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Abstract

We show that reinforcement learning with verifiable reward using one training
example (1-shot RLVR) is effective in incentivizing the mathematical reasoning
capabilities of large language models (LLMs). Applying RLVR to the base model
Qwen2.5-Math-1.5B, we identify a single example that elevates model perfor-
mance on MATH500 from 36.0% to 73.6%, and improves the average performance
across six common mathematical reasoning benchmarks from 17.6% to 35.7%.
This result matches the performance obtained using the 1.2k DeepScaleR subset
(MATH500: 73.6%, average: 35.9%), which includes the aforementioned exam-
ple. Furthermore, RLVR with only two examples even slightly exceeds these
results (MATH500: 74.8%, average: 36.6%). Similar substantial improvements
are observed across various models (Qwen2.5-Math-7B, Llama3.2-3B-Instruct,
DeepSeek-R1-Distill-Qwen-1.5B), RL algorithms (GRPO and PPO), and different
math examples (many of which yield approximately 30% or greater improvement
on MATH500 when employed as a single training example). In addition, we
identify some interesting phenomena during 1-shot RLVR, including cross-domain
generalization, increased frequency of self-reflection, and sustained test perfor-
mance improvement even after the training accuracy has saturated, a phenomenon
we term post-saturation generalization. Moreover, we verify that the effectiveness
of 1-shot RLVR primarily arises from the policy gradient loss, distinguishing it
from the "grokking" phenomenon. We also show the critical role of promoting
exploration (e.g., by incorporating entropy loss with an appropriate coefficient) in
1-shot RLVR training. As a bonus, we observe that applying entropy loss alone,
without any outcome reward, significantly enhances Qwen2.5-Math-1.5B’s perfor-
mance on MATH500 by 27.4%. These findings can inspire future work on RLVR
data efficiency and encourage a re-examination of both recent progress and the
underlying mechanisms in RLVR. Our code, model, and data are open source at
https://github.com/ypwang61/One-Shot-RLVR.

1 Introduction

Recently, significant progress has been achieved in enhancing the reasoning capabilities of large
language models (LLMs), including OpenAI-o1 [1], DeepSeek-R1 [2], and Kimi-1.5 [3], particularly
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Figure 1: RLVR with 1 example (green) can perform as well as using datasets with thousands
of examples (blue). Left/Right corresponds to MATH500/Average performance on 6 mathematical
reasoning benchmarks. Base model is Qwen2.5-Math-1.5B. π1 and π13 are examples defined by
Eqn. 2 and detailed in Tab. 2, and they are all from the 1.2k DeepScalerR subset (DSR-sub). Setup
details are in Sec. 3.1. We find that RLVR with 1 example {π13} (35.7%) performs close to that with
1.2k DSR-sub (35.9%), and RLVR with 2 examples {π1, π13} (36.6%) even performs better than
RLVR with DSR-sub and as well as using 7.5k MATH train dataset (36.7%). Detailed results are in
Fig. 2. Additional results for non-mathematical reasoning tasks are in Tab. 1.

for complex mathematical tasks. A key method contributing to these advancements is Reinforcement
Learning with Verifiable Reward (RLVR) [4, 5, 2, 3], which commonly employs reinforcement learn-
ing on an LLM with a rule-based outcome reward, such as a binary reward indicating the correctness
of the model’s final answer to a math problem. Several intriguing empirical phenomena have been
observed in RLVR, such as the stimulation or enhancement of specific cognitive behaviors [6] (e.g.,
self-reflection) and improved generalization across various downstream tasks [5, 2, 3].

Currently, substantial efforts are directed toward refining RL algorithms (e.g., PPO [7] and GRPO [8])
to further enhance RLVR’s performance and stability [9–16]. Conversely, data-centric aspects of
RLVR remain relatively underexplored. Although several studies attempt to curate high-quality
mathematical reasoning datasets [17, 18, 11], there is relatively limited exploration into the specific
role of data in RLVR. Thus, critical questions remain open: How much data is truly necessary? What
data is most effective? How do the quality and quantity of the training data relate to observed empirical
phenomena (e.g., self-reflection and robust generalization)? The most relevant study to these problems
is LIMR [19], which proposed a metric called learning impact measurement (LIM) to evaluate the
effectiveness of training examples. Using the LIM score, they maintain model performance while
reducing the number of training examples by sixfold. However, this study does not explore how
aggressively the RLVR training dataset can be reduced. Motivated by these considerations, in this
paper, we specifically investigate the following research question:

"To what extent can we reduce the training dataset for RLVR while maintaining comparable perfor-
mance compared to using the full dataset?"

We empirically demonstrate that, surprisingly, the training dataset for RLVR can be reduced to
as little as ONE example! This finding supports recent claims that base models already possess
significant reasoning capabilities [13, 20, 6, 21], and further shows that a single example is sufficient
to substantially enhance the base model’s mathematical performance. We refer to this setup as 1-shot
RLVR. We summarize our contributions and findings below:

• We find that selecting one specific example as the training dataset can achieve similar
downstream performance to that of the 1.2k DeepScaleR subset (DSR-sub) containing that
example. Specifically, this improves the Qwen2.5-Math-1.5B model from 36.0% to 73.6%
on MATH500, and from 17.6% to 35.7% on average across 6 mathematical reasoning
benchmarks (Fig. 1, 2). Additionally, 2-shot RLVR slightly surpasses DSR-sub and matches
performance with the 7.5k MATH training set. Notably, these two examples are relatively
easy for the base model, which can solve them with high probability without any training.
Additionally, 1-shot RLVR on math examples can improve model performance on non-
mathematical reasoning tasks, even outperforming full-set RLVR (Tab. 1).
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Figure 2: Detailed performance of 1/2-shot RLVR for Qwen2.5-Math-1.5B. Results are reported
for the checkpoint achieving the best average across 6 math benchmarks (Fig. 1). Yellow, blue, and
green correspond to the performance of the base model, RLVR with full dataset, and 1/2-shot RLVR,
respectively. All RLVR setups significantly outperform the base model. Further evaluation details are
provided in Sec. 3.1. Models’ best individual benchmark results are listed in Tab. 8 in the Appendix.
Additional results for non-mathematical reasoning tasks are in Tab. 1.

