 8 (Apr. 2024), pp. 395–438. url: https:
//direct.mit.edu/opmi/article-pdf/doi/10.1162/opmi_a_00132/2364075/opmi_a_
00132.pdf.

[Aru+24b] D. Arumugam, S. Kumar, R. Gummadi, and B. Van Roy. “Satisficing exploration for deep
reinforcement learning”. In: Finding the Frame Workshop at RLC. July 2024. url: https:
//openreview.net/forum?id=tHCpsrzehb.

[AS22] D. Arumugam and S. Singh. “Planning to the information horizon of BAMDPs via epistemic
state abstraction”. In: NIPS. Oct. 2022.

[AS66] S. M. Ali and S. D. Silvey. “A General Class of Coefficients of Divergence of One Distribution
from Another”. In: J. R. Stat. Soc. Series B Stat. Methodol. 28.1 (1966), pp. 131–142. url:
http://www.jstor.org/stable/2984279.

[ASN20] R. Agarwal, D. Schuurmans, and M. Norouzi. “An Optimistic Perspective on Offline Reinforce-
ment Learning”. en. In: ICML. PMLR, Nov. 2020, pp. 104–114. url: https://proceedings.
mlr.press/v119/agarwal20c.html.

[Att03] H. Attias. “Planning by Probabilistic Inference”. In: AI-Stats. 2003. url: http://research.
goldenmetallic.com/aistats03.pdf.

[AY20] B. Amos and D. Yarats. “The Differentiable Cross-Entropy Method”. In: ICML. 2020. url:
http://arxiv.org/abs/1909.12830.

[Bad+20] A. P. Badia, B. Piot, S. Kapturowski, P Sprechmann, A. Vitvitskyi, D. Guo, and C Blundell.
“Agent57: Outperforming the Atari Human Benchmark”. In: ICML 119 (Mar. 2020), pp. 507–517.
url: https://proceedings.mlr.press/v119/badia20a/badia20a.pdf.

[Bai95] L. C. Baird. “Residual Algorithms: Reinforcement Learning with Function Approximation”. In:
ICML. 1995, pp. 30–37.

[Bal+23] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. “Efficient Online Reinforcement Learning with
Offline Data”. en. In: ICML. PMLR, July 2023, pp. 1577–1594. url: https://proceedings.
mlr.press/v202/ball23a.html.

[Ban+23] D. Bansal, R. T. Q. Chen, M. Mukadam, and B. Amos. “TaskMet: Task-driven metric learning for
model learning”. In: NIPS. Ed. by A Oh, T Naumann, A Globerson, K Saenko, M Hardt, and S
Levine. Vol. abs/2312.05250. Dec. 2023, pp. 46505–46519. url: https://proceedings.neurips.
cc / paper _ files / paper / 2023 / hash / 91a5742235f70ae846436d9780e9f1d4 - Abstract -
Conference.html.

[Bar+17] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt, and D. Silver. “Suc-
cessor Features for Transfer in Reinforcement Learning”. In: NIPS. Vol. 30. 2017. url: https://
proceedings.neurips.cc/paper_files/paper/2017/file/350db081a661525235354dd3e19b8c05-
Paper.pdf.

[Bar+19] A. Barreto et al. “The Option Keyboard: Combining Skills in Reinforcement Learning”. In:
NIPS. Vol. 32. 2019. url: https://proceedings.neurips.cc/paper_files/paper/2019/
file/251c5ffd6b62cc21c446c963c76cf214-Paper.pdf.

[Bar+20] A. Barreto, S. Hou, D. Borsa, D. Silver, and D. Precup. “Fast reinforcement learning with
generalized policy updates”. en. In: PNAS 117.48 (Dec. 2020), pp. 30079–30087. url: https:
//www.pnas.org/doi/abs/10.1073/pnas.1907370117.

[BBS95] A. G. Barto, S. J. Bradtke, and S. P. Singh. “Learning to act using real-time dynamic pro-
gramming”. In: AIJ 72.1 (1995), pp. 81–138. url: http://www.sciencedirect.com/science/
article/pii/000437029400011O.

[BDG00] C. Boutilier, R. Dearden, and M. Goldszmidt. “Stochastic dynamic programming with factored
representations”. en. In: Artif. Intell. 121.1-2 (Aug. 2000), pp. 49–107. url: http://dx.doi.
org/10.1016/S0004-3702(00)00033-3.

117

https://direct.mit.edu/opmi/article-pdf/doi/10.1162/opmi_a_00132/2364075/opmi_a_00132.pdf
https://direct.mit.edu/opmi/article-pdf/doi/10.1162/opmi_a_00132/2364075/opmi_a_00132.pdf
https://direct.mit.edu/opmi/article-pdf/doi/10.1162/opmi_a_00132/2364075/opmi_a_00132.pdf
https://openreview.net/forum?id=tHCpsrzehb
https://openreview.net/forum?id=tHCpsrzehb
http://www.jstor.org/stable/2984279
https://proceedings.mlr.press/v119/agarwal20c.html
https://proceedings.mlr.press/v119/agarwal20c.html
http://research.goldenmetallic.com/aistats03.pdf
http://research.goldenmetallic.com/aistats03.pdf
http://arxiv.org/abs/1909.12830
https://proceedings.mlr.press/v119/badia20a/badia20a.pdf
https://proceedings.mlr.press/v202/ball23a.html
https://proceedings.mlr.press/v202/ball23a.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/91a5742235f70ae846436d9780e9f1d4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/91a5742235f70ae846436d9780e9f1d4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/91a5742235f70ae846436d9780e9f1d4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/350db081a661525235354dd3e19b8c05-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/350db081a661525235354dd3e19b8c05-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/350db081a661525235354dd3e19b8c05-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/251c5ffd6b62cc21c446c963c76cf214-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/251c5ffd6b62cc21c446c963c76cf214-Paper.pdf
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
http://www.sciencedirect.com/science/article/pii/000437029400011O
http://www.sciencedirect.com/science/article/pii/000437029400011O
http://dx.doi.org/10.1016/S0004-3702(00)00033-3
http://dx.doi.org/10.1016/S0004-3702(00)00033-3

[BDM10] M. Briers, A. Doucet, and S. Maskel. “Smoothing algorithms for state-space models”. In: Annals
of the Institute of Statistical Mathematics 62.1 (2010), pp. 61–89.

[BDM17] M. G. Bellemare, W. Dabney, and R. Munos. “A Distributional Perspective on Reinforcement
Learning”. In: ICML. 2017. url: http://arxiv.org/abs/1707.06887.

[BDR23] M. G. Bellemare, W. Dabney, and M. Rowland. Distributional Reinforcement Learning. http:
//www.distributional-rl.org. MIT Press, 2023.

[Bel+13] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. “The Arcade Learning Environment:
An Evaluation Platform for General Agents”. In: JAIR 47 (2013), pp. 253–279.

[Bel+16] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. “Unifying
Count-Based Exploration and Intrinsic Motivation”. In: NIPS. 2016. url: http://arxiv.org/
abs/1606.01868.

[Ber19] D. Bertsekas. Reinforcement learning and optimal control. Athena Scientific, 2019. url: http:
//www.mit.edu/~dimitrib/RLbook.html.

[Ber24] D. P. Bertsekas. “Model Predictive Control and Reinforcement Learning: A unified framework
based on Dynamic Programming”. In: arXiv [eess.SY] (June 2024). url: http://arxiv.org/
abs/2406.00592.

[Bha+24] P. Bhargava, R. Chitnis, A. Geramifard, S. Sodhani, and A. Zhang. “When should we prefer
Decision Transformers for Offline Reinforcement Learning?” In: ICLR. 2024. url: https:
//arxiv.org/abs/2305.14550.

[BHP17] P.-L. Bacon, J. Harb, and D. Precup. “The Option-Critic Architecture”. In: AAAI. 2017.

[BKH16] J. L. Ba, J. R. Kiros, and G. E. Hinton. “Layer Normalization”. In: (2016). arXiv: 1607.06450
[stat.ML]. url: http://arxiv.org/abs/1607.06450.

[BLM16] S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory
of Independence. Oxford University Press, 2016.

[BM+18] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, T. B. Dhruva, A. Muldal,
N. Heess, and T. Lillicrap. “Distributed Distributional Deterministic Policy Gradients”. In:
ICLR. 2018. url: https://openreview.net/forum?id=SyZipzbCb¬eId=SyZipzbCb.

[BMS11] S. Bubeck, R. Munos, and G. Stoltz. “Pure Exploration in Finitely-armed and Continuous-armed
Bandits”. In: Theoretical Computer Science 412.19 (2011), pp. 1832–1852.

[Boe+05] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. “A Tutorial on the Cross-Entropy
Method”. en. In: Ann. Oper. Res. 134.1 (2005), pp. 19–67. url: https://link.springer.com/
article/10.1007/s10479-005-5724-z.

[Bor+19] D. Borsa, A. Barreto, J. Quan, D. J. Mankowitz, H. van Hasselt, R. Munos, D. Silver, and
T. Schaul. “Universal Successor Features Approximators”. In: ICLR. 2019. url: https://
openreview.net/pdf?id=S1VWjiRcKX.

[Bos16] N. Bostrom. Superintelligence: Paths, Dangers, Strategies. en. London, England: Oxford Uni-
versity Press, Mar. 2016. url: https://www.amazon.com/Superintelligence-Dangers-
Strategies-Nick-Bostrom/dp/0198739834.

[Bou+23] K. Bousmalis et al. “RoboCat: A Self-Improving Generalist Agent for Robotic Manipulation”.
In: TMLR (June 2023). url: http://arxiv.org/abs/2306.11706.

[Bra+22] D. Brandfonbrener, A. Bietti, J. Buckman, R. Laroche, and J. Bruna. “When does return-
conditioned supervised learning work for offline reinforcement learning?” In: NIPS. June 2022.
url: http://arxiv.org/abs/2206.01079.

[BS23] A. Bagaria and T. Schaul. “Scaling goal-based exploration via pruning proto-goals”. en. In: IJCAI.
Aug. 2023, pp. 3451–3460. url: https://dl.acm.org/doi/10.24963/ijcai.2023/384.

118

http://arxiv.org/abs/1707.06887
http://www.distributional-rl.org
http://www.distributional-rl.org
http://arxiv.org/abs/1606.01868
http://arxiv.org/abs/1606.01868
http://www.mit.edu/~dimitrib/RLbook.html
http://www.mit.edu/~dimitrib/RLbook.html
http://arxiv.org/abs/2406.00592
http://arxiv.org/abs/2406.00592
https://arxiv.org/abs/2305.14550
https://arxiv.org/abs/2305.14550
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=SyZipzbCb¬eId=SyZipzbCb
https://link.springer.com/article/10.1007/s10479-005-5724-z
https://link.springer.com/article/10.1007/s10479-005-5724-z
https://openreview.net/pdf?id=S1VWjiRcKX
https://openreview.net/pdf?id=S1VWjiRcKX
https://www.amazon.com/Superintelligence-Dangers-Strategies-Nick-Bostrom/dp/0198739834
https://www.amazon.com/Superintelligence-Dangers-Strategies-Nick-Bostrom/dp/0198739834
http://arxiv.org/abs/2306.11706
http://arxiv.org/abs/2206.01079
https://dl.acm.org/doi/10.24963/ijcai.2023/384

[BSA83] A. G. Barto, R. S. Sutton, and C. W. Anderson. “Neuronlike adaptive elements that can
solve difficult learning control problems”. In: SMC 13.5 (1983), pp. 834–846. url: http:
//dx.doi.org/10.1109/TSMC.1983.6313077.

[BT12] M. Botvinick and M. Toussaint. “Planning as inference”. en. In: Trends Cogn. Sci. 16.10 (2012),
pp. 485–488. url: https://pdfs.semanticscholar.org/2ba7/88647916f6206f7fcc137fe7866c58e6211e.
pdf.

[Buc+17] C. L. Buckley, C. S. Kim, S. McGregor, and A. K. Seth. “The free energy principle for action
and perception: A mathematical review”. In: J. Math. Psychol. 81 (2017), pp. 55–79. url:
https://www.sciencedirect.com/science/article/pii/S0022249617300962.

[Bur+18] Y. Burda, H. Edwards, A Storkey, and O. Klimov. “Exploration by random network distillation”.
In: ICLR. Vol. abs/1810.12894. Sept. 2018.

[BXS20] H. Bharadhwaj, K. Xie, and F. Shkurti. “Model-Predictive Control via Cross-Entropy and
Gradient-Based Optimization”. en. In: Learning for Dynamics and Control. PMLR, July 2020,
pp. 277–286. url: https://proceedings.mlr.press/v120/bharadhwaj20a.html.

[CA13] E. F. Camacho and C. B. Alba. Model predictive control. Springer, 2013.

[Cao+24] Y. Cao, H. Zhao, Y. Cheng, T. Shu, G. Liu, G. Liang, J. Zhao, and Y. Li. “Survey on large
language model-enhanced reinforcement learning: Concept, taxonomy, and methods”. In: arXiv
[cs.LG] (Mar. 2024). url: http://arxiv.org/abs/2404.00282.

[Car+23] W. C. Carvalho, A. Saraiva, A. Filos, A. Lampinen, L. Matthey, R. L. Lewis, H. Lee, S. Singh, D.
Jimenez Rezende, and D. Zoran. “Combining Behaviors with the Successor Features Keyboard”.
In: NIPS. Vol. 36. 2023, pp. 9956–9983. url: https://proceedings.neurips.cc/paper_
files/paper/2023/hash/1f69928210578f4cf5b538a8c8806798- Abstract- Conference.
html.

[Car+24] W. Carvalho, M. S. Tomov, W. de Cothi, C. Barry, and S. J. Gershman. “Predictive rep-
resentations: building blocks of intelligence”. In: Neural Comput. (Feb. 2024). url: https:
//gershmanlab.com/pubs/Carvalho24.pdf.

[Cas11] P. S. Castro. “On planning, prediction and knowledge transfer in Fully and Partially Observable
Markov Decision Processes”. en. PhD thesis. McGill, 2011. url: https://www.proquest.com/
openview/d35984acba38c072359f8a8d5102c777/1?pq-origsite=gscholar&cbl=18750.

[Cas20] P. S. Castro. “Scalable methods for computing state similarity in deterministic Markov Decision
Processes”. In: AAAI. 2020.

[Cas+21] P. S. Castro, T. Kastner, P. Panangaden, and M. Rowland. “MICo: Improved representations
via sampling-based state similarity for Markov decision processes”. In: NIPS. Nov. 2021. url:
https://openreview.net/pdf?id=wFp6kmQELgu.

[Cas+23] P. S. Castro, T. Kastner, P. Panangaden, and M. Rowland. “A kernel perspective on behavioural
metrics for Markov decision processes”. In: TMLR abs/2310.19804 (Oct. 2023). url: https:
//openreview.net/pdf?id=nHfPXl1ly7.

[Cat+23] E. Catt, J. Grau-Moya, M. Hutter, M. Aitchison, T. Genewein, G. Delétang, K. Li, and J.
Veness. “Self-Predictive Universal AI”. In: NIPS. Vol. 36. 2023, pp. 27181–27198. url: https://
proceedings.neurips.cc/paper_files/paper/2023/hash/56a225639da77e8f7c0409f6d5ba996b-
Abstract-Conference.html.

[Cen21] Center for Research on Foundation Models (CRFM). “On the Opportunities and Risks of
Foundation Models”. In: (2021). arXiv: 2108.07258 [cs.LG]. url: http://arxiv.org/abs/
2108.07258.

[Cet+24] E. Cetin, A. Tirinzoni, M. Pirotta, A. Lazaric, Y. Ollivier, and A. Touati. “Simple ingredients
for offline reinforcement learning”. In: arXiv [cs.LG] (Mar. 2024). url: http://arxiv.org/
abs/2403.13097.

119

http://dx.doi.org/10.1109/TSMC.1983.6313077
http://dx.doi.org/10.1109/TSMC.1983.6313077
https://pdfs.semanticscholar.org/2ba7/88647916f6206f7fcc137fe7866c58e6211e.pdf
https://pdfs.semanticscholar.org/2ba7/88647916f6206f7fcc137fe7866c58e6211e.pdf
https://www.sciencedirect.com/science/article/pii/S0022249617300962
https://proceedings.mlr.press/v120/bharadhwaj20a.html
http://arxiv.org/abs/2404.00282
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1f69928210578f4cf5b538a8c8806798-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1f69928210578f4cf5b538a8c8806798-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1f69928210578f4cf5b538a8c8806798-Abstract-Conference.html
https://gershmanlab.com/pubs/Carvalho24.pdf
https://gershmanlab.com/pubs/Carvalho24.pdf
https://www.proquest.com/openview/d35984acba38c072359f8a8d5102c777/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/d35984acba38c072359f8a8d5102c777/1?pq-origsite=gscholar&cbl=18750
https://openreview.net/pdf?id=wFp6kmQELgu
https://openreview.net/pdf?id=nHfPXl1ly7
https://openreview.net/pdf?id=nHfPXl1ly7
https://proceedings.neurips.cc/paper_files/paper/2023/hash/56a225639da77e8f7c0409f6d5ba996b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/56a225639da77e8f7c0409f6d5ba996b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/56a225639da77e8f7c0409f6d5ba996b-Abstract-Conference.html
https://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2403.13097
http://arxiv.org/abs/2403.13097

[Cha+21] A. Chan, H. Silva, S. Lim, T. Kozuno, A Mahmood, and M. White. “Greedification opera-
tors for policy optimization: Investigating forward and reverse KL divergences”. In: JMLR
abs/2107.08285.253 (July 2021), pp. 1–79. url: http://jmlr.org/papers/v23/21-054.html.

[Che+20] X. Chen, C. Wang, Z. Zhou, and K. W. Ross. “Randomized Ensembled Double Q-Learning:
Learning Fast Without a Model”. In: ICLR. Oct. 2020. url: https://openreview.net/pdf?
id=AY8zfZm0tDd.

[Che+21a] C. Chen, Y.-F. Wu, J. Yoon, and S. Ahn. “TransDreamer: Reinforcement Learning with
Transformer World Models”. In: Deep RL Workshop NeurIPS. 2021. url: http://arxiv.org/
abs/2202.09481.

[Che+21b] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. “Decision Transformer: Reinforcement Learning via Sequence Modeling”. In: arXiv
[cs.LG] (June 2021). url: http://arxiv.org/abs/2106.01345.

[Che+24a] F. Che, C. Xiao, J. Mei, B. Dai, R. Gummadi, O. A. Ramirez, C. K. Harris, A. R. Mahmood, and
D. Schuurmans. “Target networks and over-parameterization stabilize off-policy bootstrapping
with function approximation”. In: ICML. May 2024.

[Che+24b] J. Chen, B. Ganguly, Y. Xu, Y. Mei, T. Lan, and V. Aggarwal. “Deep Generative Models for
Offline Policy Learning: Tutorial, Survey, and Perspectives on Future Directions”. In: TMLR
(Feb. 2024). url: https://openreview.net/forum?id=Mm2cMDl9r5.

[Che+24c] J. Chen, B. Ganguly, Y. Xu, Y. Mei, T. Lan, and V. Aggarwal. “Deep Generative Models for
Offline Policy Learning: Tutorial, Survey, and Perspectives on Future Directions”. In: TMLR
(Feb. 2024). url: https://openreview.net/forum?id=Mm2cMDl9r5.

[Che+24d] W. Chen, O. Mees, A. Kumar, and S. Levine. “Vision-language models provide promptable
representations for reinforcement learning”. In: arXiv [cs.LG] (Feb. 2024). url: http://arxiv.
org/abs/2402.02651.

[Chr19] P. Christodoulou. “Soft Actor-Critic for discrete action settings”. In: arXiv [cs.LG] (Oct. 2019).
url: http://arxiv.org/abs/1910.07207.

[Chu+18] K. Chua, R. Calandra, R. McAllister, and S. Levine. “Deep Reinforcement Learning in a Handful
of Trials using Probabilistic Dynamics Models”. In: NIPS. 2018. url: http://arxiv.org/abs/
1805.12114.

[CL11] O. Chapelle and L. Li. “An empirical evaluation of Thompson sampling”. In: NIPS. 2011.

[CMS07] B. Colson, P. Marcotte, and G. Savard. “An overview of bilevel optimization”. en. In: Ann. Oper.
Res. 153.1 (Sept. 2007), pp. 235–256. url: https://link.springer.com/article/10.1007/
s10479-007-0176-2.