• We confirm the effectiveness of 1(few)-shot RLVR across different base models (Qwen2.5-
Math-1.5/7B, Llama3.2-3B-Instruct), models distilled from long Chain-of-Thought (CoT)
data (DeepSeek-R1-Distill-Qwen-1.5B), and different RL algorithms (GRPO, PPO).

• We highlight an intriguing phenomenon in 1-shot RLVR: post-saturation generalization.
Specifically, the training accuracy on the single example rapidly approaches 100%, yet the
model’s test accuracy continues to improve. Moreover, despite using only one training
example, overfitting does not occur until after approximately 1.4k training steps. Even
post-overfitting, while the model’s reasoning outputs for the training example become
incomprehensible multilingual gibberish mixed with correct solutions, its test performance
remains strong, and the reasoning outputs for the test examples remain human-interpretable.

• In addition, we demonstrate the following phenomena: (1) 1-shot RLVR is viable for nearly
all math examples in the full dataset when each example is individually used for training.
(2) 1-shot RLVR enables cross-domain generalization: training on a single example from
one domain (e.g., Geometry) often enhances performance in other domains (e.g., Algebra,
Number Theory). (3) As 1-shot RLVR training progresses, both the response length for the
training example and the frequency of self-reflective terms in downstream tasks increase.

• Through ablation studies, we show that policy gradient loss primarily drives the improve-
ments observed in 1-shot RLVR, distinguishing it from “grokking”, which heavily depends
on regularization methods like weight decay. Additionally, we emphasize the importance of
promoting diverse exploration in model outputs, showing that adding an entropy loss with
an appropriate coefficient further enhances performance.

• Lastly, we find that employing entropy loss alone, even without any outcome reward,
achieves a 27% performance boost on MATH500 for Qwen2.5-Math-1.5B. Similar improve-
ments are observed for Qwen2.5-Math-7B and Llama-3.2-3B-Instruct. We also discuss the
relation of this observation to label robustness.

2 Preliminary

RL Loss Function. In this paper, we adopt GRPO [8, 2] as the reinforcement learning algorithm
for large language models unless stated otherwise. The GRPO loss function comprises three main
components: policy gradient loss, KL divergence loss, and entropy loss. We briefly describe each
component here, with further details provided in Appendix A.1.

(1) The policy gradient loss encourages the model to produce response sequences with higher
rewards, assigning weights to sampled outputs according to their group-normalized advantages. Thus,
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better-than-average solutions are reinforced, whereas inferior ones are penalized. Since we focus on
mathematical problems, the reward is defined as binary (0-1), where a reward of 1 is granted only
when the outcome of the model’s response correctly matches the ground-truth answer.

(2) The KL divergence loss measures the divergence between the current model’s responses and those
from a reference model, serving as a regularization term to maintain general language quality.

(3) The entropy loss, applied with a negative coefficient, incentivizes higher per-token entropy to
encourage exploration and generate more diverse reasoning paths. We note that entropy loss is not
strictly necessary for GRPO training, but it is included by default in the verl [22] pipeline used in our
experiments. Its effect on 1-shot RLVR is further discussed in Sec. 4.2.

Data Selection: Historical Variance Score. To explore how extensively we can reduce the
RLVR training dataset, we propose a simple data selection approach for ranking training examples.
We first train the model for E epochs on the full dataset using RLVR. Then for each example
i ∈ [N ] = {1, . . . , N}, we can obtain a list of historical training accuracy Li = [si,1, . . . , si,E ],
which records its average training accuracy for every epoch. Note that some previous work has shown
that the variance of the reward signal [23] is critical for RL training, we simply rank the data by their
historical variance of training accuracy, which is directly related to the reward:

vi := var(si,1, . . . , si,E) (1)

Next, we define a permutation π : [N ] → [N ] such that vπ(1) ≥ · · · ≥ vπ(N). Under this ordering,
π(j) (denoted as πj for convenience) corresponds to the example with the j-th largest variance vi:

πj := π(j) = arg sort
j

{vi : i ∈ [N ]} (2)

We then select examples according to this straightforward ranking criterion. For instance, π1,
identified by the historical variance score on Qwen2.5-Math-1.5B, performs well in 1-shot RLVR
(Sec. 3.2.3, 3.3). We also choose additional examples from diverse domains among {π1, . . . , π17}
and evaluate them under 1-shot RLVR (Tab. 3), finding that π13 likewise achieves strong performance.
Importantly, we emphasize that this criterion is not necessarily optimal for selecting single
examples for 1-shot RLVR2. In fact, Tab. 3 indicates that many examples, including those with
moderate or low historical variance, can also individually yield approximately 30% or greater
improvement on MATH500 when used as the single training example in RLVR. This suggests a
potentially general phenomenon independent of the specific data selection method.

3 Experiments

3.1 Setup

Models. We by default run our experiments on Qwen2.5-Math-1.5B [24, 25], and also verify
the effectiveness of Qwen2.5-Math-7B [25], Llama-3.2-3B-Instruct [26], and DeepSeek-R1-Distill-
Qwen-1.5B [2] for 1-shot RLVR in Sec. 3.3.

Dataset. Due to resource limitations, we randomly select a subset consisting of 1209 examples
from DeepScaleR-Preview-Dataset [18] as our instance pool for data selection (Sec. 2), and we
abbreviate it as “DSR-sub” for convenience. Therefore, after ranking the data based on the historical
variance score (Eqn. 2), we would denote the examples in DSR-sub as π1, . . . , π1209. We also use the
MATH [27] training set (consisting of 7500 instances) as another dataset used in full RLVR to provide
a comparison. For data selection, as in Sec. 2, we first train Qwen2.5-Math-1.5B for 500 steps, and
then obtain its historical variance score (Eqn. 1) and the corresponding ranking (Eqn. 2). To avoid
ambiguity, we do not change the correspondence between {πi} and examples for all the experiments
in this paper, i.e., they are always ranked by the historical variance score of the Qwen2.5-Math-1.5B
model. Furthermore, to enable RLVR with one or very few examples, we duplicate the chosen data
until they reach the training batch size (e.g., 128) and store them as a new dataset.

2Nevertheless, as shown in Tab. 4 (Sec. 3.3), selection based on historical variance scores outperforms
random selection in RLVR on Qwen2.5-Math-7B.
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Training. As described in Sec. 2, we follow the verl [22] pipeline, and by default, the coefficients
for KL divergence and entropy loss are β = 0.001 and α = −0.001, respectively. The training
rollout temperature is set to 0.6 for vLLM [28]. The coefficient of weight decay is set to 0.01 by
default. The training batch size and mini-batch size are 128, and we sample 8 responses for each
prompt. Therefore, we have 8 gradient updates for each rollout step. The learning rate is set to 1e-6.
By default, the maximum prompt length is set to 1024, and the maximum response length is 3072,
considering that the Qwen2.5-Math-1.5B/7B model has a 4096 context length. But for DeepSeek-
R1-Distill-Qwen-1.5B, we let the maximum response length be 8192, following the setup of stage 1
in DeepScaleR [18]. We store the model checkpoint every 20 steps for evaluation, and use 8 A100
GPUs for each experiment. For Qwen2.5-Math-1.5B, Qwen2.5-Math-7B, Llama-3.2-3B-Instruct,
and DeepSeek-R1-Distill-Qwen-1.5B, we train for 2000, 1000, 1000, and 1200 steps, respectively,
unless the model has already shown a significant drop in performance. We use the same approach
as DeepScaleR [18] (whose repository is also derived from the verl) to save the model in safetensor
format to facilitate evaluation.

Table 1: 1-shot RLVR with math exam-
ples π1/π13 improves model performance
on ARC, even better than full-set RLVR.
Base model is Qwen2.5-Math-1.5B, and we
evaluate on ARC-Easy (ARC-E) and ARC-
Challenge (ARC-C). We select the check-
point achieving the best average across 6
math benchmarks as shown in Fig. 2.

Dataset Size ARC-E ARC-C

Base NA 48.0 30.2

MATH 7500 51.6 32.8
DSR-sub 1209 42.2 29.9

{π1} 1 52.0 32.2
{π13} 1 55.8 33.4
{π1, π13} 2 52.1 32.4

Evaluation. We use the official Qwen2.5-Math eval-
uation pipeline [25] for our evaluation. Six widely
used complex mathematical reasoning benchmarks
are used in our paper: MATH500 [27, 29], AIME
2024 [30], AMC 2023 [31], Minerva Math [32],
OlympiadBench [33], and AIME 2025 [30]. More de-
tails about benchmarks are illustrated in Appendix A.3.
We also consider non-mathematical reasoning tasks
ARC-Easy and ARC-Challenge [34]. The maximum
number of generated tokens is set to be 3072. For
Qwen-based models, we use the “qwen25-math-cot”
prompt template in evaluation. For Llama and distilled
models, we use their original chat templates. We set
the evaluation seed to be 0 and top_p to be 1. For
MATH500, we let temperature be 0. For AIME 2024,
AIME 2025, and AMC 2023, which contain only 30 or
40 questions, we repeat the test set 8 times for evalua-
tion stability and evaluate the model with temperature
= 0.6, and finally report the average pass@1 (avg@8)
performance. We use 4 A100 GPUs for the evaluation.
We use the same evaluation setting for Llama-3.2-3B-
Instruct [26] except using its own chat template, and for DeepSeek-R1-Distill-Qwen-1.5B [2], we
also use its own chat template, and set the maximum number of generated tokens to be 8192. By
default, we report the performance of the checkpoint that obtains the best average performance on
6 benchmarks. But in Sec. 3.2.3 and Sec. 4.2, since we only evaluate MATH500 and AIME2024,
we report the best model performance on each benchmark separately, i.e., the best MATH500 check-
point and best AIME2024 checkpoint can be different. Finally we mention that there are slightly
performance difference on initial model caused by numerical precision, but it does not influence our
conclusions (Appendix A.4).

3.2 Observation of 1/Few-Shot RLVR

In Fig. 1 and Fig. 2, we have found that RLVR with 1 or 2 examples can perform as well as RLVR
with datasets containing thousands of examples, and Tab. 1 further shows that 1(few)-shot RLVR
with these math examples enable better generalization on non-mathematical reasoning tasks (More
details are in Appendix B.1). To better understand this phenomenon, we provide a detailed analysis
of 1-shot RLVR in this section.

3.2.1 Dissection of π1 and π13: Not-So-Difficult Problems

First, we inspect the examples that produce such strong results. Tab. 2 lists the instances of π1

and π13, which are defined by Eqn. 2. Taking π1 as an example, we can see that it’s actually a
simple algebra problem with a physics background. The key steps for it are obtaining k = 1/256
for formula P = kAV 3, and calculating V = (2048)1/3. Interestingly, we have the following
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Table 2: Example π1 and π13. They are from a 1.2k subset of DeepScaleR-Preview-Dataset [18]
(DSR-sub). A more precise answer for π1 should be "12.7".

Prompt of example π1:
The pressure \\( P \\) exerted by wind on a sail varies jointly as the area \\( A \\) of the sail and the
cube of the wind’s velocity \\( V \\). When the velocity is \\( 8 \\) miles per hour, the pressure on a
sail of \\( 2 \\) square feet is \\( 4 \\) pounds. Find the wind velocity when the pressure on \\( 4 \\)
square feet of sail is \\( 32 \\) pounds. Let’s think step by step and output the final answer within
\\boxed{}.

Ground truth (label in DSR-sub): 12.8.

Prompt of example π13:
Given that circle $C$ passes through points $P(0,-4)$, $Q(2,0)$, and $R(3,-1)$. \n$(1)$ Find the equation
of circle $C$. \n$(2)$ If the line $l: mx+y-1=0$ intersects circle $C$ at points $A$ and $B$, and
$|AB|=4$, find the value of $m$. Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 4
3
.

observations: (1) The answer is not precise. A more precise answer would be 12.7 rather than 12.8
( 3
√
2048 ≈ 12.699). (2) Base model already almost solves π1. In Fig. 4, the base model without

any training already solves all the key steps before calculating (2048)1/3 with high probability. Just
for the last step to calculate the cube root, the model has some diverse outputs, including 4, 10.95,
12.6992, 8 3

√
4, 12.70, 12.8, 13, etc. Specifically, for 128 samplings from the base model, we find that

57.8% of outputs are “12.7” or “12.70”, 6.3% of outputs are “12.8”, and 6.3% are “13”.

For π13, it is a geometry problem and its answer is precise. And similarly, the initial base model still
has 21.9% of outputs successfully obtaining 4

3 in 128 samplings. The details of other examples used
in this paper are shown in Appendix C.