[Cob+19] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman. “Quantifying Generalization in
Reinforcement Learning”. en. In: ICML. May 2019, pp. 1282–1289. url: https://proceedings.
mlr.press/v97/cobbe19a.html.

[Col+22] C. Colas, T. Karch, O. Sigaud, and P.-Y. Oudeyer. “Autotelic agents with intrinsically motivated
goal-conditioned reinforcement learning: A short survey”. en. In: JAIR 74 (July 2022), pp. 1159–
1199. url: https://www.jair.org/index.php/jair/article/view/13554.

[CS04] I. Csiszár and P. C. Shields. “Information theory and statistics: A tutorial”. In: (2004).

[Csi67] I. Csiszar. “Information-Type Measures of Difference of Probability Distributions and Indirect
Observations”. In: Studia Scientiarum Mathematicarum Hungarica 2 (1967), pp. 299–318.

[CVRM23] F. Che, G. Vasan, and A Rupam Mahmood. “Correcting discount-factor mismatch in on-
policy policy gradient methods”. en. In: ICML. PMLR, July 2023, pp. 4218–4240. url: https:
//proceedings.mlr.press/v202/che23a.html.

120

http://jmlr.org/papers/v23/21-054.html
https://openreview.net/pdf?id=AY8zfZm0tDd
https://openreview.net/pdf?id=AY8zfZm0tDd
http://arxiv.org/abs/2202.09481
http://arxiv.org/abs/2202.09481
http://arxiv.org/abs/2106.01345
https://openreview.net/forum?id=Mm2cMDl9r5
https://openreview.net/forum?id=Mm2cMDl9r5
http://arxiv.org/abs/2402.02651
http://arxiv.org/abs/2402.02651
http://arxiv.org/abs/1910.07207
http://arxiv.org/abs/1805.12114
http://arxiv.org/abs/1805.12114
https://link.springer.com/article/10.1007/s10479-007-0176-2
https://link.springer.com/article/10.1007/s10479-007-0176-2
https://proceedings.mlr.press/v97/cobbe19a.html
https://proceedings.mlr.press/v97/cobbe19a.html
https://www.jair.org/index.php/jair/article/view/13554
https://proceedings.mlr.press/v202/che23a.html
https://proceedings.mlr.press/v202/che23a.html

[Dab+17] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. “Distributional reinforcement learning
with quantile regression”. In: arXiv [cs.AI] (Oct. 2017). url: http://arxiv.org/abs/1710.
10044.

[Dab+18] W. Dabney, G. Ostrovski, D. Silver, and R. Munos. “Implicit quantile networks for distributional
reinforcement learning”. In: arXiv [cs.LG] (June 2018). url: http://arxiv.org/abs/1806.
06923.

[Dan+16] C. Daniel, H. van Hoof, J. Peters, and G. Neumann. “Probabilistic inference for determining
options in reinforcement learning”. en. In: Mach. Learn. 104.2-3 (Sept. 2016), pp. 337–357. url:
https://link.springer.com/article/10.1007/s10994-016-5580-x.

[Day93] P. Dayan. “Improving generalization for temporal difference learning: The successor representa-
tion”. en. In: Neural Comput. 5.4 (July 1993), pp. 613–624. url: https://ieeexplore.ieee.
org/abstract/document/6795455.

[DFR15] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. “Gaussian Processes for Data-Efficient Learning
in Robotics and Control”. en. In: IEEE PAMI 37.2 (2015), pp. 408–423. url: http://dx.doi.
org/10.1109/TPAMI.2013.218.

[DH92] P. Dayan and G. E. Hinton. “Feudal Reinforcement Learning”. In: NIPS 5 (1992). url: https://
proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-
Paper.pdf.

[Die00] T. G. Dietterich. “Hierarchical reinforcement learning with the MAXQ value function decompo-
sition”. en. In: JAIR 13 (Nov. 2000), pp. 227–303. url: https://www.jair.org/index.php/
jair/article/view/10266.

[Die+07] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber. “Fast Direct Multiple Shooting Algo-
rithms for Optimal Robot Control”. In: Lecture Notes in Control and Inform. Sci. 340 (2007).
url: https://www.researchgate.net/publication/29603798_Fast_Direct_Multiple_
Shooting_Algorithms_for_Optimal_Robot_Control.

[DMKM22] G. Duran-Martin, A. Kara, and K. Murphy. “Efficient Online Bayesian Inference for Neural
Bandits”. In: AISTATS. 2022. url: http://arxiv.org/abs/2112.00195.

[D’O+22] P. D’Oro, M. Schwarzer, E. Nikishin, P.-L. Bacon, M. G. Bellemare, and A. Courville. “Sample-
Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier”. In: Deep Reinforcement
Learning Workshop NeurIPS 2022. Dec. 2022. url: https://openreview.net/pdf?id=
4GBGwVIEYJ.

[DOB21] W. Dabney, G. Ostrovski, and A. Barreto. “Temporally-Extended epsilon-Greedy Exploration”.
In: ICLR. 2021. url: https://openreview.net/pdf?id=ONBPHFZ7zG4.

[DR11] M. P. Deisenroth and C. E. Rasmussen. “PILCO: A Model-Based and Data-Efficient Approach
to Policy Search”. In: ICML. 2011. url: http://www.icml-2011.org/papers/323_icmlpaper.
pdf.

[Du+21] C. Du, Z. Gao, S. Yuan, L. Gao, Z. Li, Y. Zeng, X. Zhu, J. Xu, K. Gai, and K.-C. Lee.
“Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning”. In: KDD.
KDD ’21. Association for Computing Machinery, 2021, pp. 2792–2801. url: https://doi.org/
10.1145/3447548.3467089.

[Duf02] M. Duff. “Optimal Learning: Computational procedures for Bayes-adaptive Markov decision
processes”. PhD thesis. U. Mass. Dept. Comp. Sci., 2002. url: http://envy.cs.umass.edu/
People/duff/diss.html.

[Dum+24] V. Dumoulin, D. D. Johnson, P. S. Castro, H. Larochelle, and Y. Dauphin. “A density estimation
perspective on learning from pairwise human preferences”. In: Trans. on Machine Learning
Research 2024 (2024). url: https://openreview.net/pdf?id=YH3oERVYjF.

121

http://arxiv.org/abs/1710.10044
http://arxiv.org/abs/1710.10044
http://arxiv.org/abs/1806.06923
http://arxiv.org/abs/1806.06923
https://link.springer.com/article/10.1007/s10994-016-5580-x
https://ieeexplore.ieee.org/abstract/document/6795455
https://ieeexplore.ieee.org/abstract/document/6795455
http://dx.doi.org/10.1109/TPAMI.2013.218
http://dx.doi.org/10.1109/TPAMI.2013.218
https://proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://www.jair.org/index.php/jair/article/view/10266
https://www.jair.org/index.php/jair/article/view/10266
https://www.researchgate.net/publication/29603798_Fast_Direct_Multiple_Shooting_Algorithms_for_Optimal_Robot_Control
https://www.researchgate.net/publication/29603798_Fast_Direct_Multiple_Shooting_Algorithms_for_Optimal_Robot_Control
http://arxiv.org/abs/2112.00195
https://openreview.net/pdf?id=4GBGwVIEYJ
https://openreview.net/pdf?id=4GBGwVIEYJ
https://openreview.net/pdf?id=ONBPHFZ7zG4
http://www.icml-2011.org/papers/323_icmlpaper.pdf
http://www.icml-2011.org/papers/323_icmlpaper.pdf
https://doi.org/10.1145/3447548.3467089
https://doi.org/10.1145/3447548.3467089
http://envy.cs.umass.edu/People/duff/diss.html
http://envy.cs.umass.edu/People/duff/diss.html
https://openreview.net/pdf?id=YH3oERVYjF

[DVRZ22] S. Dong, B. Van Roy, and Z. Zhou. “Simple Agent, Complex Environment: Efficient Reinforce-
ment Learning with Agent States”. In: J. Mach. Learn. Res. (2022). url: https://www.jmlr.
org/papers/v23/21-0773.html.

[DWS12] T. Degris, M. White, and R. S. Sutton. “Off-Policy Actor-Critic”. In: ICML. 2012. url: http:
//arxiv.org/abs/1205.4839.

[Eco+19] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. “Go-Explore: a New Approach
for Hard-Exploration Problems”. In: (2019). arXiv: 1901.10995 [cs.LG]. url: http://arxiv.
org/abs/1901.10995.

[Eco+21] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. “First return, then explore”.
en. In: Nature 590.7847 (Feb. 2021), pp. 580–586. url: https://www.nature.com/articles/
s41586-020-03157-9.

[Emm+21] S. Emmons, B. Eysenbach, I. Kostrikov, and S. Levine. “RvS: What is essential for offline RL
via Supervised Learning?” In: arXiv [cs.LG] (Dec. 2021). url: http://arxiv.org/abs/2112.
10751.

[ESL21] B. Eysenbach, R. Salakhutdinov, and S. Levine. “C-Learning: Learning to Achieve Goals via
Recursive Classification”. In: ICLR. 2021. url: https://openreview.net/pdf?id=tc5qisoB-
C.

[Esp+18] L. Espeholt et al. “IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-
Learner Architectures”. en. In: ICML. PMLR, July 2018, pp. 1407–1416. url: https://
proceedings.mlr.press/v80/espeholt18a.html.

[Eys+20] B. Eysenbach, X. Geng, S. Levine, and R. Salakhutdinov. “Rewriting History with Inverse RL:
Hindsight Inference for Policy Improvement”. In: NIPS. Feb. 2020.

[Eys+21] B. Eysenbach, A. Khazatsky, S. Levine, and R. Salakhutdinov. “Mismatched No More: Joint
Model-Policy Optimization for Model-Based RL”. In: (2021). arXiv: 2110.02758 [cs.LG]. url:
http://arxiv.org/abs/2110.02758.

[Eys+22] B. Eysenbach, A. Khazatsky, S. Levine, and R. Salakhutdinov. “Mismatched No More: Joint
Model-Policy Optimization for Model-Based RL”. In: NIPS. 2022.

[Far+18] G. Farquhar, T. Rocktäschel, M. Igl, and S. Whiteson. “TreeQN and ATreeC: Differentiable
Tree-Structured Models for Deep Reinforcement Learning”. In: ICLR. Feb. 2018. url: https:
//openreview.net/pdf?id=H1dh6Ax0Z.

[Far+23] J. Farebrother, J. Greaves, R. Agarwal, C. Le Lan, R. Goroshin, P. S. Castro, and M. G.
Bellemare. “Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks”. In:
ICLR. 2023. url: https://openreview.net/pdf?id=oGDKSt9JrZi.

[Far+24] J. Farebrother et al. “Stop regressing: Training value functions via classification for scalable
deep RL”. In: arXiv [cs.LG] (Mar. 2024). url: http://arxiv.org/abs/2403.03950.

[FC24] J. Farebrother and P. S. Castro. “CALE: Continuous Arcade Learning Environment”. In: NIPS.
Oct. 2024. url: https://arxiv.org/abs/2410.23810.

[FG21] S. Fujimoto and S. s. Gu. “A Minimalist Approach to Offline Reinforcement Learning”. In: NIPS.
Vol. 34. Dec. 2021, pp. 20132–20145. url: https://proceedings.neurips.cc/paper_files/
paper/2021/file/a8166da05c5a094f7dc03724b41886e5-Paper.pdf.

[FHM18] S. Fujimoto, H. van Hoof, and D. Meger. “Addressing Function Approximation Error in Actor-
Critic Methods”. In: ICLR. 2018. url: http://arxiv.org/abs/1802.09477.

[FL+18] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau. “An Introduction
to Deep Reinforcement Learning”. In: Foundations and Trends in Machine Learning 11.3 (2018).
url: http://arxiv.org/abs/1811.12560.

[FLA16] C. Finn, S. Levine, and P. Abbeel. “Guided Cost Learning: Deep Inverse Optimal Control via
Policy Optimization”. In: ICML. 2016, pp. 49–58.

122

https://www.jmlr.org/papers/v23/21-0773.html
https://www.jmlr.org/papers/v23/21-0773.html
http://arxiv.org/abs/1205.4839
http://arxiv.org/abs/1205.4839
https://arxiv.org/abs/1901.10995
http://arxiv.org/abs/1901.10995
http://arxiv.org/abs/1901.10995
https://www.nature.com/articles/s41586-020-03157-9
https://www.nature.com/articles/s41586-020-03157-9
http://arxiv.org/abs/2112.10751
http://arxiv.org/abs/2112.10751
https://openreview.net/pdf?id=tc5qisoB-C
https://openreview.net/pdf?id=tc5qisoB-C
https://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.mlr.press/v80/espeholt18a.html
https://arxiv.org/abs/2110.02758
http://arxiv.org/abs/2110.02758
https://openreview.net/pdf?id=H1dh6Ax0Z
https://openreview.net/pdf?id=H1dh6Ax0Z
https://openreview.net/pdf?id=oGDKSt9JrZi
http://arxiv.org/abs/2403.03950
https://arxiv.org/abs/2410.23810
https://proceedings.neurips.cc/paper_files/paper/2021/file/a8166da05c5a094f7dc03724b41886e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a8166da05c5a094f7dc03724b41886e5-Paper.pdf
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1811.12560

[FLL18] J. Fu, K. Luo, and S. Levine. “Learning Robust Rewards with Adverserial Inverse Reinforcement
Learning”. In: ICLR. 2018.

[For+18] M. Fortunato et al. “Noisy Networks for Exploration”. In: ICLR. 2018. url: http://arxiv.
org/abs/1706.10295.

[FPP04] N. Ferns, P. Panangaden, and D. Precup. “Metrics for finite Markov decision processes”. en. In:
UAI. 2004. url: https://dl.acm.org/doi/10.5555/1036843.1036863.

[Fra+24] B. Frauenknecht, A. Eisele, D. Subhasish, F. Solowjow, and S. Trimpe. “Trust the Model Where
It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption”. In:
ICML. June 2024. url: https://openreview.net/pdf?id=N0ntTjTfHb.

[Fre+24] B. Freed, T. Wei, R. Calandra, J. Schneider, and H. Choset. “Unifying Model-Based and
Model-Free Reinforcement Learning with Equivalent Policy Sets”. In: RL Conference. 2024. url:
https://rlj.cs.umass.edu/2024/papers/RLJ_RLC_2024_37.pdf.

[Fri03] K. Friston. “Learning and inference in the brain”. en. In: Neural Netw. 16.9 (2003), pp. 1325–1352.
url: http://dx.doi.org/10.1016/j.neunet.2003.06.005.

[Fri09] K. Friston. “The free-energy principle: a rough guide to the brain?” en. In: Trends Cogn. Sci.
13.7 (2009), pp. 293–301. url: http://dx.doi.org/10.1016/j.tics.2009.04.005.

[FS+19] H Francis Song et al. “V-MPO: On-Policy Maximum a Posteriori Policy Optimization for
Discrete and Continuous Control”. In: arXiv [cs.AI] (Sept. 2019). url: http://arxiv.org/
abs/1909.12238.

[FSW23] M. Fellows, M. J. A. Smith, and S. Whiteson. “Why Target Networks Stabilise Temporal Differ-
ence Methods”. en. In: ICML. PMLR, July 2023, pp. 9886–9909. url: https://proceedings.
mlr.press/v202/fellows23a.html.

[Fu15] M. Fu, ed. Handbook of Simulation Optimization. 1st ed. Springer-Verlag New York, 2015. url:
http://www.springer.com/us/book/9781493913831.

[Fu+20] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: Datasets for Deep Data-Driven
Reinforcement Learning. arXiv:2004.07219. 2020.

[Fuj+19] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau. “Benchmarking batch deep reinforcement
learning algorithms”. In: Deep RL Workshop NeurIPS. Oct. 2019. url: https://arxiv.org/
abs/1910.01708.

[Gal+24] M. Gallici, M. Fellows, B. Ellis, B. Pou, I. Masmitja, J. N. Foerster, and M. Martin. “Simplifying
deep temporal difference learning”. In: ICML. July 2024.

[Gar23] R. Garnett. Bayesian Optimization. Cambridge University Press, 2023. url: https://bayesoptbook.
com/.

[GBS22] C. Grimm, A. Barreto, and S. Singh. “Approximate Value Equivalence”. In: NIPS. Oct. 2022.
url: https://openreview.net/pdf?id=S2Awu3Zn04v.

[GDG03] R. Givan, T. Dean, and M. Greig. “Equivalence notions and model minimization in Markov
decision processes”. en. In: Artif. Intell. 147.1-2 (July 2003), pp. 163–223. url: https://www.
sciencedirect.com/science/article/pii/S0004370202003764.

[GDWF22] J. Grudzien, C. A. S. De Witt, and J. Foerster. “Mirror Learning: A Unifying Framework of Policy
Optimisation”. In: ICML. Vol. 162. Proceedings of Machine Learning Research. PMLR, 2022,
pp. 7825–7844. url: https://proceedings.mlr.press/v162/grudzien22a/grudzien22a.
pdf.

[Ger18] S. J. Gershman. “Deconstructing the human algorithms for exploration”. en. In: Cognition 173
(Apr. 2018), pp. 34–42. url: https://www.sciencedirect.com/science/article/abs/pii/
S0010027717303359.

[Ger19] S. J. Gershman. “What does the free energy principle tell us about the brain?” In: Neurons,
Behavior, Data Analysis, and Theory (2019). url: http://arxiv.org/abs/1901.07945.

123

http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1706.10295
https://dl.acm.org/doi/10.5555/1036843.1036863
https://openreview.net/pdf?id=N0ntTjTfHb
https://rlj.cs.umass.edu/2024/papers/RLJ_RLC_2024_37.pdf
http://dx.doi.org/10.1016/j.neunet.2003.06.005
http://dx.doi.org/10.1016/j.tics.2009.04.005
http://arxiv.org/abs/1909.12238
http://arxiv.org/abs/1909.12238
https://proceedings.mlr.press/v202/fellows23a.html
https://proceedings.mlr.press/v202/fellows23a.html
http://www.springer.com/us/book/9781493913831
https://arxiv.org/abs/1910.01708
https://arxiv.org/abs/1910.01708
https://bayesoptbook.com/
https://bayesoptbook.com/
https://openreview.net/pdf?id=S2Awu3Zn04v
https://www.sciencedirect.com/science/article/pii/S0004370202003764
https://www.sciencedirect.com/science/article/pii/S0004370202003764
https://proceedings.mlr.press/v162/grudzien22a/grudzien22a.pdf
https://proceedings.mlr.press/v162/grudzien22a/grudzien22a.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0010027717303359
https://www.sciencedirect.com/science/article/abs/pii/S0010027717303359
http://arxiv.org/abs/1901.07945

[GGN22] S. K. S. Ghasemipour, S. S. Gu, and O. Nachum. “Why So Pessimistic? Estimating Uncertainties
for Offline RL through Ensembles, and Why Their Independence Matters”. In: NIPS. Oct. 2022.
url: https://openreview.net/pdf?id=z64kN1h1-rR.

[Ghi+20] S. Ghiassian, A. Patterson, S. Garg, D. Gupta, A. White, and M. White. “Gradient temporal-
difference learning with Regularized Corrections”. In: ICML. July 2020.

[Gho+21] D. Ghosh, J. Rahme, A. Kumar, A. Zhang, R. P. Adams, and S. Levine. “Why Generalization
in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability”. In: NIPS. Vol. 34.
Dec. 2021, pp. 25502–25515. url: https://proceedings.neurips.cc/paper_files/paper/
2021/file/d5ff135377d39f1de7372c95c74dd962-Paper.pdf.

[Ghu+22] R. Ghugare, H. Bharadhwaj, B. Eysenbach, S. Levine, and R. Salakhutdinov. “Simplifying Model-
based RL: Learning Representations, Latent-space Models, and Policies with One Objective”.
In: ICLR. Sept. 2022. url: https://openreview.net/forum?id=MQcmfgRxf7a.

[Git89] J. Gittins. Multi-armed Bandit Allocation Indices. Wiley, 1989.
[GK19] L. Graesser and W. L. Keng. Foundations of Deep Reinforcement Learning: Theory and Practice

in Python. en. 1 edition. Addison-Wesley Professional, 2019. url: https://www.amazon.com/
Deep-Reinforcement-Learning-Python-Hands/dp/0135172381.

[GM+24] J. Grau-Moya et al. “Learning Universal Predictors”. In: arXiv [cs.LG] (Jan. 2024). url:
https://arxiv.org/abs/2401.14953.

[Gor95] G. J. Gordon. “Stable Function Approximation in Dynamic Programming”. In: ICML. 1995,
pp. 261–268.