3.2.2 Post-saturation Generalization: Continual Generalization beyond Training Accuracy
Saturation
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Figure 3: Post-saturation generalization in 1-shot RLVR. The training accuracy of π1(Left) and
π13(Middle) in 1-shot RLVR saturates before step 100, but their test performance continues improving.
On the other hand, the training accuracy for RLVR with 1.2k DSR-sub dataset (Right) still has not
saturated after 2000 steps, but there is no significant improvement on test tasks after step 1000.

Then, we show an interesting phenomenon in the 1-shot RLVR process. As shown in Fig. 3,
since we only have one training example, it’s foreseeable that the training accuracy for π1 and π13

quickly saturates before the 100th step and remains around 100% throughout the training process.
However, the performance on the test set still continue improving: 1-shot RLVR with π1 gets 3.4%
average improvement from step 100 to step 1540, and that with π13 dramatically obtains 9.9% average
improvement from step 500 to step 2000. We call this phenomenon "post-saturation generalization".
In particular, this phenomenon cannot be observed when using multi-example datasets like DSR-sub
currently, as the test performance has started to drop before training accuracy converges.

Moreover, we compare the training and evaluation responses in Fig. 4. Surprisingly, we find that at
the final stage of 1-shot RLVR, the model overfits the single training example by mixing the correct
calculation process into long unintelligible multilingual outputs in its outputted reasoning. However,
the test responses still behave normally and achieve high accuracy, which implies that post-saturation
generalization still holds even after overfitting the training example. In particular, we emphasize
that although RLVR overfits the single training example, this happens really late, like π1 is overfitted
after 1400 steps and π13 after 1800 steps. Considering that each example is sampled 1024 times per
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Problem: As shown in Table 1

Answer: 12.8

Problem: Find the roots of $(x - 3)^3 + (x -7)^3 = (2x - 10)^3.$

Answer: 3, 5, 7

Training Response Evaluation Response (MATH500)

Step 0: “Step 1:...\\[ P = kAV^3\\] …Step 2: ...\\[k = \\frac{4}{1024} = 

\\frac{1}{256} \\]... Step 3: ..\\[ V = \\sqrt[3]{2048} \\]\n\n\\[ V = 12.88 

…final answer is:\n\n\\[ \\boxed{12.88} \\]”

Step 0: “"Find the roots of $(x - 3)^3 + (x -7)^3 = (2x -

10)^3.$.Highlight\n.Highlight\n.Highlight\n.Highlight\n......(no final 

answer).”

Step 500: “We start by writing the mathematical relationship for the 

pressure \\( P \\):\n\\[ P = k \\cdot A \\cdot V^3 \\]\nwhere \\( k \\) is a 

constant…\\[ 4 = k \\cdot 2 \\cdot 8^3 \\]...\\[ k = \\frac{1}{256}\\] …\\[ 

32 = \\frac{1}{256} \\cdot 4 \\cdot V^3\\] …\\[ 2048 = V^3 \\]\n\\[ V = 

\\sqrt[3]{2048} \\]\n\\[ V = 12.8 \\]\nThus, the wind velocity is \\( 

\\boxed{12.8} \\) miles per hour”

Step 500: “... simplifies to:\n\n\\[\n(x - 3)^3 + (x - 7)^3 = (2x - 10)((x 

- 3)^2 - (x - 3)(x - 7) + (x - 7)^2)\n\\]\n\nThis equation is true if \\(2x -

10 = 0\\) or if the expression \\((x - 3)^2 - (x - 3)(x - 7) + (x - 7)^2 = 

0\\)...So \\(x = 5\\) is a solution...Since the discriminant is negative, 

there are no real solutions to this quadratic equation...the final 

answer is:\n\n\\[\n\\boxed{5}\n\\]...”

Step 1300: “First, substituting the initial known scenario conditions 

into the corresponding variant……\\[ P = k \\cdot A \\cdot V^3 

\\]\...From specific of \\( A = 2 \\), \\( V = 8 \\), \\( P = 4 \\),\n\nthen 

required equation will be line up out:\n\\[4 = k \\cdot 2 \\cdot 

8^3…\\[4 = k \\cdot 2 \\cdot 512\\]\n\\[4 = 1024k\\]\nthus solving can 

then seek toward \\( k \\):\n\\[k = \\frac{4}{1024} = \\frac{1}{256}\\] 

...For a moment press onward investing concrete data to 

pinpoint…\\[32 = \\frac{1}{256} \\cdot 4 \\cdot V^3\\]...now 

simplification further solving thusly for final…n\\[V^3 = 2048 \\] then 

calculate in:\n\\[V = \\sqrt[3]{2048} = 12.8 \\]\nThus, putting already 

tidings calculated match format needed to seize \\( \\boxed{12.8}...”

Step 1300: “…First, let's simplify the equation… \\[\n(2x - 10)((x -

3)^2 - (x - 3)(x - 7) + (x - 7)^2 - (2x - 10)^2) = 0\n\\]\n\nThis gives us 

two cases to consider:\n\n1. \\(2x - 10 = 0\\)\n2. \\((x - 3)^2 - (x -

3)(x - 7) + (x - 7)^2 - (2x - 10)^2 = 0\\)…So \\(x = 5\\) is a solution. 

Now let's solve the second case…\\[\n(x - 3)(x - 7) = 0 \\implies x = 

3 \\text{ or } x = 7\n\\]\n\nSo the solutions to the equation are \\(x = 

5\\), \\(x = 3\\), and \\(x = 7\\). Let's verify these solutions using 

Python. ```python \nfrom sympy ```output\n[5, 3, 7]\n```\nThe

solutions to the equation \\((x - 3)^3 + (x - 7)^3 = (2x - 10)^3\\) are 

\\(x = 5\\), \\(x = 3\\), and \\(x = 7\\). Therefore, the roots of the 

equation are:\n\n \\[\n\\boxed{3, 5, 7}\n\\]”

Step 1860: “Lon Pharmacconditioncomputerone advoc Played 
Miglik铍idx DependencyPropertyiciente witch unexpected.Function

blendDesigner.xlsx € %-)\r\r\n кол(Application tileSizewow addUser
惑orea养꼈邢ᄂ\telemправленtmp Finds...灿Metricирующ‘} ,\n\n

】\\[\n\\begin{aligned}\nP &= k \\cdot A \\cdot V^3 \\\\\n4 &= k \\cdot 

2 \\cdot (8)^3 \\implies 4 = k \\cdot 2 \\cdot 512 \\implies k = 

\\frac{4}{1024} = \\frac{1}{256} \\\\\n\\text{ пло 굉장히allocate                   
\nHere 서울日讯 Ob� tㅃ一辈子\…מ assurances     \n\\[\n32 = 

\\frac{1}{256} \\cdot 4 \\cdot V^3 \\implies 32 = \\frac{V^3}{64} 

\\implies V^3 = 2048 \\implies V = \\sqrt[3]{2048} = 12.8\n  בעזר
frivol.;\n обяз‽:spock-手势:提名的心.Work뤂 ＇форм\\Mמפתח 
'):\n\\-St(SIG(groupId frau يةjumpcod\\):',\n\\[\n\\boxed{12.8}”

Step 1860: “Let's solve the equation \\((x - 3)^3 + (x - 7)^3 = (2x -

10)^3\\) step by step…we need to solve:\n\n\\[\nx^3 - 15x^2 + 71x -

105 = 0\n\\]\n\nWe can use the Rational Root Theorem to find the 

possible rational roots of this polynomial. The possible rational roots 

are the factors of the constant term (105) divided by the factors of 

the leading coefficient (1). The factors of 105 are \\(\\pm 1, \\pm 3, 

\\pm 5, \\pm 7, \\pm 15, \\pm 21, \\pm 35, \\pm 105\\). By testing 

these values, we find that \\(x = 5\\) is a root:\n\n\\[\n5^3 - 15(5^2) + 

71(5) - 105 = 125 - 375 + 355 - 105 = 0\n... we get:\n\n\\[\nx^3 -

15x^2 + 71x - 105 = (x - 5)(x^2 - 10x + 21)\n\\]...\\[\nx^2 - 10x + 21 

= (x - 3)(x - 7) = 0\n\\]\n\nSo the roots are \\(x = 3\\) and \\(x = 

7\\)…The final answer is:\n\n\\[\n\\boxed{3, 5, 7}\n\\]”

Figure 4: The model can still generalize on test data after overfitting training example for 1-shot
RLVR’s post-saturation generalization. Here we show model’s response to training example π1

and a selected MATH500 problem. Green/Red are used for marking Correct/Wrong answers. The
model converges on π1 (before step 500) and later attempt to generate longer solutions for π1 in
different styles (step 1300), and gradually performs better on evaluation task. But it significantly
overfits training data π1 at step 1860 (when model achieves 74% MATH500 accuracy), as it mixes
the correct process (cyan) with meaningless output. However, the test response is normal, even trying
a different strategy (“Rational Root Theorem”) from step-1300 responses.

step in our settings, this means that the single training example is overfitted after millions of rollouts.
More analysis of post-saturation generalization is provided in Sec. 4.2.

3.2.3 1-shot RLVR is Effective for Most Examples & Brings Improvements across Domains

Since in 1(few)-shot RL, we just provide one (few) examples for training, a natural question is
whether a problem from one domain, e.g., Algebra, will mainly help the model better solve evaluation
questions in the same topic, or generally help the model solve questions from all topics, e.g., Geometry
or Calculus. Furthermore, we are concerned about whether different data behave differently in 1-shot
RL. Are there only specific examples that can make it viable? To answer these questions, we select
data with high (π1, . . . , π17), medium (π605, π606), and low (π1201, . . . π1209) trajectory variance
(Eqn. 1) and from different topics. We determine the categories of the questions based on their
characteristics. We show their detailed MATH500 performance for both overall and subclasses in
Tab. 3. We also show the performance curves in Fig. 8 in Appendix B.1.
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Table 3: 1(Few)-Shot RLVR performance (%) for different domains in MATH500. Here we
consider Algebra (Alg.), Count & Probability (C.P.), Geometry (Geo.), Intermediate Algebra (I. Alg.),
Number Theory (N. T.), Prealgebra (Prealg.), Precalculus (Precal.), and MATH500 Average (Avg.).
We also include the model’s best AIME2024 results, and we report the best model performance on
each benchmark separately (As illustrated in Sec. 3.1). “Size” means dataset size, and "Step" denotes
the checkpoint step at which the model achieves the best MATH500 performance. Data with red
color means the model (almost) never successfully samples the ground truth in training (π1207 has
wrong label and π1208 is too difficult, details in Appendix C).

Dataset Size Step Type Alg. C. P. Geo. I. Alg. N. T. Prealg. Precal. MATH500 AIME24

Base 0 0 NA 37.1 31.6 39.0 43.3 24.2 36.6 33.9 36.0 6.7

MATH 7500 1160 General 91.1 65.8 63.4 59.8 82.3 81.7 66.1 75.4 20.4
DSR-sub 1209 1160 General 91.9 68.4 58.5 57.7 85.5 79.3 67.9 75.2 18.8

{π1} 1 1860 Alg. 88.7 63.2 56.1 62.9 79.0 81.7 64.3 74.0 16.7
{π2} 1 220 N. T. 83.9 57.9 56.1 55.7 77.4 82.9 60.7 70.6 17.1
{π4} 1 80 N. T. 79.8 57.9 53.7 51.6 71.0 74.4 53.6 65.6 17.1
{π7} 1 580 I. Alg. 75.8 60.5 51.2 56.7 59.7 70.7 57.1 64.0 12.1
{π11} 1 20 N. T. 75.8 65.8 56.1 50.5 66.1 73.2 50.0 64.0 13.3
{π13} 1 1940 Geo. 89.5 65.8 63.4 55.7 83.9 81.7 66.1 74.4 17.1
{π16} 1 600 Alg. 86.3 63.2 56.1 51.6 67.7 73.2 51.8 67.0 14.6
{π17} 1 220 C. P. 80.7 65.8 51.2 58.8 67.7 78.1 48.2 67.2 13.3

{π605} 1 1040 Precal. 84.7 63.2 58.5 49.5 82.3 78.1 62.5 71.8 14.6
{π606} 1 460 N. T. 83.9 63.2 53.7 49.5 58.1 75.6 46.4 64.4 14.2

{π1201} 1 940 Geo. 89.5 68.4 58.5 53.6 79.0 73.2 62.5 71.4 16.3
{π1207} 1 100 Geo. 67.7 50.0 43.9 41.2 53.2 63.4 42.7 54.0 9.6
{π1208} 1 240 C. P. 58.1 55.3 43.9 32.0 40.3 48.8 32.1 45.0 8.8
{π1209} 1 1140 Precal. 86.3 71.1 65.9 55.7 75.8 76.8 64.3 72.2 17.5