[Gra+10] T. Graepel, J. Quinonero-Candela, T. Borchert, and R. Herbrich. “Web-Scale Bayesian Click-
Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine”.
In: ICML. 2010.

[Gri+20] C. Grimm, A. Barreto, S. Singh, and D. Silver. “The Value Equivalence Principle for Model-Based
Reinforcement Learning”. In: NIPS 33 (2020), pp. 5541–5552. url: https://proceedings.
neurips.cc/paper_files/paper/2020/file/3bb585ea00014b0e3ebe4c6dd165a358-Paper.
pdf.

[Gul+20] C. Gulcehre et al. RL Unplugged: Benchmarks for Offline Reinforcement Learning. arXiv:2006.13888.
2020.

[Guo+22a] Z. D. Guo et al. “BYOL-Explore: Exploration by Bootstrapped Prediction”. In: Advances in
Neural Information Processing Systems. Oct. 2022. url: https://openreview.net/pdf?id=
qHGCH75usg.

[Guo+22b] Z. D. Guo et al. “BYOL-Explore: Exploration by bootstrapped prediction”. In: NIPS. June 2022.
url: https://proceedings.neurips.cc/paper_files/paper/2022/hash/ced0d3b92bb83b15c43ee32c7f57d867-
Abstract-Conference.html.

[GZG19] S. K. S. Ghasemipour, R. S. Zemel, and S. Gu. “A Divergence Minimization Perspective on
Imitation Learning Methods”. In: CORL. 2019, pp. 1259–1277.

[Haa+18a] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. “Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor”. In: ICML. 2018. url: http:
//arxiv.org/abs/1801.01290.

[Haa+18b] T. Haarnoja et al. “Soft Actor-Critic Algorithms and Applications”. In: (2018). arXiv: 1812.
05905 [cs.LG]. url: http://arxiv.org/abs/1812.05905.

[Haf+19] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. “Learning Latent
Dynamics for Planning from Pixels”. In: ICML. 2019. url: http://arxiv.org/abs/1811.
04551.

[Haf+20] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. “Dream to Control: Learning Behaviors by
Latent Imagination”. In: ICLR. 2020. url: https://openreview.net/forum?id=S1lOTC4tDS.

124

https://openreview.net/pdf?id=z64kN1h1-rR
https://proceedings.neurips.cc/paper_files/paper/2021/file/d5ff135377d39f1de7372c95c74dd962-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d5ff135377d39f1de7372c95c74dd962-Paper.pdf
https://openreview.net/forum?id=MQcmfgRxf7a
https://www.amazon.com/Deep-Reinforcement-Learning-Python-Hands/dp/0135172381
https://www.amazon.com/Deep-Reinforcement-Learning-Python-Hands/dp/0135172381
https://arxiv.org/abs/2401.14953
https://proceedings.neurips.cc/paper_files/paper/2020/file/3bb585ea00014b0e3ebe4c6dd165a358-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3bb585ea00014b0e3ebe4c6dd165a358-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3bb585ea00014b0e3ebe4c6dd165a358-Paper.pdf
https://openreview.net/pdf?id=qHGCH75usg
https://openreview.net/pdf?id=qHGCH75usg
https://proceedings.neurips.cc/paper_files/paper/2022/hash/ced0d3b92bb83b15c43ee32c7f57d867-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/ced0d3b92bb83b15c43ee32c7f57d867-Abstract-Conference.html
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1811.04551
http://arxiv.org/abs/1811.04551
https://openreview.net/forum?id=S1lOTC4tDS

[Haf+21] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. “Mastering Atari with discrete world models”.
In: ICLR. 2021.

[Haf+23] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. “Mastering Diverse Domains through World
Models”. In: arXiv [cs.AI] (Jan. 2023). url: http://arxiv.org/abs/2301.04104.

[Han+19] S. Hansen, W. Dabney, A. Barreto, D. Warde-Farley, T. Van de Wiele, and V. Mnih. “Fast
Task Inference with Variational Intrinsic Successor Features”. In: ICLR. Sept. 2019. url:
https://openreview.net/pdf?id=BJeAHkrYDS.

[Har+18] J. Harb, P.-L. Bacon, M. Klissarov, and D. Precup. “When waiting is not an option: Learning
options with a deliberation cost”. en. In: AAAI 32.1 (Apr. 2018). url: https://ojs.aaai.
org/index.php/AAAI/article/view/11831.

[Has10] H. van Hasselt. “Double Q-learning”. In: NIPS. Ed. by J. D. Lafferty, C. K. I. Williams, J
Shawe-Taylor, R. S. Zemel, and A Culotta. Curran Associates, Inc., 2010, pp. 2613–2621. url:
http://papers.nips.cc/paper/3964-double-q-learning.pdf.

[Has+16] H. van Hasselt, A. Guez, M. Hessel, V. Mnih, and D. Silver. “Learning values across many
orders of magnitude”. In: NIPS. Feb. 2016.

[HDCM15] A. Hallak, D. Di Castro, and S. Mannor. “Contextual Markov decision processes”. In: arXiv
[stat.ML] (Feb. 2015). url: http://arxiv.org/abs/1502.02259.

[HE16] J. Ho and S. Ermon. “Generative Adversarial Imitation Learning”. In: NIPS. 2016, pp. 4565–
4573.

[Hes+18] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver. “Rainbow: Combining Improvements in Deep Reinforcement Learning”.
In: AAAI. 2018. url: http://arxiv.org/abs/1710.02298.

[Hes+19] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van Hasselt. “Multi-task
deep reinforcement learning with PopArt”. In: AAAI. 2019.

[HGS16] H. van Hasselt, A. Guez, and D. Silver. “Deep Reinforcement Learning with Double Q-Learning”.
In: AAAI. AAAI’16. AAAI Press, 2016, pp. 2094–2100. url: http://dl.acm.org/citation.
cfm?id=3016100.3016191.

[HHA19] H. van Hasselt, M. Hessel, and J. Aslanides. “When to use parametric models in reinforcement
learning?” In: NIPS. 2019. url: http://arxiv.org/abs/1906.05243.

[HL04] D. R. Hunter and K. Lange. “A Tutorial on MM Algorithms”. In: The American Statistician 58
(2004), pp. 30–37.

[HL20] O. van der Himst and P. Lanillos. “Deep active inference for partially observable MDPs”. In:
ECML workshop on active inference. Sept. 2020. url: https://arxiv.org/abs/2009.03622.

[HM20] M. Hosseini and A. Maida. “Hierarchical Predictive Coding Models in a Deep-Learning Frame-
work”. In: (2020). arXiv: 2005.03230 [cs.CV]. url: http://arxiv.org/abs/2005.03230.

[Hon+10] A. Honkela, T. Raiko, M. Kuusela, M. Tornio, and J. Karhunen. “Approximate Riemannian
Conjugate Gradient Learning for Fixed-Form Variational Bayes”. In: JMLR 11.Nov (2010),
pp. 3235–3268. url: http://www.jmlr.org/papers/volume11/honkela10a/honkela10a.pdf.

[Hon+23] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. “A two-timescale stochastic algorithm framework for
bilevel optimization: Complexity analysis and application to actor-critic”. en. In: SIAM J. Optim.
33.1 (Mar. 2023), pp. 147–180. url: https://epubs.siam.org/doi/10.1137/20M1387341.

[Hou+11] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. “Bayesian active learning for classifica-
tion and preference learning”. In: arXiv [stat.ML] (Dec. 2011). url: http://arxiv.org/abs/
1112.5745.

[HQC24] M. Hutter, D. Quarel, and E. Catt. An introduction to universal artificial intelligence. Chapman
and Hall, 2024. url: http://www.hutter1.net/ai/uaibook2.htm.

125

http://arxiv.org/abs/2301.04104
https://openreview.net/pdf?id=BJeAHkrYDS
https://ojs.aaai.org/index.php/AAAI/article/view/11831
https://ojs.aaai.org/index.php/AAAI/article/view/11831
http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://arxiv.org/abs/1502.02259
http://arxiv.org/abs/1710.02298
http://dl.acm.org/citation.cfm?id=3016100.3016191
http://dl.acm.org/citation.cfm?id=3016100.3016191
http://arxiv.org/abs/1906.05243
https://arxiv.org/abs/2009.03622
https://arxiv.org/abs/2005.03230
http://arxiv.org/abs/2005.03230
http://www.jmlr.org/papers/volume11/honkela10a/honkela10a.pdf
https://epubs.siam.org/doi/10.1137/20M1387341
http://arxiv.org/abs/1112.5745
http://arxiv.org/abs/1112.5745
http://www.hutter1.net/ai/uaibook2.htm

[HR11] R. Hafner and M. Riedmiller. “Reinforcement learning in feedback control: Challenges and
benchmarks from technical process control”. en. In: Mach. Learn. 84.1-2 (July 2011), pp. 137–169.
url: https://link.springer.com/article/10.1007/s10994-011-5235-x.

[HR17] C. Hoffmann and P. Rostalski. “Linear Optimal Control on Factor Graphs — A Message
Passing Perspective”. In: Intl. Federation of Automatic Control 50.1 (2017), pp. 6314–6319. url:
https://www.sciencedirect.com/science/article/pii/S2405896317313800.

[HS18] D. Ha and J. Schmidhuber. “World Models”. In: NIPS. 2018. url: http://arxiv.org/abs/
1803.10122.

[HSW22a] N. A. Hansen, H. Su, and X. Wang. “Temporal Difference Learning for Model Predictive Control”.
en. In: ICML. PMLR, June 2022, pp. 8387–8406. url: https://proceedings.mlr.press/
v162/hansen22a.html.

[HSW22b] N. A. Hansen, H. Su, and X. Wang. “Temporal Difference Learning for Model Predictive Control”.
en. In: ICML. PMLR, June 2022, pp. 8387–8406. url: https://proceedings.mlr.press/
v162/hansen22a.html.

[HTB18] G. Z. Holland, E. J. Talvitie, and M. Bowling. “The effect of planning shape on Dyna-style
planning in high-dimensional state spaces”. In: arXiv [cs.AI] (June 2018). url: http://arxiv.
org/abs/1806.01825.

[Hu+20] Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and C. Fan. “Learning to Utilize Shap-
ing Rewards: A New Approach of Reward Shaping”. In: NIPS 33 (2020), pp. 15931–15941. url:
https://proceedings.neurips.cc/paper_files/paper/2020/file/b710915795b9e9c02cf10d6d2bdb688c-
Paper.pdf.

[Hub+21] T. Hubert, J. Schrittwieser, I. Antonoglou, M. Barekatain, S. Schmitt, and D. Silver. “Learning
and planning in complex action spaces”. In: arXiv [cs.LG] (Apr. 2021). url: http://arxiv.
org/abs/2104.06303.

[Hut05] M. Hutter. Universal Artificial Intelligence: Sequential Decisions Based On Algorithmic Proba-
bility. en. 2005th ed. Springer, 2005. url: http://www.hutter1.net/ai/uaibook.htm.

[Ich+23] B. Ichter et al. “Do As I Can, Not As I Say: Grounding Language in Robotic Affordances”. en. In:
Conference on Robot Learning. PMLR, Mar. 2023, pp. 287–318. url: https://proceedings.
mlr.press/v205/ichter23a.html.

[ID19] S. Ivanov and A. D’yakonov. “Modern Deep Reinforcement Learning algorithms”. In: arXiv
[cs.LG] (June 2019). url: http://arxiv.org/abs/1906.10025.

[IW18] E. Imani and M. White. “Improving Regression Performance with Distributional Losses”. en.
In: ICML. PMLR, July 2018, pp. 2157–2166. url: https://proceedings.mlr.press/v80/
imani18a.html.

[Jae00] H Jaeger. “Observable operator models for discrete stochastic time series”. en. In: Neural
Comput. 12.6 (June 2000), pp. 1371–1398. url: https://direct.mit.edu/neco/article-
pdf/12/6/1371/814514/089976600300015411.pdf.

[Jan+19a] M. Janner, J. Fu, M. Zhang, and S. Levine. “When to Trust Your Model: Model-Based Policy
Optimization”. In: NIPS. 2019. url: http://arxiv.org/abs/1906.08253.

[Jan+19b] D. Janz, J. Hron, P. Mazur, K. Hofmann, J. M. Hernández-Lobato, and S. Tschiatschek.
“Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning”. In:
NIPS. Vol. 32. 2019. url: https://proceedings.neurips.cc/paper_files/paper/2019/
file/1b113258af3968aaf3969ca67e744ff8-Paper.pdf.

[Jan+22] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. “Planning with Diffusion for Flexible
Behavior Synthesis”. In: ICML. May 2022. url: http://arxiv.org/abs/2205.09991.

[Jar+23] D. Jarrett, C. Tallec, F. Altché, T. Mesnard, R. Munos, and M. Valko. “Curiosity in Hindsight:
Intrinsic Exploration in Stochastic Environments”. In: ICML. June 2023. url: https://
openreview.net/pdf?id=fIH2G4fnSy.

126

https://link.springer.com/article/10.1007/s10994-011-5235-x
https://www.sciencedirect.com/science/article/pii/S2405896317313800
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122
https://proceedings.mlr.press/v162/hansen22a.html
https://proceedings.mlr.press/v162/hansen22a.html
https://proceedings.mlr.press/v162/hansen22a.html
https://proceedings.mlr.press/v162/hansen22a.html
http://arxiv.org/abs/1806.01825
http://arxiv.org/abs/1806.01825
https://proceedings.neurips.cc/paper_files/paper/2020/file/b710915795b9e9c02cf10d6d2bdb688c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b710915795b9e9c02cf10d6d2bdb688c-Paper.pdf
http://arxiv.org/abs/2104.06303
http://arxiv.org/abs/2104.06303
http://www.hutter1.net/ai/uaibook.htm
https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
http://arxiv.org/abs/1906.10025
https://proceedings.mlr.press/v80/imani18a.html
https://proceedings.mlr.press/v80/imani18a.html
https://direct.mit.edu/neco/article-pdf/12/6/1371/814514/089976600300015411.pdf
https://direct.mit.edu/neco/article-pdf/12/6/1371/814514/089976600300015411.pdf
http://arxiv.org/abs/1906.08253
https://proceedings.neurips.cc/paper_files/paper/2019/file/1b113258af3968aaf3969ca67e744ff8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1b113258af3968aaf3969ca67e744ff8-Paper.pdf
http://arxiv.org/abs/2205.09991
https://openreview.net/pdf?id=fIH2G4fnSy
https://openreview.net/pdf?id=fIH2G4fnSy

[JCM24] M. Jones, P. Chang, and K. Murphy. “Bayesian online natural gradient (BONG)”. In: May 2024.
url: http://arxiv.org/abs/2405.19681.

[JGP16] E. Jang, S. Gu, and B. Poole. “Categorical Reparameterization with Gumbel-Softmax”. In:
(2016). arXiv: 1611.01144 [stat.ML]. url: http://arxiv.org/abs/1611.01144.

[Jia+15] N. Jiang, A. Kulesza, S. Singh, and R. Lewis. “The Dependence of Effective Planning Horizon
on Model Accuracy”. en. In: Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems. AAMAS ’15. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems, May 2015, pp. 1181–1189. url: https://dl.acm.
org/doi/10.5555/2772879.2773300.

[Jin+22] L. Jing, P. Vincent, Y. LeCun, and Y. Tian. “Understanding Dimensional Collapse in Contrastive
Self-supervised Learning”. In: ICLR. 2022. url: https : / / openreview . net / forum ? id =
YevsQ05DEN7.

[JLL21] M. Janner, Q. Li, and S. Levine. “Offline Reinforcement Learning as One Big Sequence Modeling
Problem”. In: NIPS. June 2021.

[JM70] D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming. Elsevier Press, 1970.

[JML20] M. Janner, I. Mordatch, and S. Levine. “Gamma-Models: Generative Temporal Difference
Learning for Infinite-Horizon Prediction”. In: NIPS. Vol. 33. 2020, pp. 1724–1735. url: https://
proceedings.neurips.cc/paper_files/paper/2020/file/12ffb0968f2f56e51a59a6beb37b2859-
Paper.pdf.

[Jor+24] S. M. Jordan, A. White, B. C. da Silva, M. White, and P. S. Thomas. “Position: Benchmarking
is Limited in Reinforcement Learning Research”. In: ICML. June 2024. url: https://arxiv.
org/abs/2406.16241.

[JSJ94] T. Jaakkola, S. Singh, and M. Jordan. “Reinforcement Learning Algorithm for Partially Observ-
able Markov Decision Problems”. In: NIPS. 1994.

[KAG19] A. Kirsch, J. van Amersfoort, and Y. Gal. “BatchBALD: Efficient and Diverse Batch Acquisition
for Deep Bayesian Active Learning”. In: NIPS. 2019. url: http://arxiv.org/abs/1906.08158.

[Kai+19] L. Kaiser et al. “Model-based reinforcement learning for Atari”. In: arXiv [cs.LG] (Mar. 2019).
url: http://arxiv.org/abs/1903.00374.

[Kak01] S. M. Kakade. “A Natural Policy Gradient”. In: NIPS. Vol. 14. 2001. url: https://proceedings.
neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.
pdf.

[Kal+18] D. Kalashnikov et al. “QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic
Manipulation”. In: CORL. 2018. url: http://arxiv.org/abs/1806.10293.

[Kap+18] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney. “Recurrent Experience Replay
in Distributed Reinforcement Learning”. In: ICLR. Sept. 2018. url: https://openreview.
net/pdf?id=r1lyTjAqYX.

[Kap+22] S. Kapturowski, V. Campos, R. Jiang, N. Rakicevic, H. van Hasselt, C. Blundell, and A. P.
Badia. “Human-level Atari 200x faster”. In: ICLR. Sept. 2022. url: https://openreview.net/
pdf?id=JtC6yOHRoJJ.

[Kau+23] T. Kaufmann, P. Weng, V. Bengs, and E. Hüllermeier. “A survey of reinforcement learning from
human feedback”. In: arXiv [cs.LG] (Dec. 2023). url: http://arxiv.org/abs/2312.14925.

[KB09] G. Konidaris and A. Barto. “Skill Discovery in Continuous Reinforcement Learning Domains
using Skill Chaining”. In: Advances in Neural Information Processing Systems 22 (2009). url:
https://proceedings.neurips.cc/paper_files/paper/2009/file/e0cf1f47118daebc5b16269099ad7347-
Paper.pdf.

127

http://arxiv.org/abs/2405.19681
https://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1611.01144
https://dl.acm.org/doi/10.5555/2772879.2773300
https://dl.acm.org/doi/10.5555/2772879.2773300
https://openreview.net/forum?id=YevsQ05DEN7
https://openreview.net/forum?id=YevsQ05DEN7
https://proceedings.neurips.cc/paper_files/paper/2020/file/12ffb0968f2f56e51a59a6beb37b2859-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/12ffb0968f2f56e51a59a6beb37b2859-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/12ffb0968f2f56e51a59a6beb37b2859-Paper.pdf
https://arxiv.org/abs/2406.16241
https://arxiv.org/abs/2406.16241
http://arxiv.org/abs/1906.08158
http://arxiv.org/abs/1903.00374
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
http://arxiv.org/abs/1806.10293
https://openreview.net/pdf?id=r1lyTjAqYX
https://openreview.net/pdf?id=r1lyTjAqYX
https://openreview.net/pdf?id=JtC6yOHRoJJ
https://openreview.net/pdf?id=JtC6yOHRoJJ
http://arxiv.org/abs/2312.14925
https://proceedings.neurips.cc/paper_files/paper/2009/file/e0cf1f47118daebc5b16269099ad7347-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/e0cf1f47118daebc5b16269099ad7347-Paper.pdf

[KD18] S. Kamthe and M. P. Deisenroth. “Data-Efficient Reinforcement Learning with Probabilistic
Model Predictive Control”. In: AISTATS. 2018. url: http://proceedings.mlr.press/v84/
kamthe18a/kamthe18a.pdf.

[Ke+19] L. Ke, S. Choudhury, M. Barnes, W. Sun, G. Lee, and S. Srinivasa. Imitation Learning as
f -Divergence Minimization. arXiv:1905.12888. 2019.

[KGO12] H. J. Kappen, V. Gómez, and M. Opper. “Optimal control as a graphical model inference
problem”. In: Mach. Learn. 87.2 (2012), pp. 159–182. url: https://doi.org/10.1007/s10994-
012-5278-7.