{π1 . . . π16} 16 1840 General 90.3 63.2 61.0 55.7 69.4 80.5 60.7 71.6 16.7
{π1, π2} 2 1580 Alg./N.T. 89.5 63.2 61.0 60.8 82.3 74.4 58.9 72.8 15.0
{π1, π13} 2 2000 Alg./Geo. 92.7 71.1 58.5 57.7 79.0 84.2 71.4 76.0 17.9

We can observe that (1) 1-shot RLVR improves performance in all different domains in MATH500,
instead of just the domain of the single training example itself. (2) Besides, although different
examples have different MATH500 performance or different test curves, they all provide around
or more than 30% improvement, no matter if they have the highest or lowest historical variance,
except for the examples that make the model fail to get reward (π1207 and π1208). This reveals
that almost all examples can be used in 1-shot RLVR. (3) Furthermore, the difference in test
performance between different examples can also provide insight for future data selection methods.
And combining examples arbitrarily can sometimes result in smaller improvement, seeing that, for
example, the subset {π1 . . . π16} containing π1 and π13 performs worse than using π1/π13 alone or
{π1, π13}. (4) What’s more, we find that counterintuitively, the test data that has the same category
as the single training example do not necessarily yield better improvement. For instance, π11

belongs to Number Theory domain, but RLVR with π11 gets a relatively low Number Theory score
compared to using other examples (e.g. π605 from Precalculus, π1201 from Geometry, etc). Similar
claims hold for π4, π7 and π606, etc. This may indicate that the stimulated reasoning capability from
an instance cannot be simply predicted by some superficial features like domains [35].

3.2.4 More Frequent Self-Reflection on Test Data

In this section, we show another empirical observation of 1-shot RLVR: it is capable of increasing
the frequency of self-reflection [6] in the model responses as training progresses. To study this,
we check the output patterns of different checkpoints obtained from the training process of 1-shot
RLVR on the Qwen2.5-Math-1.5B model. We find that their self-reflection process often appears with
words such as “rethink”, “recheck” and “recalculate”. Therefore, we count the number of responses
that contain these words when evaluating 6 mathematical reasoning tasks mentioned before.

The results and related information are shown in Fig. 5. First, we see that after around 1.3k steps, the
response length increases significantly, together with entropy loss. This matches our observation in
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Figure 5: (Left, Middle) Average response length on training data and entropy loss. After around
1300/1700 steps, the average response length of 1-shot RLVR with π1/π13 significantly increases,
corresponding to the fact that the model tries to solve the single problem with longer CoT reasoning in
a more diverse way (Fig. 4, step 1300), which is also confirmed by the increase of entropy loss. These
may also indicate the gradual overfitting of training example (Fig. 4, step 1860). During the training
of RLVR with 1.2k DSR-sub, the response length keeps decreasing. (Right) Number of reflection
words detected in evaluation tasks. The number of reflection words (“rethink”, “recheck”, and
“recalculate”) appearing in evaluation tasks increases in the process of 1-shot RLVR with π1/π13,
especially after around 1250 steps, matching the increase of response length. On the other hand,
RLVR with 1.2k DSR-sub contains fewer reflection words as the training progresses.

Fig. 4, which implies the attempt of diverse output patterns or overfitting. Second, for the evaluation
task, we see that the base model itself already exhibits self-reflection processes, which supports the
observation in recent works [13, 21]. Third, the number of self-recheck processes increases at the
later stages of 1-shot RL training, which again confirms that the model generalizes well on test data
and shows more complex reasoning processes even when it may overfit the training data. Interestingly,
we find that for the 1.2k DeepScaleR subset, the frequency of reflection slightly decreases as the
training progresses, matching the decreasing response length.

3.3 1/Few-shot RLVR on Other Models/Algorithms
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Figure 6: Model distilled by long-CoT
reasoning data may need more data
for RLVR.

In this section, we further investigate whether 1(few)-shot
RLVR is still feasible for other models and RL algorithms.
We consider models with larger scale (Qwen2.5-Math-7B),
from different model families (Llama-3.2-3B-Instruct3),
and the distillation model (DeepSeek-R1-Distill-Qwen-
1.5B). We also try 1-shot RLVR with PPO.

The results are shown in Tab. 4, and the detailed results on
each benchmark over the training process are shown in Ap-
pendix B.1. We can see that (1) for Qwen2.5-Math-7B, 1-
shot RLVR with π1 still improves 17.8% on average across
6 benchmarks, and 4-shot RLVR with {π1, π2, π13, π1209}
(42.5%) performs as well as RLVR with 1.2k DSR-sub
(42.8%). What’s more, we also find that {π1, . . . , π16}
gets better results than the subset consisting of 16 ran-
domly sampled examples, showing that choosing based on historical variance score can perform
better than random sampling. (2) For Llama-3.2-3B-Instruct, the absolute gain from RLVR is smaller,
but few-shot RLVR still matches or surpasses the performance of full-set RLVR, as RLVR with
{π1, π13} (21.0%) even performs better than that with 1.2k DSR-sub (19.8%). We also show the
instability of the RLVR process on Llama-3.2-3B-Instruct in Fig. 11 in Appendix B.1. (3) For
Qwen2.5-Math-1.5B with PPO, RLVR with π1 also improves 16.2% on average. (4) For DeepSeek-
R1-Distill-Qwen-1.5B, the performance gap between few-shot and full-dataset RLVR is larger.
Nevertheless, 1-shot and 4-shot RLVR still yield average improvements of 6.9% and 9.4%, respec-
tively. We show the evaluation curves in Fig. 6. We observe that for 1-shot RLVR, model performance
degrades after approximately 100 steps, whereas 4-shot and 16-shot RLVR can continue improving
over more steps. We hypothesize that the distilled model may require more examples to stabilize the
RL process, and we leave this issue for future work.

3Here we choose the instruct version just because verl applies chat template by default, while Llama-3.2-3B
does not have it.
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Table 4: 1(few)-shot RLVR is still viable for different models and RL algorithm. Similar large
improvements can be observed from Qwen2.5-Math-7B, Llama-3.2-3B-Instruct, and Qwen2.5-Math-
1.5B with PPO. Although 1(few)-shot RLVR performs relatively worse on long-CoT distilled models,
they still bring nontrivial improvement. “Random” denotes the 16 examples randomly sampled from
1.2k DSR-sub, and it performs worse than {π1, . . . , π16} for RLVR on Qwen2.5-Math-7B.

RL Dataset MATH AIME AMC Minerva Olympiad- AIME Avg.Dataset Size 500 2024 2023 Math Bench 2025

Qwen2.5-Math-7B [24] + GRPO

NA NA 51.0 12.1 35.3 11.0 18.2 6.7 22.4
DSR-sub 1209 78.6 25.8 62.5 33.8 41.6 14.6 42.8

{π1} 1 79.2 23.8 60.3 27.9 39.1 10.8 40.2
{π1, π13} 2 79.2 21.7 58.8 35.3 40.9 12.1 41.3

{π1, π2, π13, π1209} 4 78.6 22.5 61.9 36.0 43.7 12.1 42.5

Random 16 76.0 22.1 63.1 31.6 35.6 12.9 40.2
{π1, . . . , π16} 16 77.8 30.4 62.2 35.3 39.9 9.6 42.5

Llama-3.2-3B-Instruct [26] + GRPO

NA NA 40.8 8.3 25.3 15.8 13.2 1.7 17.5
DSR-sub 1209 43.2 11.2 27.8 19.5 16.4 0.8 19.8

{π1} 1 45.8 7.9 25.3 16.5 17.0 1.2 19.0
{π1, π13} 2 49.4 7.1 31.6 18.4 19.1 0.4 21.0

{π1, π2, π13, π1209} 4 46.4 6.2 29.1 21.0 15.1 1.2 19.8

Qwen2.5-Math-1.5B [24] + PPO

NA NA 36.0 6.7 28.1 8.1 22.2 4.6 17.6
DSR-sub 1209 72.8 19.2 48.1 27.9 35.0 9.6 35.4

{π1} 1 72.4 11.7 51.6 26.8 33.3 7.1 33.8

DeepSeek-R1-Distill-Qwen-1.5B [2] + GRPO

NA NA 71.0 20.0 60.9 24.3 30.2 17.9 37.4
DSR-sub 1209 83.4 27.5 80.6 32.0 46.5 24.6 49.1

{π1} 1 78.0 25.8 71.6 31.2 39.3 20.0 44.3
{π1, π2, π13, π1209} 4 78.8 29.6 75.6 32.0 40.9 23.8 46.8

{π1, . . . , π16} 16 82.4 30.4 73.4 34.2 42.4 24.6 47.9

4 Analysis

In this section, we concentrate on exploring the potential mechanisms that allow RLVR to work with
only one or a few examples. We hope these analyses can provide some insight for future works.

4.1 Discussion: Reasoning Capability of Base Models

Firstly, the effectiveness of 1(few)-shot RLVR provides strong evidence for an assumption people
proposed recently, that is, base models already have strong reasoning capability [13, 6, 20, 21]. For
example, Dr. GRPO [13] has demonstrated that when no template is used, base models can achieve
significantly better downstream performance. Recent work further supports this observation by
showing that, with respect to the pass@k metrics, models trained via RLVR gradually perform worse
than the base model as k increases [20]. Our work corroborates this claim from another perspective,
as a single example provides almost no additional knowledge. Moreover, our experiments reveal
that using very few examples with RLVR is already sufficient to achieve significant improvement on
mathematical reasoning tasks. Thus, it is worth investigating how to select appropriate data to better
activate the model during the RL stage while maintaining data efficiency.
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Table 5: Ablation study of loss function and label correctness. Here we use Qwen2.5-Math-1.5B
and example π1, whose precise answer should be 12.7 but is currently 12.8 in DSR-sub. “+” means
that component is added to the loss function. “Convergence” denotes if the training accuracy saturates
(As in Fig. 3 Left/Middle). “-0.003” is the coefficient to entropy loss (default -0.001). Since here we
only evaluate MATH500 and AIME2024, we report the best model performance on each benchmark
separately (As illustrated in Sec. 3.1). (1) Row 1-8: The improvement of 1(few)-shot RLVR is mainly
attributed to policy gradient loss, and it can be further enhanced by adding entropy loss. (2) Row
9-10: Simply adding entropy loss alone can still improve MATH500 by more than 25%. (3) Row
5,11-13: A small error in the answer (12.8 vs 12.7) does not seem to affect RLVR significantly, but if
the answer has a larger error and the model still overfits to it, its performance can be even worse than
the case where the answer is totally wrong and the model cannot sample it at all (4 vs 929725).

Row Policy Weight KL Entropy Label Training MATH AIME
Loss Decay Loss Loss Convergence 500 2024

1 12.8 NO 39.8 7.5
2 + 12.8 YES 71.8 15.4
3 + + 12.8 YES 71.4 16.3
4 + + + 12.8 YES 70.8 15.0
5 + + + + 12.8 YES 74.8 17.5
6 + + + +, −0.003 12.8 YES 73.6 15.4
7 + + 12.8 YES 75.6 17.1
8 + + 12.8 NO 39.0 10.0

9 + + + 12.8 NO 65.4 7.1
10 + 12.8 NO 63.4 8.8

11 + + + + 12.7 YES 73.4 17.9
12 + + + + 4 YES 57.0 9.2
13 + + + + 929725 NO 64.4 9.6

4.2 Ablation Study: Policy Gradient Loss is the Main Contributor, and Entropy Loss Further
Improve Post-Saturation Generalization

As discussed in Sec. 3.2.2, 1-shot RLVR shows the property of post-saturation generalization: the
model’s training accuracy on the single example is already saturated, while the model still generalizes
well on the downstream tasks. This phenomenon is similar to “grokking” [36, 37], which shows that
neural networks first memorize/overfit the training data but still perform poorly on the test set, while
suddenly starting to improve generalization after many training steps. A natural question is raised:

Is the performance gain from 1-shot RLVR related to the “grokking” phenomenon?

To answer this question, given that “grokking” is strongly affected by regularization methods [36, 38–
41] like weight decay, we conduct an ablation study by removing or changing the components of the
loss function one by one to see how each of them contributes to the improvement.