[Khe+20] K. Khetarpal, Z. Ahmed, G. Comanici, D. Abel, and D. Precup. “What can I do here? A
Theory of Affordances in Reinforcement Learning”. In: Proceedings of the 37th International
Conference on Machine Learning. Ed. by H. D. Iii and A. Singh. Vol. 119. Proceedings of
Machine Learning Research. PMLR, 2020, pp. 5243–5253. url: https://proceedings.mlr.
press/v119/khetarpal20a.html.

[Kid+20] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. “MOReL: Model-Based Offline
Reinforcement Learning”. In: NIPS. Vol. 33. 2020, pp. 21810–21823. url: https://proceedings.
neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.
pdf.

[Kir+21] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel. “A survey of zero-shot generalisation
in deep Reinforcement Learning”. In: JAIR (Nov. 2021). url: http://jair.org/index.php/
jair/article/view/14174.

[KLC98] L. P. Kaelbling, M. Littman, and A. Cassandra. “Planning and acting in Partially Observable
Stochastic Domains”. In: AIJ 101 (1998).

[Kli+24] M. Klissarov, P. D’Oro, S. Sodhani, R. Raileanu, P.-L. Bacon, P. Vincent, A. Zhang, and M.
Henaff. “Motif: Intrinsic motivation from artificial intelligence feedback”. In: ICLR. 2024.

[KLP11] L. P. Kaelbling and T Lozano-Pérez. “Hierarchical task and motion planning in the now”. In:
ICRA. 2011, pp. 1470–1477. url: http://dx.doi.org/10.1109/ICRA.2011.5980391.

[Koz+21] T. Kozuno, Y. Tang, M. Rowland, R Munos, S. Kapturowski, W. Dabney, M. Valko, and
D. Abel. “Revisiting Peng’s Q-lambda for modern reinforcement learning”. In: ICML 139 (Feb.
2021). Ed. by M. Meila and T. Zhang, pp. 5794–5804. url: https://proceedings.mlr.press/
v139/kozuno21a/kozuno21a.pdf.

[KP19] K. Khetarpal and D. Precup. “Learning options with interest functions”. en. In: AAAI 33.01 (July
2019), pp. 9955–9956. url: https://ojs.aaai.org/index.php/AAAI/article/view/5114.

[KPL19] A. Kumar, X. B. Peng, and S. Levine. “Reward-Conditioned Policies”. In: arXiv [cs.LG] (Dec.
2019). url: http://arxiv.org/abs/1912.13465.

[KS02] M. Kearns and S. Singh. “Near-Optimal Reinforcement Learning in Polynomial Time”. en. In:
MLJ 49.2/3 (Nov. 2002), pp. 209–232. url: https://link.springer.com/article/10.1023/
A:1017984413808.

[KS06] L. Kocsis and C. Szepesvári. “Bandit Based Monte-Carlo Planning”. In: ECML. 2006, pp. 282–
293.

[KSS23] T. Kneib, A. Silbersdorff, and B. Säfken. “Rage Against the Mean – A Review of Distributional
Regression Approaches”. In: Econometrics and Statistics 26 (Apr. 2023), pp. 99–123. url:
https://www.sciencedirect.com/science/article/pii/S2452306221000824.

[Kum+19] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. “Stabilizing Off-Policy Q-Learning via
Bootstrapping Error Reduction”. In: NIPS. Vol. 32. 2019. url: https://proceedings.neurips.
cc/paper_files/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf.

[Kum+20] A. Kumar, A. Zhou, G. Tucker, and S. Levine. “Conservative Q-Learning for Offline Reinforce-
ment Learning”. In: NIPS. June 2020.

128

http://proceedings.mlr.press/v84/kamthe18a/kamthe18a.pdf
http://proceedings.mlr.press/v84/kamthe18a/kamthe18a.pdf
https://doi.org/10.1007/s10994-012-5278-7
https://doi.org/10.1007/s10994-012-5278-7
https://proceedings.mlr.press/v119/khetarpal20a.html
https://proceedings.mlr.press/v119/khetarpal20a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
http://jair.org/index.php/jair/article/view/14174
http://jair.org/index.php/jair/article/view/14174
http://dx.doi.org/10.1109/ICRA.2011.5980391
https://proceedings.mlr.press/v139/kozuno21a/kozuno21a.pdf
https://proceedings.mlr.press/v139/kozuno21a/kozuno21a.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/5114
http://arxiv.org/abs/1912.13465
https://link.springer.com/article/10.1023/A:1017984413808
https://link.springer.com/article/10.1023/A:1017984413808
https://www.sciencedirect.com/science/article/pii/S2452306221000824
https://proceedings.neurips.cc/paper_files/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf

[Kum+23] A. Kumar, R. Agarwal, X. Geng, G. Tucker, and S. Levine. “Offline Q-Learning on Diverse
Multi-Task Data Both Scales And Generalizes”. In: ICLR. 2023. url: http://arxiv.org/abs/
2211.15144.

[Kum+24] S. Kumar, H. J. Jeon, A. Lewandowski, and B. Van Roy. “The Need for a Big World Simulator:
A Scientific Challenge for Continual Learning”. In: Finding the Frame: An RLC Workshop
for Examining Conceptual Frameworks. July 2024. url: https://openreview.net/pdf?id=
10XMwt1nMJ.

[Kur+19] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel. “Model-Ensemble Trust-Region
Policy Optimization”. In: ICLR. 2019. url: http://arxiv.org/abs/1802.10592.

[LA21] H. Liu and P. Abbeel. “APS: Active Pretraining with Successor Features”. en. In: ICML. PMLR,
July 2021, pp. 6736–6747. url: https://proceedings.mlr.press/v139/liu21b.html.

[Lai+21] H. Lai, J. Shen, W. Zhang, Y. Huang, X. Zhang, R. Tang, Y. Yu, and Z. Li. “On effective
scheduling of model-based reinforcement learning”. In: NIPS 34 (Nov. 2021). Ed. by M Ran-
zato, A Beygelzimer, Y Dauphin, P. S. Liang, and J. W. Vaughan, pp. 3694–3705. url: https://
proceedings.neurips.cc/paper_files/paper/2021/hash/1e4d36177d71bbb3558e43af9577d70e-
Abstract.html.

[Lam+20] N. Lambert, B. Amos, O. Yadan, and R. Calandra. “Objective Mismatch in Model-based
Reinforcement Learning”. In: Conf. on Learning for Dynamics and Control (L4DC). Feb. 2020.

[Law+22] D. Lawson, A. Raventós, A. Warrington, and S. Linderman. “SIXO: Smoothing Inference with
Twisted Objectives”. In: NIPS. June 2022.

[Leh24] M. Lehmann. “The definitive guide to policy gradients in deep reinforcement learning: Theory,
algorithms and implementations”. In: arXiv [cs.LG] (Jan. 2024). url: http://arxiv.org/abs/
2401.13662.

[Lev18] S. Levine. “Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review”.
In: (2018). arXiv: 1805.00909 [cs.LG]. url: http://arxiv.org/abs/1805.00909.

[Lev+18] A. Levy, G. Konidaris, R. Platt, and K. Saenko. “Learning Multi-Level Hierarchies with
Hindsight”. In: ICLR. Sept. 2018. url: https://openreview.net/pdf?id=ryzECoAcY7.

[Lev+20a] S. Levine, A. Kumar, G. Tucker, and J. Fu. “Offline Reinforcement Learning: Tutorial, Review,
and Perspectives on Open Problems”. In: (2020). arXiv: 2005.01643 [cs.LG]. url: http:
//arxiv.org/abs/2005.01643.

[Lev+20b] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline Reinforcement Learning: Tutorial, Review,
and Perspectives on Open Problems. arXiv:2005.01643. 2020.

[LG+24] M. Lázaro-Gredilla, L. Y. Ku, K. P. Murphy, and D. George. “What type of inference is
planning?” In: NIPS. June 2024.

[LGR12] S. Lange, T. Gabel, and M. Riedmiller. “Batch reinforcement learning”. en. In: Adaptation,
Learning, and Optimization. Adaptation, learning, and optimization. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 45–73. url: https://link.springer.com/chapter/10.1007/978-
3-642-27645-3_2.

[LHC24] C. Lu, S. Hu, and J. Clune. “Intelligent Go-Explore: Standing on the shoulders of giant foundation
models”. In: arXiv [cs.LG] (May 2024). url: http://arxiv.org/abs/2405.15143.

[LHS13] T. Lattimore, M. Hutter, and P. Sunehag. “The Sample-Complexity of General Reinforcement
Learning”. en. In: ICML. PMLR, May 2013, pp. 28–36. url: https://proceedings.mlr.
press/v28/lattimore13.html.

[Li+10] L. Li, W. Chu, J. Langford, and R. E. Schapire. “A contextual-bandit approach to personalized
news article recommendation”. In: WWW. 2010.

[Li18] Y. Li. “Deep Reinforcement Learning”. In: (2018). arXiv: 1810.06339 [cs.LG]. url: http:
//arxiv.org/abs/1810.06339.

129

http://arxiv.org/abs/2211.15144
http://arxiv.org/abs/2211.15144
https://openreview.net/pdf?id=10XMwt1nMJ
https://openreview.net/pdf?id=10XMwt1nMJ
http://arxiv.org/abs/1802.10592
https://proceedings.mlr.press/v139/liu21b.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/1e4d36177d71bbb3558e43af9577d70e-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/1e4d36177d71bbb3558e43af9577d70e-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/1e4d36177d71bbb3558e43af9577d70e-Abstract.html
http://arxiv.org/abs/2401.13662
http://arxiv.org/abs/2401.13662
https://arxiv.org/abs/1805.00909
http://arxiv.org/abs/1805.00909
https://openreview.net/pdf?id=ryzECoAcY7
https://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
https://link.springer.com/chapter/10.1007/978-3-642-27645-3_2
https://link.springer.com/chapter/10.1007/978-3-642-27645-3_2
http://arxiv.org/abs/2405.15143
https://proceedings.mlr.press/v28/lattimore13.html
https://proceedings.mlr.press/v28/lattimore13.html
https://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1810.06339

[Li23] S. E. Li. Reinforcement learning for sequential decision and optimal control. en. Singapore:
Springer Nature Singapore, 2023. url: https://link.springer.com/book/10.1007/978-
981-19-7784-8.

[Li+24] H. Li, X. Yang, Z. Wang, X. Zhu, J. Zhou, Y. Qiao, X. Wang, H. Li, L. Lu, and J. Dai. “Auto
MC-Reward: Automated Dense Reward Design with Large Language Models for Minecraft”. In:
CVPR. 2024, pp. 16426–16435. url: https://openaccess.thecvf.com/content/CVPR2024/
papers/Li_Auto_MC-Reward_Automated_Dense_Reward_Design_with_Large_Language_
Models_CVPR_2024_paper.pdf.

[Lil+16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
“Continuous control with deep reinforcement learning”. In: ICLR. 2016. url: http://arxiv.
org/abs/1509.02971.

[Lin+19] C. Linke, N. M. Ady, M. White, T. Degris, and A. White. “Adapting behaviour via intrinsic
reward: A survey and empirical study”. In: J. Artif. Intell. Res. (June 2019). url: http:
//arxiv.org/abs/1906.07865.

[Lin+24a] J. Lin, Y. Du, O. Watkins, D. Hafner, P. Abbeel, D. Klein, and A. Dragan. “Learning to model
the world with language”. In: ICML. 2024.

[Lin+24b] Y.-A. Lin, C.-T. Lee, C.-H. Yang, G.-T. Liu, and S.-H. Sun. “Hierarchical Programmatic Option
Framework”. In: NIPS. Nov. 2024. url: https://openreview.net/pdf?id=FeCWZviCeP.

[Lin92] L.-J. Lin. “Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and
Teaching”. In: Mach. Learn. 8.3-4 (1992), pp. 293–321. url: https://doi.org/10.1007/
BF00992699.

[Lio+22] V. Lioutas, J. W. Lavington, J. Sefas, M. Niedoba, Y. Liu, B. Zwartsenberg, S. Dabiri, F.
Wood, and A. Scibior. “Critic Sequential Monte Carlo”. In: ICLR. Sept. 2022. url: https:
//openreview.net/pdf?id=ObtGcyKmwna.

[LMW24] B. Li, N. Ma, and Z. Wang. “Rewarded Region Replay (R3) for policy learning with discrete
action space”. In: arXiv [cs.LG] (May 2024). url: http://arxiv.org/abs/2405.16383.

[Lor24] J. Lorraine. “Scalable nested optimization for deep learning”. In: arXiv [cs.LG] (July 2024).
url: http://arxiv.org/abs/2407.01526.

[LÖW21] T. van de Laar, A. Özçelikkale, and H. Wymeersch. “Application of the Free Energy Principle
to Estimation and Control”. In: IEEE Trans. Signal Process. 69 (2021), pp. 4234–4244. url:
http://dx.doi.org/10.1109/TSP.2021.3095711.

[LPC22] N. Lambert, K. Pister, and R. Calandra. “Investigating Compounding Prediction Errors in
Learned Dynamics Models”. In: arXiv [cs.LG] (Mar. 2022). url: http://arxiv.org/abs/
2203.09637.

[LR10] S. Lange and M. Riedmiller. “Deep auto-encoder neural networks in reinforcement learning”.
en. In: IJCNN. IEEE, July 2010, pp. 1–8. url: https://ieeexplore.ieee.org/abstract/
document/5596468.

[LS01] M. Littman and R. S. Sutton. “Predictive Representations of State”. In: Advances in Neural
Information Processing Systems 14 (2001). url: https://proceedings.neurips.cc/paper_
files/paper/2001/file/1e4d36177d71bbb3558e43af9577d70e-Paper.pdf.

[LS19] T. Lattimore and C. Szepesvari. Bandit Algorithms. Cambridge, 2019.

[Lu+23] X. Lu, B. Van Roy, V. Dwaracherla, M. Ibrahimi, I. Osband, and Z. Wen. “Reinforcement Learn-
ing, Bit by Bit”. In: Found. Trends® Mach. Learn. (2023). url: https://www.nowpublishers.
com/article/Details/MAL-097.

[LV06] F. Liese and I. Vajda. “On divergences and informations in statistics and information theory”.
In: IEEE Transactions on Information Theory 52.10 (2006), pp. 4394–4412.

130

https://link.springer.com/book/10.1007/978-981-19-7784-8
https://link.springer.com/book/10.1007/978-981-19-7784-8
https://openaccess.thecvf.com/content/CVPR2024/papers/Li_Auto_MC-Reward_Automated_Dense_Reward_Design_with_Large_Language_Models_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Li_Auto_MC-Reward_Automated_Dense_Reward_Design_with_Large_Language_Models_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Li_Auto_MC-Reward_Automated_Dense_Reward_Design_with_Large_Language_Models_CVPR_2024_paper.pdf
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1906.07865
http://arxiv.org/abs/1906.07865
https://openreview.net/pdf?id=FeCWZviCeP
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://openreview.net/pdf?id=ObtGcyKmwna
https://openreview.net/pdf?id=ObtGcyKmwna
http://arxiv.org/abs/2405.16383
http://arxiv.org/abs/2407.01526
http://dx.doi.org/10.1109/TSP.2021.3095711
http://arxiv.org/abs/2203.09637
http://arxiv.org/abs/2203.09637
https://ieeexplore.ieee.org/abstract/document/5596468
https://ieeexplore.ieee.org/abstract/document/5596468
https://proceedings.neurips.cc/paper_files/paper/2001/file/1e4d36177d71bbb3558e43af9577d70e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/1e4d36177d71bbb3558e43af9577d70e-Paper.pdf
https://www.nowpublishers.com/article/Details/MAL-097
https://www.nowpublishers.com/article/Details/MAL-097

[LWL06] L. Li, T. J. Walsh, and M. L. Littman. “Towards a Unified Theory of State Abstraction for
MDPs”. In: (2006). url: https://thomasjwalsh.net/pub/aima06Towards.pdf.

[LZZ22] M. Liu, M. Zhu, and W. Zhang. “Goal-conditioned reinforcement learning: Problems and
solutions”. In: IJCAI. Jan. 2022.

[Ma+24] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and
A. Anandkumar. “Eureka: Human-Level Reward Design via Coding Large Language Models”.
In: ICLR. 2024.

[Mac+18a] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and M. Bowling.
“Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for
General Agents”. In: J. Artif. Intell. Res. (2018). url: http://arxiv.org/abs/1709.06009.

[Mac+18b] M. C. Machado, C. Rosenbaum, X. Guo, M. Liu, G. Tesauro, and M. Campbell. “Eigenoption
Discovery through the Deep Successor Representation”. In: ICLR. Feb. 2018. url: https:
//openreview.net/pdf?id=Bk8ZcAxR-.

[Mac+23] M. C. Machado, A. Barreto, D. Precup, and M. Bowling. “Temporal Abstraction in Reinforcement
Learning with the Successor Representation”. In: JMLR 24.80 (2023), pp. 1–69. url: http:
//jmlr.org/papers/v24/21-1213.html.

[Mad+17] C. J. Maddison, D. Lawson, G. Tucker, N. Heess, A. Doucet, A. Mnih, and Y. W. Teh. “Particle
Value Functions”. In: ICLR Workshop on RL. Mar. 2017.

[Mae+09] H. Maei, C. Szepesvári, S. Bhatnagar, D. Precup, D. Silver, and R. S. Sutton. “Convergent
Temporal-Difference Learning with Arbitrary Smooth Function Approximation”. In: NIPS.
Vol. 22. 2009. url: https://proceedings.neurips.cc/paper_files/paper/2009/file/
3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf.

[MAF22] V. Micheli, E. Alonso, and F. Fleuret. “Transformers are Sample-Efficient World Models”. In:
ICLR. Sept. 2022.

[MAF24] V. Micheli, E. Alonso, and F. Fleuret. “Efficient world models with context-aware tokenization”.
In: ICML. June 2024.

[Maj21] S. J. Majeed. “Abstractions of general reinforcement learning: An inquiry into the scalability
of generally intelligent agents”. PhD thesis. ANU, Dec. 2021. url: https://arxiv.org/abs/
2112.13404.

[Man+19] D. J. Mankowitz, N. Levine, R. Jeong, Y. Shi, J. Kay, A. Abdolmaleki, J. T. Springenberg,
T. Mann, T. Hester, and M. Riedmiller. “Robust Reinforcement Learning for Continuous
Control with Model Misspecification”. In: (2019). arXiv: 1906.07516 [cs.LG]. url: http:
//arxiv.org/abs/1906.07516.

[Mar10] J Martens. “Deep learning via Hessian-free optimization”. In: ICML. 2010. url: http://www.
cs.toronto.edu/~asamir/cifar/HFO_James.pdf.

[Mar16] J. Martens. “Second-order optimization for neural networks”. PhD thesis. Toronto, 2016. url:
http://www.cs.toronto.edu/~jmartens/docs/thesis_phd_martens.pdf.

[Mar20] J. Martens. “New insights and perspectives on the natural gradient method”. In: JMLR (2020).
url: http://arxiv.org/abs/1412.1193.

[Mar21] J. Marino. “Predictive Coding, Variational Autoencoders, and Biological Connections”. en. In:
Neural Comput. 34.1 (2021), pp. 1–44. url: http://dx.doi.org/10.1162/neco_a_01458.

[Maz+22] P. Mazzaglia, T. Verbelen, O. Çatal, and B. Dhoedt. “The Free Energy Principle for Perception
and Action: A Deep Learning Perspective”. en. In: Entropy 24.2 (2022). url: http://dx.doi.
org/10.3390/e24020301.

[MBB20] M. C. Machado, M. G. Bellemare, and M. Bowling. “Count-based exploration with the successor
representation”. en. In: AAAI 34.04 (Apr. 2020), pp. 5125–5133. url: https://ojs.aaai.org/
index.php/AAAI/article/view/5955.

131

https://thomasjwalsh.net/pub/aima06Towards.pdf
http://arxiv.org/abs/1709.06009
https://openreview.net/pdf?id=Bk8ZcAxR-
https://openreview.net/pdf?id=Bk8ZcAxR-
http://jmlr.org/papers/v24/21-1213.html
http://jmlr.org/papers/v24/21-1213.html
https://proceedings.neurips.cc/paper_files/paper/2009/file/3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf
https://arxiv.org/abs/2112.13404
https://arxiv.org/abs/2112.13404
https://arxiv.org/abs/1906.07516
http://arxiv.org/abs/1906.07516
http://arxiv.org/abs/1906.07516
http://www.cs.toronto.edu/~asamir/cifar/HFO_James.pdf
http://www.cs.toronto.edu/~asamir/cifar/HFO_James.pdf
http://www.cs.toronto.edu/~jmartens/docs/thesis_phd_martens.pdf
http://arxiv.org/abs/1412.1193
http://dx.doi.org/10.1162/neco_a_01458
http://dx.doi.org/10.3390/e24020301
http://dx.doi.org/10.3390/e24020301
https://ojs.aaai.org/index.php/AAAI/article/view/5955
https://ojs.aaai.org/index.php/AAAI/article/view/5955

[McM+13] H. B. McMahan, G. Holt, D Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E.
Davydov, D. Golovin, et al. “Ad click prediction: a view from the trenches”. In: KDD. 2013,
pp. 1222–1230.

[Men+23] W. Meng, Q. Zheng, G. Pan, and Y. Yin. “Off-Policy Proximal Policy Optimization”. en. In:
AAAI 37.8 (June 2023), pp. 9162–9170. url: https://ojs.aaai.org/index.php/AAAI/
article/view/26099.

[Met+17] L. Metz, J. Ibarz, N. Jaitly, and J. Davidson. “Discrete Sequential Prediction of Continuous
Actions for Deep RL”. In: (2017). arXiv: 1705.05035 [cs.LG]. url: http://arxiv.org/abs/
1705.05035.

[Mey22] S. Meyn. Control Systems and Reinforcement Learning. Cambridge, 2022. url: https://meyn.
ece.ufl.edu/2021/08/01/control-systems-and-reinforcement-learning/.

[MG15] J. Martens and R. Grosse. “Optimizing Neural Networks with Kronecker-factored Approximate
Curvature”. In: ICML. 2015. url: http://arxiv.org/abs/1503.05671.

[Mik+20] V. Mikulik, G. Delétang, T. McGrath, T. Genewein, M. Martic, S. Legg, and P. Ortega. “Meta-
trained agents implement Bayes-optimal agents”. In: NIPS 33 (2020), pp. 18691–18703. url:
https://proceedings.neurips.cc/paper_files/paper/2020/file/d902c3ce47124c66ce615d5ad9ba304f-
Paper.pdf.

[Mil20] B. Millidge. “Deep Active Inference as Variational Policy Gradients”. In: J. Mathematical
Psychology (2020). url: http://arxiv.org/abs/1907.03876.

[Mil+20] B. Millidge, A. Tschantz, A. K. Seth, and C. L. Buckley. “On the Relationship Between Active
Inference and Control as Inference”. In: International Workshop on Active Inference. 2020. url:
http://arxiv.org/abs/2006.12964.

[MM90] D. Q. Mayne and H Michalska. “Receding horizon control of nonlinear systems”. In: IEEE Trans.
Automat. Contr. 35.7 (1990), pp. 814–824.

[MMT17] C. J. Maddison, A. Mnih, and Y. W. Teh. “The Concrete Distribution: A Continuous Relaxation
of Discrete Random Variables”. In: ICLR. 2017. url: http://arxiv.org/abs/1611.00712.

[MMT24] S. Mannor, Y. Mansour, and A. Tamar. Reinforcement Learning: Foundations. 2024. url:
https://sites.google.com/corp/view/rlfoundations/home.

[Mni+15] V. Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature 518.7540
(2015), pp. 529–533.

[Mni+16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu. “Asynchronous Methods for Deep Reinforcement Learning”. In: ICML. 2016. url:
http://arxiv.org/abs/1602.01783.

[Moe+23] T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker. “Model-based Reinforcement
Learning: A Survey”. In: Foundations and Trends in Machine Learning 16.1 (2023), pp. 1–118.
url: https://arxiv.org/abs/2006.16712.

[Moh+20] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih. “Monte Carlo Gradient Estimation in
Machine Learning”. In: JMLR 21.132 (2020), pp. 1–62. url: http://jmlr.org/papers/v21/19-
346.html.

[Mor63] T. Morimoto. “Markov Processes and the H-Theorem”. In: J. Phys. Soc. Jpn. 18.3 (1963),
pp. 328–331. url: https://doi.org/10.1143/JPSJ.18.328.

[MP+22] A. Mavor-Parker, K. Young, C. Barry, and L. Griffin. “How to Stay Curious while avoiding Noisy
TVs using Aleatoric Uncertainty Estimation”. en. In: ICML. PMLR, June 2022, pp. 15220–15240.
url: https://proceedings.mlr.press/v162/mavor-parker22a.html.

[MSB21] B. Millidge, A. Seth, and C. L. Buckley. “Predictive Coding: a Theoretical and Experimental
Review”. In: (2021). arXiv: 2107.12979 [cs.AI]. url: http://arxiv.org/abs/2107.12979.

132

https://ojs.aaai.org/index.php/AAAI/article/view/26099
https://ojs.aaai.org/index.php/AAAI/article/view/26099
https://arxiv.org/abs/1705.05035
http://arxiv.org/abs/1705.05035
http://arxiv.org/abs/1705.05035
https://meyn.ece.ufl.edu/2021/08/01/control-systems-and-reinforcement-learning/
https://meyn.ece.ufl.edu/2021/08/01/control-systems-and-reinforcement-learning/
http://arxiv.org/abs/1503.05671
https://proceedings.neurips.cc/paper_files/paper/2020/file/d902c3ce47124c66ce615d5ad9ba304f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d902c3ce47124c66ce615d5ad9ba304f-Paper.pdf
http://arxiv.org/abs/1907.03876
http://arxiv.org/abs/2006.12964
http://arxiv.org/abs/1611.00712
https://sites.google.com/corp/view/rlfoundations/home
http://arxiv.org/abs/1602.01783
https://arxiv.org/abs/2006.16712
http://jmlr.org/papers/v21/19-346.html
http://jmlr.org/papers/v21/19-346.html
https://doi.org/10.1143/JPSJ.18.328
https://proceedings.mlr.press/v162/mavor-parker22a.html
https://arxiv.org/abs/2107.12979
http://arxiv.org/abs/2107.12979

[Mun14] R. Munos. “From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to
Optimization and Planning”. In: Foundations and Trends in Machine Learning 7.1 (2014),
pp. 1–129. url: http://dx.doi.org/10.1561/2200000038.

[Mun+16] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare. “Safe and Efficient Off-Policy
Reinforcement Learning”. In: NIPS. 2016, pp. 1046–1054.

[Mur00] K. Murphy. A Survey of POMDP Solution Techniques. Tech. rep. Comp. Sci. Div., UC Berkeley,
2000. url: https://www.cs.ubc.ca/~murphyk/Papers/pomdp.pdf.

[Mur23] K. P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023.

[MWS14] J. Modayil, A. White, and R. S. Sutton. “Multi-timescale nexting in a reinforcement learning
robot”. en. In: Adapt. Behav. 22.2 (Apr. 2014), pp. 146–160. url: https://sites.ualberta.
ca/~amw8/nexting.pdf.

[Nac+18] O. Nachum, S. Gu, H. Lee, and S. Levine. “Data-Efficient Hierarchical Reinforcement Learn-
ing”. In: NIPS. May 2018. url: https://proceedings.neurips.cc/paper/2018/hash/
e6384711491713d29bc63fc5eeb5ba4f-Abstract.html.

[Nac+19] O. Nachum, S. Gu, H. Lee, and S. Levine. “Near-Optimal Representation Learning for Hier-
archical Reinforcement Learning”. In: ICLR. 2019. url: https://openreview.net/pdf?id=
H1emus0qF7.

[Nai+20] A. Nair, A. Gupta, M. Dalal, and S. Levine. “AWAC: Accelerating Online Reinforcement
Learning with Offline Datasets”. In: arXiv [cs.LG] (June 2020). url: http://arxiv.org/abs/
2006.09359.

[Nak+23] M. Nakamoto, Y. Zhai, A. Singh, M. S. Mark, Y. Ma, C. Finn, A. Kumar, and S. Levine.
“Cal-QL: Calibrated offline RL pre-training for efficient online fine-tuning”. In: arXiv [cs.LG]
(Mar. 2023). url: http://arxiv.org/abs/2303.05479.

[NHR99] A. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations: Theory and
application to reward shaping”. In: ICML. 1999.

[Ni+24] T. Ni, B. Eysenbach, E. Seyedsalehi, M. Ma, C. Gehring, A. Mahajan, and P.-L. Bacon. “Bridging
State and History Representations: Understanding Self-Predictive RL”. In: ICLR. Jan. 2024.
url: http://arxiv.org/abs/2401.08898.

[Nik+22] E. Nikishin, R. Abachi, R. Agarwal, and P.-L. Bacon. “Control-oriented model-based reinforce-
ment learning with implicit differentiation”. en. In: AAAI 36.7 (June 2022), pp. 7886–7894. url:
https://ojs.aaai.org/index.php/AAAI/article/view/20758.

[NR00] A. Ng and S. Russell. “Algorithms for inverse reinforcement learning”. In: ICML. 2000.

[NT20] C. Nota and P. S. Thomas. “Is the policy gradient a gradient?” In: Proc. of the 19th International
Conference on Autonomous Agents and MultiAgent Systems. 2020.

[NWJ10] X Nguyen, M. J. Wainwright, and M. I. Jordan. “Estimating Divergence Functionals and the
Likelihood Ratio by Convex Risk Minimization”. In: IEEE Trans. Inf. Theory 56.11 (2010),
pp. 5847–5861. url: http://dx.doi.org/10.1109/TIT.2010.2068870.

[OCD21] G. Ostrovski, P. S. Castro, and W. Dabney. “The Difficulty of Passive Learning in Deep Reinforce-
ment Learning”. In: NIPS. Vol. 34. Dec. 2021, pp. 23283–23295. url: https://proceedings.
neurips.cc/paper_files/paper/2021/file/c3e0c62ee91db8dc7382bde7419bb573-Paper.
pdf.

[OK22] A. Ororbia and D. Kifer. “The neural coding framework for learning generative models”. en. In:
Nat. Commun. 13.1 (Apr. 2022), p. 2064. url: https://www.nature.com/articles/s41467-
022-29632-7.

[ORVR13] I. Osband, D. Russo, and B. Van Roy. “(More) Efficient Reinforcement Learning via Posterior
Sampling”. In: NIPS. 2013. url: http://arxiv.org/abs/1306.0940.

133

http://dx.doi.org/10.1561/2200000038
https://www.cs.ubc.ca/~murphyk/Papers/pomdp.pdf
https://sites.ualberta.ca/~amw8/nexting.pdf
https://sites.ualberta.ca/~amw8/nexting.pdf
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://openreview.net/pdf?id=H1emus0qF7
https://openreview.net/pdf?id=H1emus0qF7
http://arxiv.org/abs/2006.09359
http://arxiv.org/abs/2006.09359
http://arxiv.org/abs/2303.05479
http://arxiv.org/abs/2401.08898
https://ojs.aaai.org/index.php/AAAI/article/view/20758
http://dx.doi.org/10.1109/TIT.2010.2068870
https://proceedings.neurips.cc/paper_files/paper/2021/file/c3e0c62ee91db8dc7382bde7419bb573-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c3e0c62ee91db8dc7382bde7419bb573-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c3e0c62ee91db8dc7382bde7419bb573-Paper.pdf
https://www.nature.com/articles/s41467-022-29632-7
https://www.nature.com/articles/s41467-022-29632-7
http://arxiv.org/abs/1306.0940

[Osb+19] I. Osband, B. Van Roy, D. J. Russo, and Z. Wen. “Deep exploration via randomized value
functions”. In: JMLR 20.124 (2019), pp. 1–62. url: http://jmlr.org/papers/v20/18-
339.html.

[Osb+23a] I. Osband, Z. Wen, S. M. Asghari, V. Dwaracherla, M. Ibrahimi, X. Lu, and B. Van Roy.
“Approximate Thompson Sampling via Epistemic Neural Networks”. en. In: UAI. PMLR, July
2023, pp. 1586–1595. url: https://proceedings.mlr.press/v216/osband23a.html.

[Osb+23b] I. Osband, Z. Wen, S. M. Asghari, V. Dwaracherla, M. Ibrahimi, X. Lu, and B. Van Roy.
“Epistemic Neural Networks”. In: NIPS. 2023. url: https://proceedings.neurips.cc/paper_
files/paper/2023/file/07fbde96bee50f4e09303fd4f877c2f3-Paper-Conference.pdf.

[OSL17] J. Oh, S. Singh, and H. Lee. “Value Prediction Network”. In: NIPS. July 2017.

[OT22] M. Okada and T. Taniguchi. “DreamingV2: Reinforcement learning with discrete world models
without reconstruction”. en. In: 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, Oct. 2022, pp. 985–991. url: https://ieeexplore.ieee.org/
abstract/document/9981405.

[Ouy+22] L. Ouyang et al. “Training language models to follow instructions with human feedback”. In:
(Mar. 2022). arXiv: 2203.02155 [cs.CL]. url: http://arxiv.org/abs/2203.02155.

[OVR17] I. Osband and B. Van Roy. “Why is posterior sampling better than optimism for reinforcement
learning?” In: ICML. 2017, pp. 2701–2710.

[PAG24] M. Panwar, K. Ahuja, and N. Goyal. “In-context learning through the Bayesian prism”. In:
ICLR. 2024. url: https://arxiv.org/abs/2306.04891.

[Par+23] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. “Generative
agents: Interactive simulacra of human behavior”. en. In: Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology. New York, NY, USA: ACM, Oct. 2023.
url: https://dl.acm.org/doi/10.1145/3586183.3606763.

[Par+24a] S. Park, K. Frans, B. Eysenbach, and S. Levine. “OGBench: Benchmarking Offline Goal-
Conditioned RL”. In: arXiv [cs.LG] (Oct. 2024). url: http://arxiv.org/abs/2410.20092.

[Par+24b] S. Park, K. Frans, S. Levine, and A. Kumar. “Is value learning really the main bottleneck in
offline RL?” In: NIPS. June 2024. url: https://arxiv.org/abs/2406.09329.

[Pat+17] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. “Curiosity-driven Exploration by Self-
supervised Prediction”. In: ICML. 2017. url: http://arxiv.org/abs/1705.05363.

[Pat+22] S. Pateria, B. Subagdja, A.-H. Tan, and C. Quek. “Hierarchical Reinforcement Learning: A
comprehensive survey”. en. In: ACM Comput. Surv. 54.5 (June 2022), pp. 1–35. url: https:
//dl.acm.org/doi/10.1145/3453160.

[Pat+24] A. Patterson, S. Neumann, M. White, and A. White. “Empirical design in reinforcement learning”.
In: JMLR (2024). url: http://arxiv.org/abs/2304.01315.

[PB+14] N. Parikh, S. Boyd, et al. “Proximal algorithms”. In: Foundations and Trends in Optimization
1.3 (2014), pp. 127–239.

[Pea84] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley
Longman Publishing Co., Inc., 1984. url: https://dl.acm.org/citation.cfm?id=525.

[Pea94] B. A. Pearlmutter. “Fast Exact Multiplication by the Hessian”. In: Neural Comput. 6.1 (1994),
pp. 147–160. url: https://doi.org/10.1162/neco.1994.6.1.147.

[Pen+19] X. B. Peng, A. Kumar, G. Zhang, and S. Levine. “Advantage-weighted regression: Simple
and scalable off-policy reinforcement learning”. In: arXiv [cs.LG] (Sept. 2019). url: http:
//arxiv.org/abs/1910.00177.

[Pic+19] A. Piche, V. Thomas, C. Ibrahim, Y. Bengio, and C. Pal. “Probabilistic Planning with Sequential
Monte Carlo methods”. In: ICLR. 2019. url: https://openreview.net/pdf?id=ByetGn0cYX.

134

http://jmlr.org/papers/v20/18-339.html
http://jmlr.org/papers/v20/18-339.html
https://proceedings.mlr.press/v216/osband23a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/07fbde96bee50f4e09303fd4f877c2f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/07fbde96bee50f4e09303fd4f877c2f3-Paper-Conference.pdf
https://ieeexplore.ieee.org/abstract/document/9981405
https://ieeexplore.ieee.org/abstract/document/9981405
https://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2306.04891
https://dl.acm.org/doi/10.1145/3586183.3606763
http://arxiv.org/abs/2410.20092
https://arxiv.org/abs/2406.09329
http://arxiv.org/abs/1705.05363
https://dl.acm.org/doi/10.1145/3453160
https://dl.acm.org/doi/10.1145/3453160
http://arxiv.org/abs/2304.01315
https://dl.acm.org/citation.cfm?id=525
https://doi.org/10.1162/neco.1994.6.1.147
http://arxiv.org/abs/1910.00177
http://arxiv.org/abs/1910.00177
https://openreview.net/pdf?id=ByetGn0cYX

[Pis+22] M. Pislar, D. Szepesvari, G. Ostrovski, D. L. Borsa, and T. Schaul. “When should agents
explore?” In: ICLR. 2022. url: https://openreview.net/pdf?id=dEwfxt14bca.

[PKP21] A. Plaat, W. Kosters, and M. Preuss. “High-Accuracy Model-Based Reinforcement Learning, a
Survey”. In: (2021). arXiv: 2107.08241 [cs.LG]. url: http://arxiv.org/abs/2107.08241.

[Pla22] A. Plaat. Deep reinforcement learning, a textbook. Berlin, Germany: Springer, Jan. 2022. url:
https://link.springer.com/10.1007/978-981-19-0638-1.

[PMB22] K. Paster, S. McIlraith, and J. Ba. “You can’t count on luck: Why decision transformers and
RvS fail in stochastic environments”. In: arXiv [cs.LG] (May 2022). url: http://arxiv.org/
abs/2205.15967.

[Pom89] D. Pomerleau. “ALVINN: An Autonomous Land Vehicle in a Neural Network”. In: NIPS. 1989,
pp. 305–313.

[Pow22] W. B. Powell. Reinforcement Learning and Stochastic Optimization: A Unified Framework
for Sequential Decisions. en. 1st ed. Wiley, Mar. 2022. url: https://www.amazon.com/
Reinforcement-Learning-Stochastic-Optimization-Sequential/dp/1119815037.

[PR12] W. B. Powell and I. O. Ryzhov. Optimal Learning. Wiley Series in Probability and Statistics.
http://optimallearning.princeton.edu/. Hoboken, NJ: Wiley-Blackwell, Mar. 2012. url: https:
//castle.princeton.edu/wp-content/uploads/2019/02/Powell-OptimalLearningWileyMarch112018.
pdf.

[PS07] J. Peters and S. Schaal. “Reinforcement Learning by Reward-Weighted Regression for Operational
Space Control”. In: ICML. 2007, pp. 745–750.

[PSS00] D. Precup, R. S. Sutton, and S. P. Singh. “Eligibility Traces for Off-Policy Policy Evaluation”.
In: ICML. ICML ’00. Morgan Kaufmann Publishers Inc., 2000, pp. 759–766. url: http:
//dl.acm.org/citation.cfm?id=645529.658134.

[PT87] C. Papadimitriou and J. Tsitsiklis. “The complexity of Markov decision processes”. In: Mathe-
matics of Operations Research 12.3 (1987), pp. 441–450.

[Put94] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,
1994.

[PW94] J. Peng and R. J. Williams. “Incremental Multi-Step Q-Learning”. In: Machine Learning
Proceedings. Elsevier, Jan. 1994, pp. 226–232. url: http://dx.doi.org/10.1016/B978-1-
55860-335-6.50035-0.

[QPC21] J. Queeney, I. C. Paschalidis, and C. G. Cassandras. “Generalized Proximal Policy Optimization
with Sample Reuse”. In: NIPS. Oct. 2021.

[QPC24] J. Queeney, I. C. Paschalidis, and C. G. Cassandras. “Generalized Policy Improvement algorithms
with theoretically supported sample reuse”. In: IEEE Trans. Automat. Contr. (2024). url:
http://arxiv.org/abs/2206.13714.

[Rab89] L. R. Rabiner. “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition”. In: Proc. of the IEEE 77.2 (1989), pp. 257–286.

[Raf+23] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. “Direct Preference
Optimization: Your language model is secretly a reward model”. In: arXiv [cs.LG] (May 2023).
url: http://arxiv.org/abs/2305.18290.

[Raf+24] R. Rafailov et al. “D5RL: Diverse datasets for data-driven deep reinforcement learning”. In:
RLC. Aug. 2024. url: https://arxiv.org/abs/2408.08441.

[Raj+17] A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade. “Towards generalization and simplicity
in continuous control”. In: NIPS. Mar. 2017.

[Rao10] A. V. Rao. “A Survey of Numerical Methods for Optimal Control”. In: Adv. Astronaut. Sci.
135.1 (2010). url: http://dx.doi.org/.

135

https://openreview.net/pdf?id=dEwfxt14bca
https://arxiv.org/abs/2107.08241
http://arxiv.org/abs/2107.08241
https://link.springer.com/10.1007/978-981-19-0638-1
http://arxiv.org/abs/2205.15967
http://arxiv.org/abs/2205.15967
https://www.amazon.com/Reinforcement-Learning-Stochastic-Optimization-Sequential/dp/1119815037
https://www.amazon.com/Reinforcement-Learning-Stochastic-Optimization-Sequential/dp/1119815037
https://castle.princeton.edu/wp-content/uploads/2019/02/Powell-OptimalLearningWileyMarch112018.pdf
https://castle.princeton.edu/wp-content/uploads/2019/02/Powell-OptimalLearningWileyMarch112018.pdf
https://castle.princeton.edu/wp-content/uploads/2019/02/Powell-OptimalLearningWileyMarch112018.pdf
http://dl.acm.org/citation.cfm?id=645529.658134
http://dl.acm.org/citation.cfm?id=645529.658134
http://dx.doi.org/10.1016/B978-1-55860-335-6.50035-0
http://dx.doi.org/10.1016/B978-1-55860-335-6.50035-0
http://arxiv.org/abs/2206.13714
http://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2408.08441
http://dx.doi.org/

[RB12] S. Ross and J. A. Bagnell. “Agnostic system identification for model-based reinforcement
learning”. In: ICML. Mar. 2012.

[RB99] R. P. Rao and D. H. Ballard. “Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects”. en. In: Nat. Neurosci. 2.1 (1999), pp. 79–87. url:
http://dx.doi.org/10.1038/4580.

[Rec19] B. Recht. “A Tour of Reinforcement Learning: The View from Continuous Control”. In: Annual
Review of Control, Robotics, and Autonomous Systems 2 (2019), pp. 253–279. url: http:
//arxiv.org/abs/1806.09460.

[Ree+22] S. Reed et al. “A Generalist Agent”. In: TMLR (May 2022). url: https://arxiv.org/abs/
2205.06175.

[Ren+24] A. Z. Ren, J. Lidard, L. L. Ankile, A. Simeonov, P. Agrawal, A. Majumdar, B. Burchfiel, H. Dai,
and M. Simchowitz. “Diffusion Policy Policy Optimization”. In: arXiv [cs.RO] (Aug. 2024). url:
http://arxiv.org/abs/2409.00588.

[RFP15] I. O. Ryzhov, P. I. Frazier, and W. B. Powell. “A new optimal stepsize for approximate dynamic
programming”. en. In: IEEE Trans. Automat. Contr. 60.3 (Mar. 2015), pp. 743–758. url:
https://castle.princeton.edu/Papers/Ryzhov-OptimalStepsizeforADPFeb242015.pdf.

[RGB11] S. Ross, G. J. Gordon, and J. A. Bagnell. “A reduction of imitation learning and structured
prediction to no-regret online learning”. In: AISTATS. 2011.

[Rie05] M. Riedmiller. “Neural fitted Q iteration – first experiences with a data efficient neural reinforce-
ment learning method”. en. In: ECML. Lecture notes in computer science. 2005, pp. 317–328.
url: https://link.springer.com/chapter/10.1007/11564096_32.

[Rie+18] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele, V. Mnih, N. Heess,
and J. T. Springenberg. “Learning by Playing Solving Sparse Reward Tasks from Scratch”. en.
In: ICML. PMLR, July 2018, pp. 4344–4353. url: https://proceedings.mlr.press/v80/
riedmiller18a.html.

[RJ22] A. Rao and T. Jelvis. Foundations of Reinforcement Learning with Applications in Finance.
Chapman and Hall/ CRC, 2022. url: https://github.com/TikhonJelvis/RL-book.

[RK04] R. Rubinstein and D. Kroese. The Cross-Entropy Method: A Unified Approach to Combinatorial
Optimization, Monte-Carlo Simulation, and Machine Learning. Springer-Verlag, 2004.

[RLT18] M. Riemer, M. Liu, and G. Tesauro. “Learning Abstract Options”. In: NIPS 31 (2018). url:
https://proceedings.neurips.cc/paper_files/paper/2018/file/cdf28f8b7d14ab02d12a2329d71e4079-
Paper.pdf.

[RMD22] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. Model Predictive Control: Theory, Computa-
tion, and Design (2nd ed). en. Nob Hill Publishing, LLC, Sept. 2022. url: https://sites.
engineering.ucsb.edu/~jbraw/mpc/MPC-book-2nd-edition-1st-printing.pdf.

[RMK20] A. Rajeswaran, I. Mordatch, and V. Kumar. “A game theoretic framework for model based
reinforcement learning”. In: ICML. 2020.

[RN19] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 4th edition. Prentice Hall,
2019.

[RN94] G. A. Rummery and M Niranjan. On-Line Q-Learning Using Connectionist Systems. Tech. rep.
Cambridge Univ. Engineering Dept., 1994. url: http://dx.doi.org/.

[RR14] D. Russo and B. V. Roy. “Learning to Optimize via Posterior Sampling”. In: Math. Oper. Res.
39.4 (2014), pp. 1221–1243.

[RTV12] K. Rawlik, M. Toussaint, and S. Vijayakumar. “On stochastic optimal control and reinforcement
learning by approximate inference”. In: Robotics: Science and Systems VIII. Robotics: Science and
Systems Foundation, 2012. url: https://blogs.cuit.columbia.edu/zp2130/files/2019/
03/On_Stochasitc_Optimal_Control_and_Reinforcement_Learning_by_Approximate_
Inference.pdf.

136

http://dx.doi.org/10.1038/4580
http://arxiv.org/abs/1806.09460
http://arxiv.org/abs/1806.09460
https://arxiv.org/abs/2205.06175
https://arxiv.org/abs/2205.06175
http://arxiv.org/abs/2409.00588
https://castle.princeton.edu/Papers/Ryzhov-OptimalStepsizeforADPFeb242015.pdf
https://link.springer.com/chapter/10.1007/11564096_32
https://proceedings.mlr.press/v80/riedmiller18a.html
https://proceedings.mlr.press/v80/riedmiller18a.html
https://github.com/TikhonJelvis/RL-book
https://proceedings.neurips.cc/paper_files/paper/2018/file/cdf28f8b7d14ab02d12a2329d71e4079-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/cdf28f8b7d14ab02d12a2329d71e4079-Paper.pdf
https://sites.engineering.ucsb.edu/~jbraw/mpc/MPC-book-2nd-edition-1st-printing.pdf
https://sites.engineering.ucsb.edu/~jbraw/mpc/MPC-book-2nd-edition-1st-printing.pdf
http://dx.doi.org/
https://blogs.cuit.columbia.edu/zp2130/files/2019/03/On_Stochasitc_Optimal_Control_and_Reinforcement_Learning_by_Approximate_Inference.pdf
https://blogs.cuit.columbia.edu/zp2130/files/2019/03/On_Stochasitc_Optimal_Control_and_Reinforcement_Learning_by_Approximate_Inference.pdf
https://blogs.cuit.columbia.edu/zp2130/files/2019/03/On_Stochasitc_Optimal_Control_and_Reinforcement_Learning_by_Approximate_Inference.pdf

[Rub97] R. Y. Rubinstein. “Optimization of computer simulation models with rare events”. In: Eur. J.
Oper. Res. 99.1 (1997), pp. 89–112. url: http://www.sciencedirect.com/science/article/
pii/S0377221796003852.

[Rus+18] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen. “A Tutorial on Thompson
Sampling”. In: Foundations and Trends in Machine Learning 11.1 (2018), pp. 1–96. url:
http://dx.doi.org/10.1561/2200000070.

[Rus19] S. Russell. Human Compatible: Artificial Intelligence and the Problem of Control. en. Kin-
dle. Viking, 2019. url: https : / / www . amazon . com / Human - Compatible - Artificial -
Intelligence- Problem- ebook/dp/B07N5J5FTS/ref=zg_bs_3887_4?_encoding=UTF8&
psc=1&refRID=0JE0ST011W4K15PTFZAT.

[RW91] S. Russell and E. Wefald. “Principles of metareasoning”. en. In: Artif. Intell. 49.1-3 (May 1991),
pp. 361–395. url: http://dx.doi.org/10.1016/0004-3702(91)90015-C.

[Ryu+20] M. Ryu, Y. Chow, R. Anderson, C. Tjandraatmadja, and C. Boutilier. “CAQL: Continuous
Action Q-Learning”. In: ICLR. 2020. url: https://openreview.net/forum?id=BkxXe0Etwr.

[Saj+21] N. Sajid, P. J. Ball, T. Parr, and K. J. Friston. “Active Inference: Demystified and Compared”.
en. In: Neural Comput. 33.3 (Mar. 2021), pp. 674–712. url: https://web.archive.org/web/
20210628163715id_/https://discovery.ucl.ac.uk/id/eprint/10119277/1/Friston_
neco_a_01357.pdf.

[Sal+23] T. Salvatori, A. Mali, C. L. Buckley, T. Lukasiewicz, R. P. N. Rao, K. Friston, and A. Ororbia.
“Brain-inspired computational intelligence via predictive coding”. In: arXiv [cs.AI] (Aug. 2023).
url: http://arxiv.org/abs/2308.07870.

[Sal+24] T. Salvatori, Y. Song, Y. Yordanov, B. Millidge, L. Sha, C. Emde, Z. Xu, R. Bogacz, and
T. Lukasiewicz. “A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive Coding
Networks”. In: ICLR. Oct. 2024. url: https://openreview.net/pdf?id=RyUvzda8GH.

[SB18] R. Sutton and A. Barto. Reinforcement learning: an introduction (2nd edn). MIT Press, 2018.

[Sch10] J. Schmidhuber. “Formal Theory of Creativity, Fun, and Intrinsic Motivation”. In: IEEE Trans.
Autonomous Mental Development 2 (2010). url: http://people.idsia.ch/~juergen/
ieeecreative.pdf.

[Sch+15a] T. Schaul, D. Horgan, K. Gregor, and D. Silver. “Universal Value Function Approximators”. en.
In: ICML. PMLR, June 2015, pp. 1312–1320. url: https://proceedings.mlr.press/v37/
schaul15.html.

[Sch+15b] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy Optimiza-
tion”. In: ICML. 2015. url: http://arxiv.org/abs/1502.05477.

[Sch+16a] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. “Prioritized Experience Replay”. In: ICLR.
2016. url: http://arxiv.org/abs/1511.05952.

[Sch+16b] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. “High-Dimensional Continuous
Control Using Generalized Advantage Estimation”. In: ICLR. 2016. url: http://arxiv.org/
abs/1506.02438.

[Sch+17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization
Algorithms”. In: (2017). arXiv: 1707.06347 [cs.LG]. url: http://arxiv.org/abs/1707.
06347.

[Sch19] J. Schmidhuber. “Reinforcement learning Upside Down: Don’t predict rewards – just map them
to actions”. In: arXiv [cs.AI] (Dec. 2019). url: http://arxiv.org/abs/1912.02875.

[Sch+20] J. Schrittwieser et al. “Mastering Atari, Go, Chess and Shogi by Planning with a Learned
Model”. In: Nature (2020). url: http://arxiv.org/abs/1911.08265.

137

http://www.sciencedirect.com/science/article/pii/S0377221796003852
http://www.sciencedirect.com/science/article/pii/S0377221796003852
http://dx.doi.org/10.1561/2200000070
https://www.amazon.com/Human-Compatible-Artificial-Intelligence-Problem-ebook/dp/B07N5J5FTS/ref=zg_bs_3887_4?_encoding=UTF8&psc=1&refRID=0JE0ST011W4K15PTFZAT
https://www.amazon.com/Human-Compatible-Artificial-Intelligence-Problem-ebook/dp/B07N5J5FTS/ref=zg_bs_3887_4?_encoding=UTF8&psc=1&refRID=0JE0ST011W4K15PTFZAT
https://www.amazon.com/Human-Compatible-Artificial-Intelligence-Problem-ebook/dp/B07N5J5FTS/ref=zg_bs_3887_4?_encoding=UTF8&psc=1&refRID=0JE0ST011W4K15PTFZAT
http://dx.doi.org/10.1016/0004-3702(91)90015-C
https://openreview.net/forum?id=BkxXe0Etwr
https://web.archive.org/web/20210628163715id_/https://discovery.ucl.ac.uk/id/eprint/10119277/1/Friston_neco_a_01357.pdf
https://web.archive.org/web/20210628163715id_/https://discovery.ucl.ac.uk/id/eprint/10119277/1/Friston_neco_a_01357.pdf
https://web.archive.org/web/20210628163715id_/https://discovery.ucl.ac.uk/id/eprint/10119277/1/Friston_neco_a_01357.pdf
http://arxiv.org/abs/2308.07870
https://openreview.net/pdf?id=RyUvzda8GH
http://people.idsia.ch/~juergen/ieeecreative.pdf
http://people.idsia.ch/~juergen/ieeecreative.pdf
https://proceedings.mlr.press/v37/schaul15.html
https://proceedings.mlr.press/v37/schaul15.html
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1912.02875
http://arxiv.org/abs/1911.08265

[Sch+21] M. Schwarzer, A. Anand, R. Goel, R Devon Hjelm, A. Courville, and P. Bachman. “Data-
Efficient Reinforcement Learning with Self-Predictive Representations”. In: ICLR. 2021. url:
https://openreview.net/pdf?id=uCQfPZwRaUu.

[Sch+23a] I. Schubert, J. Zhang, J. Bruce, S. Bechtle, E. Parisotto, M. Riedmiller, J. T. Springenberg,
A. Byravan, L. Hasenclever, and N. Heess. “A Generalist Dynamics Model for Control”. In:
arXiv [cs.AI] (May 2023). url: http://arxiv.org/abs/2305.10912.

[Sch+23b] M. Schwarzer, J. Obando-Ceron, A. Courville, M. Bellemare, R. Agarwal, and P. S. Castro.
“Bigger, Better, Faster: Human-level Atari with human-level efficiency”. In: ICML. May 2023.
url: http://arxiv.org/abs/2305.19452.

[Sco10] S. Scott. “A modern Bayesian look at the multi-armed bandit”. In: Applied Stochastic Models in
Business and Industry 26 (2010), pp. 639–658.

[Sei+16] H. van Seijen, A Rupam Mahmood, P. M. Pilarski, M. C. Machado, and R. S. Sutton. “True
Online Temporal-Difference Learning”. In: JMLR (2016). url: http://jmlr.org/papers/
volume17/15-599/15-599.pdf.

[Sey+22] T. Seyde, P. Werner, W. Schwarting, I. Gilitschenski, M. Riedmiller, D. Rus, and M. Wulfmeier.
“Solving Continuous Control via Q-learning”. In: ICLR. Sept. 2022. url: https://openreview.
net/pdf?id=U5XOGxAgccS.

[Sha+20] R. Shah, P. Freire, N. Alex, R. Freedman, D. Krasheninnikov, L. Chan, M. D. Dennis, P.
Abbeel, A. Dragan, and S. Russell. “Benefits of Assistance over Reward Learning”. In: NIPS
Workshop. 2020. url: https://aima.cs.berkeley.edu/~russell/papers/neurips20ws-
assistance.pdf.

[Sie+20] N. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe, R.
Hafner, N. Heess, and M. Riedmiller. “Keep Doing What Worked: Behavior Modelling Priors
for Offline Reinforcement Learning”. In: ICLR. 2020. url: https://openreview.net/pdf?id=
rke7geHtwH.

[Sil+14] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. “Deterministic
Policy Gradient Algorithms”. In: ICML. ICML’14. JMLR.org, 2014, pp. I–387–I–395. url:
http://dl.acm.org/citation.cfm?id=3044805.3044850.

[Sil+16] D. Silver et al. “Mastering the game of Go with deep neural networks and tree search”. en. In:
Nature 529.7587 (2016), pp. 484–489. url: http://dx.doi.org/10.1038/nature16961.

[Sil+17a] D. Silver et al. “Mastering the game of Go without human knowledge”. en. In: Nature 550.7676
(2017), pp. 354–359. url: http://dx.doi.org/10.1038/nature24270.

[Sil+17b] D. Silver et al. “The predictron: end-to-end learning and planning”. In: ICML. 2017. url:
https://openreview.net/pdf?id=BkJsCIcgl.

[Sil18] D. Silver. Lecture 9L Exploration and Exploitation. 2018. url: http://www0.cs.ucl.ac.uk/
staff/d.silver/web/Teaching_files/XX.pdf.

[Sil+18] D. Silver et al. “A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play”. en. In: Science 362.6419 (2018), pp. 1140–1144. url: http://dx.doi.org/
10.1126/science.aar6404.

[Sin+00] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári. “Convergence Results for Single-
Step On-PolicyReinforcement-Learning Algorithms”. In: MLJ 38.3 (2000), pp. 287–308. url:
https://doi.org/10.1023/A:1007678930559.

[Ska+22] J. Skalse, N. H. R. Howe, D. Krasheninnikov, and D. Krueger. “Defining and characterizing
reward hacking”. In: NIPS. Sept. 2022.

[SKM18] S. Schwöbel, S. Kiebel, and D. Marković. “Active Inference, Belief Propagation, and the Bethe
Approximation”. en. In: Neural Comput. 30.9 (2018), pp. 2530–2567. url: http://dx.doi.org/
10.1162/neco_a_01108.

138

https://openreview.net/pdf?id=uCQfPZwRaUu
http://arxiv.org/abs/2305.10912
http://arxiv.org/abs/2305.19452
http://jmlr.org/papers/volume17/15-599/15-599.pdf
http://jmlr.org/papers/volume17/15-599/15-599.pdf
https://openreview.net/pdf?id=U5XOGxAgccS
https://openreview.net/pdf?id=U5XOGxAgccS
https://aima.cs.berkeley.edu/~russell/papers/neurips20ws-assistance.pdf
https://aima.cs.berkeley.edu/~russell/papers/neurips20ws-assistance.pdf
https://openreview.net/pdf?id=rke7geHtwH
https://openreview.net/pdf?id=rke7geHtwH
http://dl.acm.org/citation.cfm?id=3044805.3044850
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270
https://openreview.net/pdf?id=BkJsCIcgl
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/XX.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/XX.pdf
http://dx.doi.org/10.1126/science.aar6404
http://dx.doi.org/10.1126/science.aar6404
https://doi.org/10.1023/A:1007678930559
http://dx.doi.org/10.1162/neco_a_01108
http://dx.doi.org/10.1162/neco_a_01108

[Sli19] A. Slivkins. “Introduction to Multi-Armed Bandits”. In: Foundations and Trends in Machine
Learning (2019). url: http://arxiv.org/abs/1904.07272.

[Smi+23] F. B. Smith, A. Kirsch, S. Farquhar, Y. Gal, A. Foster, and T. Rainforth. “Prediction-Oriented
Bayesian Active Learning”. In: AISTATS. Apr. 2023. url: http://arxiv.org/abs/2304.08151.

[Sol64] R. J. Solomonoff. “A formal theory of inductive inference. Part I”. In: Information and Control
7.1 (Mar. 1964), pp. 1–22. url: https://www.sciencedirect.com/science/article/pii/
S0019995864902232.

[Son98] E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems. 2nd.
Vol. 6. Texts in Applied Mathematics. Springer, 1998.

[Spi+24] B. A. Spiegel, Z. Yang, W. Jurayj, B. Bachmann, S. Tellex, and G. Konidaris. “Informing
Reinforcement Learning Agents by Grounding Language to Markov Decision Processes”. In:
Workshop on Training Agents with Foundation Models at RLC 2024. Aug. 2024. url: https:
//openreview.net/pdf?id=uFm9e4Ly26.

[Spr17] M. W. Spratling. “A review of predictive coding algorithms”. en. In: Brain Cogn. 112 (2017),
pp. 92–97. url: http://dx.doi.org/10.1016/j.bandc.2015.11.003.

[SPS99] R. S. Sutton, D. Precup, and S. Singh. “Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning”. In: Artif. Intell. 112.1 (Aug. 1999), pp. 181–211.
url: http://www.sciencedirect.com/science/article/pii/S0004370299000521.

[SS21] D. Schmidt and T. Schmied. “Fast and Data-Efficient Training of Rainbow: an Experimental
Study on Atari”. In: Deep RL Workshop NeurIPS 2021. Dec. 2021. url: https://openreview.
net/pdf?id=GvM7A3cv63M.

[SSM08] R. S. Sutton, C. Szepesvári, and H. R. Maei. “A convergent O(n) algorithm for off-policy temporal-
difference learning with linear function approximation”. en. In: NIPS. NIPS’08. Red Hook, NY,
USA: Curran Associates Inc., Dec. 2008, pp. 1609–1616. url: https://proceedings.neurips.
cc/paper_files/paper/2008/file/e0c641195b27425bb056ac56f8953d24-Paper.pdf.

[Str00] M. Strens. “A Bayesian Framework for Reinforcement Learning”. In: ICML. 2000.

[Sub+22] J. Subramanian, A. Sinha, R. Seraj, and A. Mahajan. “Approximate information state for
approximate planning and reinforcement learning in partially observed systems”. In: JMLR
23.12 (2022), pp. 1–83. url: http://jmlr.org/papers/v23/20-1165.html.

[Sut+08] R. S. Sutton, C. Szepesvari, A. Geramifard, and M. P. Bowling. “Dyna-style planning with
linear function approximation and prioritized sweeping”. In: UAI. 2008.

[Sut15] R. Sutton. Introduction to RL with function approximation. NIPS Tutorial. 2015. url: http:
/ / media . nips . cc / Conferences / 2015 / tutorialslides / SuttonIntroRL - nips - 2015 -
tutorial.pdf.

[Sut88] R. Sutton. “Learning to predict by the methods of temporal differences”. In: Machine Learning
3.1 (1988), pp. 9–44.

[Sut90] R. S. Sutton. “Integrated Architectures for Learning, Planning, and Reacting Based on Ap-
proximating Dynamic Programming”. In: ICML. Ed. by B. Porter and R. Mooney. Morgan
Kaufmann, 1990, pp. 216–224. url: http://www.sciencedirect.com/science/article/
pii/B9781558601413500304.

[Sut95] R. S. Sutton. “TD models: Modeling the world at a mixture of time scales”. en. In: ICML.
Jan. 1995, pp. 531–539. url: https://www.sciencedirect.com/science/article/abs/pii/
B9781558603776500724.

[Sut96] R. S. Sutton. “Generalization in Reinforcement Learning: Successful Examples Using Sparse
Coarse Coding”. In: NIPS. Ed. by D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo. MIT
Press, 1996, pp. 1038–1044. url: http://papers.nips.cc/paper/1109-generalization-in-
reinforcement-learning-successful-examples-using-sparse-coarse-coding.pdf.

139

http://arxiv.org/abs/1904.07272
http://arxiv.org/abs/2304.08151
https://www.sciencedirect.com/science/article/pii/S0019995864902232
https://www.sciencedirect.com/science/article/pii/S0019995864902232
https://openreview.net/pdf?id=uFm9e4Ly26
https://openreview.net/pdf?id=uFm9e4Ly26
http://dx.doi.org/10.1016/j.bandc.2015.11.003
http://www.sciencedirect.com/science/article/pii/S0004370299000521
https://openreview.net/pdf?id=GvM7A3cv63M
https://openreview.net/pdf?id=GvM7A3cv63M
https://proceedings.neurips.cc/paper_files/paper/2008/file/e0c641195b27425bb056ac56f8953d24-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/e0c641195b27425bb056ac56f8953d24-Paper.pdf
http://jmlr.org/papers/v23/20-1165.html
http://media.nips.cc/Conferences/2015/tutorialslides/SuttonIntroRL-nips-2015-tutorial.pdf
http://media.nips.cc/Conferences/2015/tutorialslides/SuttonIntroRL-nips-2015-tutorial.pdf
http://media.nips.cc/Conferences/2015/tutorialslides/SuttonIntroRL-nips-2015-tutorial.pdf
http://www.sciencedirect.com/science/article/pii/B9781558601413500304
http://www.sciencedirect.com/science/article/pii/B9781558601413500304
https://www.sciencedirect.com/science/article/abs/pii/B9781558603776500724
https://www.sciencedirect.com/science/article/abs/pii/B9781558603776500724
http://papers.nips.cc/paper/1109-generalization-in-reinforcement-learning-successful-examples-using-sparse-coarse-coding.pdf
http://papers.nips.cc/paper/1109-generalization-in-reinforcement-learning-successful-examples-using-sparse-coarse-coding.pdf

[Sut+99] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. “Policy Gradient Methods for Reinforcement
Learning with Function Approximation”. In: NIPS. 1999.

[SW06] J. E. Smith and R. L. Winkler. “The Optimizer’s Curse: Skepticism and Postdecision Surprise
in Decision Analysis”. In: Manage. Sci. 52.3 (2006), pp. 311–322.

[Sze10] C. Szepesvari. Algorithms for Reinforcement Learning. Morgan Claypool, 2010.

[Tam+16] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel. “Value Iteration Networks”. In: NIPS.
2016. url: http://arxiv.org/abs/1602.02867.

[Tan+23] Y. Tang et al. “Understanding Self-Predictive Learning for Reinforcement Learning”. In: ICML.
2023. url: https://proceedings.mlr.press/v202/tang23d/tang23d.pdf.

[Ten02] R. B. A. Tennenholtz. “R-max – A General Polynomial Time Algorithm for Near-Optimal
Reinforcement Learning”. In: JMLR 3 (2002), pp. 213–231. url: http://www.ai.mit.edu/
projects/jmlr/papers/volume3/brafman02a/source/brafman02a.pdf.

[Tha+22] S. Thakoor, M. Rowland, D. Borsa, W. Dabney, R. Munos, and A. Barreto. “Generalised
Policy Improvement with Geometric Policy Composition”. en. In: ICML. PMLR, June 2022,
pp. 21272–21307. url: https://proceedings.mlr.press/v162/thakoor22a.html.

[Tho33] W. R. Thompson. “On the Likelihood that One Unknown Probability Exceeds Another in View
of the Evidence of Two Samples”. In: Biometrika 25.3/4 (1933), pp. 285–294.

[TKE24] H. Tang, D. Key, and K. Ellis. “WorldCoder, a model-based LLM agent: Building world models
by writing code and interacting with the environment”. In: arXiv [cs.AI] (Feb. 2024). url:
http://arxiv.org/abs/2402.12275.

[TL05] E. Todorov and W. Li. “A Generalized Iterative LQG Method for Locally-optimal Feedback
Control of Constrained Nonlinear Stochastic Systems”. In: ACC. 2005, pp. 300–306.

[TMM19] C. Tessler, D. J. Mankowitz, and S. Mannor. “Reward Constrained Policy Optimization”. In:
ICLR. 2019. url: https://openreview.net/pdf?id=SkfrvsA9FX.

[Tom+22] T. Tomilin, T. Dai, M. Fang, and M. Pechenizkiy. “LevDoom: A benchmark for generalization
on level difficulty in reinforcement learning”. In: 2022 IEEE Conference on Games (CoG). IEEE,
Aug. 2022. url: https://ieee-cog.org/2022/assets/papers/paper_30.pdf.

[Tom+24] M. Tomar, P. Hansen-Estruch, P. Bachman, A. Lamb, J. Langford, M. E. Taylor, and S. Levine.
“Video Occupancy Models”. In: arXiv [cs.CV] (June 2024). url: http://arxiv.org/abs/2407.
09533.

[Tou09] M. Toussaint. “Robot Rrajectory Optimization using Approximate Inference”. In: ICML. 2009,
pp. 1049–1056.

[Tou14] M. Toussaint. Bandits, Global Optimization, Active Learning, and Bayesian RL – understanding
the common ground. Autonomous Learning Summer School. 2014. url: https://www.user.
tu-berlin.de/mtoussai/teaching/14-BanditsOptimizationActiveLearningBayesianRL.
pdf.

[TR97] J. Tsitsiklis and B. V. Roy. “An analysis of temporal-difference learning with function approxi-
mation”. In: IEEE Trans. on Automatic Control 42.5 (1997), pp. 674–690.

[TS06] M. Toussaint and A. Storkey. “Probabilistic inference for solving discrete and continuous state
Markov Decision Processes”. In: ICML. 2006, pp. 945–952.

[Tsc+20] A. Tschantz, B. Millidge, A. K. Seth, and C. L. Buckley. “Reinforcement learning through active
inference”. In: ICLR workshop on “Bridging AI and Cognitive Science“. Feb. 2020.

[Tsc+23] A. Tscshantz, B. Millidge, A. K. Seth, and C. L. Buckley. “Hybrid predictive coding: Inferring,
fast and slow”. en. In: PLoS Comput. Biol. 19.8 (Aug. 2023), e1011280. url: https : / /
journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011280&
type=printable.

140

http://arxiv.org/abs/1602.02867
https://proceedings.mlr.press/v202/tang23d/tang23d.pdf
http://www.ai.mit.edu/projects/jmlr/papers/volume3/brafman02a/source/brafman02a.pdf
http://www.ai.mit.edu/projects/jmlr/papers/volume3/brafman02a/source/brafman02a.pdf
https://proceedings.mlr.press/v162/thakoor22a.html
http://arxiv.org/abs/2402.12275
https://openreview.net/pdf?id=SkfrvsA9FX
https://ieee-cog.org/2022/assets/papers/paper_30.pdf
http://arxiv.org/abs/2407.09533
http://arxiv.org/abs/2407.09533
https://www.user.tu-berlin.de/mtoussai/teaching/14-BanditsOptimizationActiveLearningBayesianRL.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/14-BanditsOptimizationActiveLearningBayesianRL.pdf
https://www.user.tu-berlin.de/mtoussai/teaching/14-BanditsOptimizationActiveLearningBayesianRL.pdf
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011280&type=printable
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011280&type=printable
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011280&type=printable

[Tsi+17] P. A. Tsividis, T. Pouncy, J. L. Xu, J. B. Tenenbaum, and S. J. Gershman. “Human Learning
in Atari”. en. In: AAAI Spring Symposium Series. 2017. url: https://www.aaai.org/ocs/
index.php/SSS/SSS17/paper/viewPaper/15280.

[TVR97] J. N. Tsitsiklis and B Van Roy. “An analysis of temporal-difference learning with function
approximation”. en. In: IEEE Trans. Automat. Contr. 42.5 (May 1997), pp. 674–690. url:
https://ieeexplore.ieee.org/abstract/document/580874.

[Unk24] Unknown. “Beyond The Rainbow: High Performance Deep Reinforcement Learning On A
Desktop PC”. In: (Oct. 2024). url: https://openreview.net/pdf?id=0ydseYDKRi.

[Val00] H. Valpola. “Bayesian Ensemble Learning for Nonlinear Factor Analysis”. PhD thesis. Helsinki
University of Technology, 2000. url: https://users.ics.aalto.fi/harri/thesis/valpola_
thesis.ps.gz.

[van+18] H. van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and J. Modayil. Deep Reinforcement
Learning and the Deadly Triad. arXiv:1812.02648. 2018.

[VBW15] S. S. Villar, J. Bowden, and J. Wason. “Multi-armed Bandit Models for the Optimal Design
of Clinical Trials: Benefits and Challenges”. en. In: Stat. Sci. 30.2 (2015), pp. 199–215. url:
http://dx.doi.org/10.1214/14-STS504.

[Vee+19] V. Veeriah, M. Hessel, Z. Xu, J. Rajendran, R. L. Lewis, J. Oh, H. P. van Hasselt, D. Silver, and S.
Singh. “Discovery of Useful Questions as Auxiliary Tasks”. In: NIPS. Vol. 32. 2019. url: https://
proceedings.neurips.cc/paper_files/paper/2019/file/10ff0b5e85e5b85cc3095d431d8c08b4-
Paper.pdf.

[Ven+24] D. Venuto, S. N. Islam, M. Klissarov, D. Precup, S. Yang, and A. Anand. “Code as re-
ward: Empowering reinforcement learning with VLMs”. In: ICML. Feb. 2024. url: https:
//openreview.net/forum?id=6P88DMUDvH.

[Vez+17] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K. Kavukcuoglu.
“FeUdal Networks for Hierarchical Reinforcement Learning”. en. In: ICML. PMLR, July 2017,
pp. 3540–3549. url: https://proceedings.mlr.press/v70/vezhnevets17a.html.

[Vil+22] A. R. Villaflor, Z. Huang, S. Pande, J. M. Dolan, and J. Schneider. “Addressing Optimism
Bias in Sequence Modeling for Reinforcement Learning”. en. In: ICML. PMLR, June 2022,
pp. 22270–22283. url: https://proceedings.mlr.press/v162/villaflor22a.html.

[VPG20] N. Vieillard, O. Pietquin, and M. Geist. “Munchausen Reinforcement Learning”. In: NIPS.
Vol. 33. 2020, pp. 4235–4246. url: https://proceedings.neurips.cc/paper_files/paper/
2020/file/2c6a0bae0f071cbbf0bb3d5b11d90a82-Paper.pdf.

[Wag+19] N. Wagener, C.-A. Cheng, J. Sacks, and B. Boots. “An online learning approach to model
predictive control”. In: Robotics: Science and Systems. Feb. 2019. url: https://arxiv.org/
abs/1902.08967.

[Wan+16] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas. “Dueling Network
Architectures for Deep Reinforcement Learning”. In: ICML. 2016. url: http://proceedings.
mlr.press/v48/wangf16.pdf.

[Wan+19] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P. Abbeel,
and J. Ba. “Benchmarking Model-Based Reinforcement Learning”. In: arXiv [cs.LG] (July 2019).
url: http://arxiv.org/abs/1907.02057.

[Wan+22] T. Wang, S. S. Du, A. Torralba, P. Isola, A. Zhang, and Y. Tian. “Denoised MDPs: Learning
World Models Better Than the World Itself”. In: ICML. June 2022. url: http://arxiv.org/
abs/2206.15477.

[Wan+24a] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar.
“Voyager: An Open-Ended Embodied Agent with Large Language Models”. In: TMLR (2024).
url: https://openreview.net/forum?id=ehfRiF0R3a.

141

https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/viewPaper/15280
https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/viewPaper/15280
https://ieeexplore.ieee.org/abstract/document/580874
https://openreview.net/pdf?id=0ydseYDKRi
https://users.ics.aalto.fi/harri/thesis/valpola_thesis.ps.gz
https://users.ics.aalto.fi/harri/thesis/valpola_thesis.ps.gz
http://dx.doi.org/10.1214/14-STS504
https://proceedings.neurips.cc/paper_files/paper/2019/file/10ff0b5e85e5b85cc3095d431d8c08b4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/10ff0b5e85e5b85cc3095d431d8c08b4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/10ff0b5e85e5b85cc3095d431d8c08b4-Paper.pdf
https://openreview.net/forum?id=6P88DMUDvH
https://openreview.net/forum?id=6P88DMUDvH
https://proceedings.mlr.press/v70/vezhnevets17a.html
https://proceedings.mlr.press/v162/villaflor22a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/2c6a0bae0f071cbbf0bb3d5b11d90a82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2c6a0bae0f071cbbf0bb3d5b11d90a82-Paper.pdf
https://arxiv.org/abs/1902.08967
https://arxiv.org/abs/1902.08967
http://proceedings.mlr.press/v48/wangf16.pdf
http://proceedings.mlr.press/v48/wangf16.pdf
http://arxiv.org/abs/1907.02057
http://arxiv.org/abs/2206.15477
http://arxiv.org/abs/2206.15477
https://openreview.net/forum?id=ehfRiF0R3a

[Wan+24b] S. Wang, S. Liu, W. Ye, J. You, and Y. Gao. “EfficientZero V2: Mastering discrete and continuous
control with limited data”. In: arXiv [cs.LG] (Mar. 2024). url: http://arxiv.org/abs/2403.
00564.

[WAT17] G. Williams, A. Aldrich, and E. A. Theodorou. “Model Predictive Path Integral Control: From
Theory to Parallel Computation”. In: J. Guid. Control Dyn. 40.2 (Feb. 2017), pp. 344–357. url:
https://doi.org/10.2514/1.G001921.

[Wat+21] J. Watson, H. Abdulsamad, R. Findeisen, and J. Peters. “Stochastic Control through Approxi-
mate Bayesian Input Inference”. In: arxiv (2021). url: http://arxiv.org/abs/2105.07693.

[WCM24] C. Wang, Y. Chen, and K. Murphy. “Model-based Policy Optimization under Approximate
Bayesian Inference”. en. In: AISTATS. PMLR, Apr. 2024, pp. 3250–3258. url: https://
proceedings.mlr.press/v238/wang24g.html.

[WD92] C. Watkins and P. Dayan. “Q-learning”. In: Machine Learning 8.3 (1992), pp. 279–292.

[Wei+24] R. Wei, N. Lambert, A. McDonald, A. Garcia, and R. Calandra. “A unified view on solving
objective mismatch in model-based Reinforcement Learning”. In: Trans. on Machine Learning
Research (2024). url: https://openreview.net/forum?id=tQVZgvXhZb.

[Wen18a] L. Weng. “A (Long) Peek into Reinforcement Learning”. In: lilianweng.github.io (2018). url:
https://lilianweng.github.io/posts/2018-02-19-rl-overview/.

[Wen18b] L. Weng. “Policy Gradient Algorithms”. In: lilianweng.github.io (2018). url: https://lilianweng.
github.io/posts/2018-04-08-policy-gradient/.

[WHT19] Y. Wang, H. He, and X. Tan. “Truly Proximal Policy Optimization”. In: UAI. 2019. url:
http://auai.org/uai2019/proceedings/papers/21.pdf.

[WHZ23] Z. Wang, J. J. Hunt, and M. Zhou. “Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning”. In: ICLR. 2023. url: https://openreview.net/pdf?id=AHvFDPi-
FA.

[Wie03] E Wiewiora. “Potential-Based Shaping and Q-Value Initialization are Equivalent”. In: JAIR.
2003. url: https://jair.org/index.php/jair/article/view/10338.

[Wil+17] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.
“Information theoretic MPC for model-based reinforcement learning”. In: ICRA. IEEE, May
2017, pp. 1714–1721. url: https://ieeexplore.ieee.org/document/7989202.

[Wil92] R. J. Williams. “Simple statistical gradient-following algorithms for connectionist reinforcement
learning”. In: MLJ 8.3-4 (1992), pp. 229–256.

[WIP20] J. Watson, A. Imohiosen, and J. Peters. “Active Inference or Control as Inference? A Unifying
View”. In: International Workshop on Active Inference. 2020. url: http://arxiv.org/abs/
2010.00262.

[WL14] N. Whiteley and A. Lee. “Twisted particle filters”. en. In: Annals of Statistics 42.1 (Feb. 2014),
pp. 115–141. url: https://projecteuclid.org/journals/annals-of-statistics/volume-
42/issue-1/Twisted-particle-filters/10.1214/13-AOS1167.full.

[Wu+17] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. “Scalable trust-region method for deep
reinforcement learning using Kronecker-factored approximation”. In: NIPS. 2017. url: https:
//arxiv.org/abs/1708.05144.

[Wu+21] Y. Wu, S. Zhai, N. Srivastava, J. Susskind, J. Zhang, R. Salakhutdinov, and H. Goh. “Uncertainty
Weighted Actor-critic for offline Reinforcement Learning”. In: ICML. May 2021. url: https:
//arxiv.org/abs/2105.08140.

[Wu+22] P. Wu, A. Escontrela, D. Hafner, K. Goldberg, and P. Abbeel. “DayDreamer: World Models
for Physical Robot Learning”. In: (June 2022). arXiv: 2206 . 14176 [cs.RO]. url: http :
//arxiv.org/abs/2206.14176.

142

http://arxiv.org/abs/2403.00564
http://arxiv.org/abs/2403.00564
https://doi.org/10.2514/1.G001921
http://arxiv.org/abs/2105.07693
https://proceedings.mlr.press/v238/wang24g.html
https://proceedings.mlr.press/v238/wang24g.html
https://openreview.net/forum?id=tQVZgvXhZb
https://lilianweng.github.io/posts/2018-02-19-rl-overview/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
http://auai.org/uai2019/proceedings/papers/21.pdf
https://openreview.net/pdf?id=AHvFDPi-FA
https://openreview.net/pdf?id=AHvFDPi-FA
https://jair.org/index.php/jair/article/view/10338
https://ieeexplore.ieee.org/document/7989202
http://arxiv.org/abs/2010.00262
http://arxiv.org/abs/2010.00262
https://projecteuclid.org/journals/annals-of-statistics/volume-42/issue-1/Twisted-particle-filters/10.1214/13-AOS1167.full
https://projecteuclid.org/journals/annals-of-statistics/volume-42/issue-1/Twisted-particle-filters/10.1214/13-AOS1167.full
https://arxiv.org/abs/1708.05144
https://arxiv.org/abs/1708.05144
https://arxiv.org/abs/2105.08140
https://arxiv.org/abs/2105.08140
https://arxiv.org/abs/2206.14176
http://arxiv.org/abs/2206.14176
http://arxiv.org/abs/2206.14176

[Wu+23] G. Wu, W. Fang, J. Wang, P. Ge, J. Cao, Y. Ping, and P. Gou. “Dyna-PPO reinforcement
learning with Gaussian process for the continuous action decision-making in autonomous driving”.
en. In: Appl. Intell. 53.13 (July 2023), pp. 16893–16907. url: https://link.springer.com/
article/10.1007/s10489-022-04354-x.

[Wur+22] P. R. Wurman et al. “Outracing champion Gran Turismo drivers with deep reinforcement
learning”. en. In: Nature 602.7896 (Feb. 2022), pp. 223–228. url: https://www.researchgate.
net/publication/358484368_Outracing_champion_Gran_Turismo_drivers_with_deep_
reinforcement_learning.

[Xu+17] C. Xu, T. Qin, G. Wang, and T.-Y. Liu. “Reinforcement learning for learning rate control”. In:
arXiv [cs.LG] (May 2017). url: http://arxiv.org/abs/1705.11159.

[Yan+23] M. Yang, D Schuurmans, P Abbeel, and O. Nachum. “Dichotomy of control: Separating what
you can control from what you cannot”. In: ICLR. Vol. abs/2210.13435. 2023. url: https:
//github.com/google-research/google-research/tree/.

[Yan+24] S. Yang, Y. Du, S. K. S. Ghasemipour, J. Tompson, L. P. Kaelbling, D. Schuurmans, and
P. Abbeel. “Learning Interactive Real-World Simulators”. In: ICLR. 2024. url: https://
openreview.net/pdf?id=sFyTZEqmUY.

[Yao+22] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan, and Y. Cao. “ReAct: Synergizing
Reasoning and Acting in Language Models”. In: ICLR. Sept. 2022. url: https://openreview.
net/pdf?id=WE_vluYUL-X.

[Ye+21] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao. “Mastering Atari games with limited data”.
In: NIPS. Oct. 2021.

[Yu17] H. Yu. “On convergence of some gradient-based temporal-differences algorithms for off-policy
learning”. In: arXiv [cs.LG] (Dec. 2017). url: http://arxiv.org/abs/1712.09652.

[Yu+20] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. “MOPO: Model-
based Offline Policy Optimization”. In: NIPS. Vol. 33. 2020, pp. 14129–14142. url: https://
proceedings.neurips.cc/paper_files/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-
Abstract.html.

[Yu+23] C. Yu, N Burgess, M Sahani, and S Gershman. “Successor-Predecessor Intrinsic Exploration”. In:
NIPS. Vol. abs/2305.15277. Curran Associates, Inc., May 2023, pp. 73021–73038. url: https://
proceedings.neurips.cc/paper_files/paper/2023/hash/e6f2b968c4ee8ba260cd7077e39590dd-
Abstract-Conference.html.

[Yua22] M. Yuan. “Intrinsically-motivated reinforcement learning: A brief introduction”. In: arXiv [cs.LG]
(Mar. 2022). url: http://arxiv.org/abs/2203.02298.

[Yua+24] M. Yuan, R. C. Castanyer, B. Li, X. Jin, G. Berseth, and W. Zeng. “RLeXplore: Accelerating
research in intrinsically-motivated reinforcement learning”. In: arXiv [cs.LG] (May 2024). url:
http://arxiv.org/abs/2405.19548.

[YZ22] Y. Yang and P. Zhai. “Click-through rate prediction in online advertising: A literature review”.
In: Inf. Process. Manag. 59.2 (2022), p. 102853. url: https://www.sciencedirect.com/
science/article/pii/S0306457321003241.

[ZABD10] B. D. Ziebart, J Andrew Bagnell, and A. K. Dey. “Modeling Interaction via the Principle of
Maximum Causal Entropy”. In: ICML. 2010. url: https://www.cs.uic.edu/pub/Ziebart/
Publications/maximum-causal-entropy.pdf.

[Zel+24] E. Zelikman, G. Harik, Y. Shao, V. Jayasiri, N. Haber, and N. D. Goodman. “Quiet-STaR:
Language Models Can Teach Themselves to Think Before Speaking”. In: arXiv [cs.CL] (Mar.
2024). url: http://arxiv.org/abs/2403.09629.

[Zha+19] S. Zhang, B. Liu, H. Yao, and S. Whiteson. “Provably convergent two-timescale off-policy actor-
critic with function approximation”. In: ICML 119 (Nov. 2019). Ed. by H. D. Iii and A. Singh,
pp. 11204–11213. url: https://proceedings.mlr.press/v119/zhang20s/zhang20s.pdf.

143

https://link.springer.com/article/10.1007/s10489-022-04354-x
https://link.springer.com/article/10.1007/s10489-022-04354-x
https://www.researchgate.net/publication/358484368_Outracing_champion_Gran_Turismo_drivers_with_deep_reinforcement_learning
https://www.researchgate.net/publication/358484368_Outracing_champion_Gran_Turismo_drivers_with_deep_reinforcement_learning
https://www.researchgate.net/publication/358484368_Outracing_champion_Gran_Turismo_drivers_with_deep_reinforcement_learning
http://arxiv.org/abs/1705.11159
https://github.com/google-research/google-research/tree/
https://github.com/google-research/google-research/tree/
https://openreview.net/pdf?id=sFyTZEqmUY
https://openreview.net/pdf?id=sFyTZEqmUY
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
http://arxiv.org/abs/1712.09652
https://proceedings.neurips.cc/paper_files/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e6f2b968c4ee8ba260cd7077e39590dd-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e6f2b968c4ee8ba260cd7077e39590dd-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e6f2b968c4ee8ba260cd7077e39590dd-Abstract-Conference.html
http://arxiv.org/abs/2203.02298
http://arxiv.org/abs/2405.19548
https://www.sciencedirect.com/science/article/pii/S0306457321003241
https://www.sciencedirect.com/science/article/pii/S0306457321003241
https://www.cs.uic.edu/pub/Ziebart/Publications/maximum-causal-entropy.pdf
https://www.cs.uic.edu/pub/Ziebart/Publications/maximum-causal-entropy.pdf
http://arxiv.org/abs/2403.09629
https://proceedings.mlr.press/v119/zhang20s/zhang20s.pdf

[Zha+21] A. Zhang, R. T. McAllister, R. Calandra, Y. Gal, and S. Levine. “Learning Invariant Repre-
sentations for Reinforcement Learning without Reconstruction”. In: ICLR. 2021. url: https:
//openreview.net/pdf?id=-2FCwDKRREu.

[Zha+23a] J. Zhang, J. T. Springenberg, A. Byravan, L. Hasenclever, A. Abdolmaleki, D. Rao, N. Heess,
and M. Riedmiller. “Leveraging Jumpy Models for Planning and Fast Learning in Robotic
Domains”. In: arXiv [cs.RO] (Feb. 2023). url: http://arxiv.org/abs/2302.12617.

[Zha+23b] W. Zhang, G. Wang, J. Sun, Y. Yuan, and G. Huang. “STORM: Efficient Stochastic Transformer
based world models for reinforcement learning”. In: arXiv [cs.LG] (Oct. 2023). url: http:
//arxiv.org/abs/2310.09615.

[Zha+24] S. Zhao, R. Brekelmans, A. Makhzani, and R. B. Grosse. “Probabilistic Inference in Language
Models via Twisted Sequential Monte Carlo”. In: ICML. June 2024. url: https://openreview.
net/pdf?id=frA0NNBS1n.

[Zhe+22] L. Zheng, T. Fiez, Z. Alumbaugh, B. Chasnov, and L. J. Ratliff. “Stackelberg actor-critic: Game-
theoretic reinforcement learning algorithms”. en. In: AAAI 36.8 (June 2022), pp. 9217–9224.
url: https://ojs.aaai.org/index.php/AAAI/article/view/20908.

[Zho+22] H. Zhou, Z. Lin, J. Li, Q. Fu, W. Yang, and D. Ye. “Revisiting discrete soft actor-critic”. In:
arXiv [cs.LG] (Sept. 2022). url: http://arxiv.org/abs/2209.10081.

[Zho+24] G. Zhou, S. Swaminathan, R. V. Raju, J. S. Guntupalli, W. Lehrach, J. Ortiz, A. Dedieu,
M. Lázaro-Gredilla, and K. Murphy. “Diffusion Model Predictive Control”. In: arXiv [cs.LG]
(Oct. 2024). url: http://arxiv.org/abs/2410.05364.

[ZHR24] H. Zhu, B. Huang, and S. Russell. “On representation complexity of model-based and model-free
reinforcement learning”. In: ICLR. 2024.

[Zie+08] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. “Maximum Entropy Inverse Reinforce-
ment Learning”. In: AAAI. 2008, pp. 1433–1438.

[Zin+21] L Zintgraf, S. Schulze, C. Lu, L. Feng, M. Igl, K Shiarlis, Y Gal, K. Hofmann, and S. Whiteson.
“VariBAD: Variational Bayes-Adaptive Deep RL via meta-learning”. In: J. Mach. Learn. Res.
22.289 (2021), 289:1–289:39. url: https://www.jmlr.org/papers/volume22/21-0657/21-
0657.pdf.

[Zit+23] B. Zitkovich et al. “RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control”. en. In: Conference on Robot Learning. PMLR, Dec. 2023, pp. 2165–2183. url: https:
//proceedings.mlr.press/v229/zitkovich23a.html.

[ZS22] N. Zucchet and J. Sacramento. “Beyond backpropagation: Bilevel optimization through implicit
differentiation and equilibrium propagation”. en. In: Neural Comput. 34.12 (Nov. 2022), pp. 2309–
2346. url: https://direct.mit.edu/neco/article-pdf/34/12/2309/2057431/neco_a_
01547.pdf.

[ZSE24] C. Zheng, R. Salakhutdinov, and B. Eysenbach. “Contrastive Difference Predictive Coding”.
In: The Twelfth International Conference on Learning Representations. 2024. url: https:
//openreview.net/pdf?id=0akLDTFR9x.

[ZW19] S. Zhang and S. Whiteson. “DAC: The Double Actor-Critic Architecture for Learning Options”.
In: NIPS 32 (2019). url: https://proceedings.neurips.cc/paper_files/paper/2019/
file/4f284803bd0966cc24fa8683a34afc6e-Paper.pdf.

144

https://openreview.net/pdf?id=-2FCwDKRREu
https://openreview.net/pdf?id=-2FCwDKRREu
http://arxiv.org/abs/2302.12617
http://arxiv.org/abs/2310.09615
http://arxiv.org/abs/2310.09615
https://openreview.net/pdf?id=frA0NNBS1n
https://openreview.net/pdf?id=frA0NNBS1n
https://ojs.aaai.org/index.php/AAAI/article/view/20908
http://arxiv.org/abs/2209.10081
http://arxiv.org/abs/2410.05364
https://www.jmlr.org/papers/volume22/21-0657/21-0657.pdf
https://www.jmlr.org/papers/volume22/21-0657/21-0657.pdf
https://proceedings.mlr.press/v229/zitkovich23a.html
https://proceedings.mlr.press/v229/zitkovich23a.html
https://direct.mit.edu/neco/article-pdf/34/12/2309/2057431/neco_a_01547.pdf
https://direct.mit.edu/neco/article-pdf/34/12/2309/2057431/neco_a_01547.pdf
https://openreview.net/pdf?id=0akLDTFR9x
https://openreview.net/pdf?id=0akLDTFR9x
https://proceedings.neurips.cc/paper_files/paper/2019/file/4f284803bd0966cc24fa8683a34afc6e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4f284803bd0966cc24fa8683a34afc6e-Paper.pdf

	1 Introduction
	1.1 Sequential decision making
	1.1.1 Problem definition
	1.1.2 Universal model
	1.1.3 Episodic vs continuing tasks
	1.1.4 Regret
	1.1.5 Further reading

	1.2 Canonical examples
	1.2.1 Partially observed MDPs
	1.2.2 Markov decision process (MDPs)
	1.2.3 Contextual MDPs
	1.2.4 Contextual bandits
	1.2.5 Belief state MDPs
	1.2.6 Optimization problems
	1.2.6.1 Best-arm identification
	1.2.6.2 Bayesian optimization
	1.2.6.3 Active learning
	1.2.6.4 Stochastic Gradient Descent (SGD)

	1.3 Reinforcement Learning
	1.3.1 Value-based RL (Approximate Dynamic Programming)
	1.3.2 Policy-based RL
	1.3.3 Model-based RL
	1.3.4 Dealing with partial observability
	1.3.4.1 Optimal solution
	1.3.4.2 Finite observation history
	1.3.4.3 Stateful (recurrent) policies

	1.3.5 Software

	1.4 Exploration-exploitation tradeoff
	1.4.1 Simple heuristics
	1.4.2 Methods based on the belief state MDP
	1.4.2.1 Bandit case (Gittins indices)
	1.4.2.2 MDP case (Bayes Adaptive MDPs)

	1.4.3 Upper confidence bounds (UCBs)
	1.4.3.1 Basic idea
	1.4.3.2 Bandit case: Frequentist approach
	1.4.3.3 Bandit case: Bayesian approach
	1.4.3.4 MDP case

	1.4.4 Thompson sampling
	1.4.4.1 Bandit case
	1.4.4.2 MDP case (posterior sampling RL)

	1.5 RL as a posterior inference problem
	1.5.1 Modeling assumptions
	1.5.2 Soft value functions
	1.5.3 Maximum entropy RL
	1.5.4 Active inference

	2 Value-based RL
	2.1 Basic concepts
	2.1.1 Value functions
	2.1.2 Bellman's equations
	2.1.3 Example: 1d grid world

	2.2 Computing the value function and policy given a known world model
	2.2.1 Value iteration
	2.2.2 Real-time dynamic programming (RTDP)
	2.2.3 Policy iteration

	2.3 Computing the value function without knowing the world model
	2.3.1 Monte Carlo estimation
	2.3.2 Temporal difference (TD) learning
	2.3.3 Combining TD and MC learning using TD()
	2.3.4 Eligibility traces

	2.4 SARSA: on-policy TD control
	2.5 Q-learning: off-policy TD control
	2.5.1 Tabular Q learning
	2.5.2 Q learning with function approximation
	2.5.2.1 Neural fitted Q
	2.5.2.2 DQN
	2.5.2.3 Experience replay
	2.5.2.4 The deadly triad
	2.5.2.5 Target networks
	2.5.2.6 Two time-scale methods
	2.5.2.7 Layer norm

	2.5.3 Maximization bias
	2.5.3.1 Double Q-learning
	2.5.3.2 Double DQN
	2.5.3.3 Randomized ensemble DQN

	2.5.4 DQN extensions
	2.5.4.1 Q learning for continuous actions
	2.5.4.2 Dueling DQN
	2.5.4.3 Noisy nets and exploration
	2.5.4.4 Multi-step DQN
	2.5.4.5 Rainbow
	2.5.4.6 Bigger, Better, Faster
	2.5.4.7 Other methods

	3 Policy-based RL
	3.1 The policy gradient theorem
	3.2 REINFORCE
	3.3 Actor-critic methods
	3.3.1 Advantage actor critic (A2C)
	3.3.2 Generalized advantage estimation (GAE)
	3.3.3 Two-time scale actor critic algorithms
	3.3.4 Natural policy gradient methods
	3.3.4.1 Natural gradient descent
	3.3.4.2 Natural actor critic

	3.4 Policy improvement methods
	3.4.1 Policy improvement lower bound
	3.4.2 Trust region policy optimization (TRPO)
	3.4.3 Proximal Policy Optimization (PPO)
	3.4.4 VMPO

	3.5 Off-policy methods
	3.5.1 Policy evaluation using importance sampling
	3.5.2 Off-policy actor critic methods
	3.5.2.1 Learning the critic using V-trace
	3.5.2.2 Learning the actor
	3.5.2.3 IMPALA

	3.5.3 Off-policy policy improvement methods
	3.5.3.1 Off-policy PPO
	3.5.3.2 Off-policy VMPO
	3.5.3.3 Off-policy TRPO

	3.5.4 Soft actor-critic (SAC)
	3.5.4.1 Policy evaluation
	3.5.4.2 Policy improvement: Gaussian policy
	3.5.4.3 Policy improvement: softmax policy
	3.5.4.4 Adjusting the temperature

	3.6 Deterministic policy gradient methods
	3.6.1 DDPG
	3.6.2 Twin Delayed DDPG (TD3)

	4 Model-based RL
	4.1 Decision-time planning
	4.1.1 Model predictive control (MPC)
	4.1.2 Heuristic search
	4.1.3 Monte Carlo tree search
	4.1.3.1 AlphaGo and AlphaZero
	4.1.3.2 MuZero
	4.1.3.3 EfficientZero

	4.1.4 Trajectory optimization for continuous actions
	4.1.4.1 Random shooting
	4.1.4.2 LQG
	4.1.4.3 CEM
	4.1.4.4 MPPI
	4.1.4.5 GP-MPC

	4.1.5 SMC for MPC

	4.2 Background planning
	4.2.1 A game-theoretic perspective on MBRL
	4.2.2 Dyna
	4.2.2.1 Tabular Dyna
	4.2.2.2 Dyna with function approximation

	4.2.3 Dealing with model errors and uncertainty
	4.2.3.1 Avoiding compounding errors in rollouts
	4.2.3.2 End-to-end differentiable learning of model and planner
	4.2.3.3 Unified model and planning variational lower bound
	4.2.3.4 Dynamically switching between MFRL and MBRL

	4.3 World models
	4.3.1 Generative world models
	4.3.1.1 Observation-space world models
	4.3.1.2 Factored models
	4.3.1.3 Latent-space world models
	4.3.1.4 Dreamer
	4.3.1.5 Iris

	4.3.2 Non-generative world models
	4.3.2.1 Value prediction
	4.3.2.2 Self prediction
	4.3.2.3 Policy prediction
	4.3.2.4 Observation prediction
	4.3.2.5 Partial observation prediction
	4.3.2.6 BYOL-Explore

	4.4 Beyond one-step models: predictive representations
	4.4.1 General value functions
	4.4.2 Successor representations
	4.4.3 Successor models
	4.4.3.1 Learning SMs
	4.4.3.2 Jumpy models using geometric policy composition

	4.4.4 Successor features
	4.4.4.1 Generalized policy improvement
	4.4.4.2 Option keyboard
	4.4.4.3 Learning SFs
	4.4.4.4 Choosing the tasks

	5 Other topics in RL
	5.1 Distributional RL
	5.1.1 Quantile regression methods
	5.1.2 Replacing regression with classification

	5.2 Reward functions
	5.2.1 Reward hacking
	5.2.2 Sparse reward
	5.2.3 Reward shaping
	5.2.4 Intrinsic reward
	5.2.4.1 Knowledge-based intrinsic motivation
	5.2.4.2 Goal-based intrinsic motivation

	5.3 Hierarchical RL
	5.3.1 Feudal (goal-conditioned) HRL
	5.3.1.1 Hindsight Experience Relabeling (HER)
	5.3.1.2 Hierarchical HER
	5.3.1.3 Learning the subgoal space

	5.3.2 Options
	5.3.2.1 Definitions
	5.3.2.2 Learning options

	5.4 Imitation learning
	5.4.1 Imitation learning by behavior cloning
	5.4.2 Imitation learning by inverse reinforcement learning
	5.4.3 Imitation learning by divergence minimization

	5.5 Offline RL
	5.5.1 Offline model-free RL
	5.5.1.1 Policy constraint methods
	5.5.1.2 Behavior-constrained policy gradient methods
	5.5.1.3 Uncertainty penalties
	5.5.1.4 Conservative Q-learning and pessimistic value functions

	5.5.2 Offline model-based RL
	5.5.3 Offline RL using reward-conditioned sequence modeling
	5.5.4 Hybrid offline/online methods

	5.6 LLMs and RL
	5.6.1 RL for LLMs
	5.6.1.1 RLHF
	5.6.1.2 Assistance game
	5.6.1.3 Run-time inference as MPC

	5.6.2 LLMs for RL
	5.6.2.1 LLMs for pre-processing the input
	5.6.2.2 LLMs for rewards
	5.6.2.3 LLMs for world models
	5.6.2.4 LLMs for policies

	5.7 General RL, AIXI and universal AGI