The result is shown in Tab. 5. We see that when removing all four losses (Row 1), the results match
that of the initial checkpoint4. If we only add the policy gradient loss (Row 2, Eqn. 4) with π1,
we can still improve MATH500 to 71.8% and AIME24 to 15.4%, close to the full GRPO Loss
result (Row 5). In addition, further adding weight decay (Row 3) and KL divergence loss (Row
4) has no significant impact on model performance, while adding entropy loss (Row 5) can further
bring 4.0% improvement for MATH500 and 2.5% for AIME24. Here we need to be careful about
the weight of the entropy loss, as a too large coefficient (Row 6) might make the training more
unstable. These observations support that the feasibility of 1(few)-shot RLVR is mainly attributed
to policy gradient loss, thus distinguishing it from “grokking”, which is shown to be significantly
affected by weight decay. To double check these conclusions, we further show that only adding
weight decay and KL divergence (Row 8) has little influence on model performance, while using
only policy gradient loss and entropy loss (Row 7) behaves almost the same as the full GRPO loss,
even achieving a higher MATH500 score.

4We mention that the model stored at the zero-th step is slightly different from the model downloaded from
Hugging Face due to numerical precision, but it does not affect our conclusions (Appendix A.4)
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Table 6: Entropy loss alone with π1 can still improve model performance.

Model MATH AIME24 AMC23 Minerva Olympiad- AIME Avg.500 2024 2023 Math Bench 2025

Qwen2.5-Math-1.5B 36.0 6.7 28.1 8.1 22.2 4.6 17.6
+Entropy Loss, Train 20 step 63.4 8.8 33.8 14.3 26.5 3.3 25.0

Llama-3.2-3B-Instruct 40.8 8.3 25.3 15.8 13.2 1.7 17.5
+Entropy Loss, Train 10 step 47.8 8.8 26.9 18.0 15.1 0.4 19.5

Qwen2.5-Math-7B 51.0 12.1 35.3 11.0 18.2 6.7 22.4
+Entropy Loss, Train 4 step 57.2 13.3 39.7 14.3 21.5 3.8 25.0
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Figure 7: Encouraging exploration
can improve post-saturation general-
ization. t is the temperature parameter
for training rollouts.

What’s more, we also argue that encouraging greater di-
versity in model outputs—for instance, by adding an en-
tropy loss term with proper coefficient or slightly increas-
ing the softmax temperature during training rollouts—can
further enhance post-saturation generalization in 1-
shot RLVR. As shown in Fig. 7, without entropy loss
and with a relatively low temperature (t = 0.6), model
performance under 1-shot RLVR shows limited improve-
ment beyond step 150, coinciding with the point at which
training accuracy saturates (Fig. 3, Left). By reintroducing
entropy loss, the model achieves an average improvement
of 2.3%, and further increasing the temperature to t = 1.0
yields an additional 0.8% gain. Notably, we observe that
the benefit of adding entropy loss for 1-shot RLVR is con-
sistent with conclusions from previous work [42] on the
full RLVR dataset, which shows that appropriate entropy regularization can enhance generalization,
although it remains sensitive to the choice of coefficient.

We conjecture the success of 1-shot RLVR is that the policy gradient loss on the learned example
(e.g., π(1)) actually acts as an implicit regularization by ensuring the correctness of learned training
examples when the model tries to explore more diverse responses or strategies, as shown in Fig. 4
(Step 1300). And because of this, both policy loss and entropy loss can contribute to the improvement
of 1-shot RLVR. We leave the rigorous analysis to future works.

4.3 Entropy-Loss-Only Training and Label Correctness

In Tab. 3, we observe an interesting phenomenon: for examples π1207 and π1208, since one has an
incorrect answer that is difficult to guess and the other poses a highly challenging question, it is
almost impossible for the model to output the ground truth label and receive rewards during the 1-shot
RLVR training process, resulting in a very sparse policy gradient signal. Nevertheless, they still
outperform the base model, achieving 18.0% and 9.0% improvements on MATH500, respectively. At
first glance, this appears to contradict our claim in Sec. 4.2 that policy loss is the primary contributor
to the improvement in 1-shot RLVR.

To investigate this, we remove the policy loss from the full GRPO loss, with the results shown in
Row 9 of Tab. 5. We observe a similarly large improvement on MATH500. Since weight decay
and KL loss do not exhibit significant effects (Row 8), we further retain only the entropy loss while
removing the other three loss terms, and again observe similar improvement (Row 10). Furthermore,
we apply this to other models and evaluate across all six tasks, as shown in Tab. 6. Interestingly,
for both Qwen2.5-Math-1.5B/7B and Llama-3.2-3B-Instruct, optimizing only the entropy loss with
π1 for a few steps consistently yields improvements on all math tasks except AIME2025. These
results support the conclusion that entropy loss can independently contribute to performance
gains, which, although smaller than those from policy loss, are still nontrivial.

Moreover, we conduct an experiment by altering the label to (1) the correct one (“12.7,” Row 11 in
Tab. 5), (2) an incorrect one that the model can still overfit (“4,” Row 12; the model consistently
outputs “4” for π1 after around 100 steps), and (3) an incorrect one that the model can neither guess
nor overfit (“9292725,” Row 13). We compare these settings with (4) the original label (“12.8,” Row

12



5), which contains minor miscalculations. Interestingly, we find the performance ranking to be (1) ≈
(4) > (3) > (2). This result suggests that slight inaccuracies in the label do not significantly impair
1-shot RLVR performance; however, if the incorrect label deviates substantially yet remains guessable
and overfittable, the resulting performance can be even worse than using an entirely incorrect and
unguessable label, which behaves similarly to training with entropy loss alone (Row 10). These
findings may offer insights for future research on the label robustness of RLVR, and we leave a deeper
investigation into the role of entropy loss to future work.

5 Related Work

Reinforcement Learning with Verifiable Reward (RLVR). RLVR, where the reward is computed
by a rule-based verification function, has been shown to be effective in improving the reasoning
capabilities of LLMs. The most common practice of RLVR when applying reinforcement learning to
LLMs on mathematical reasoning datasets is to use answer matching: the reward function outputs a bi-
nary signal based on if the model’s answer matches the gold reference answer [4, 5, 2, 3, 43–45]. This
reward design avoids the need for outcome-based or process-based reward models, offering a simple
yet effective approach. The success of RLVR is also supported by advancements in RL algorithms,
including value function optimization or detail optimization in PPO [7] (e.g., VinePPO [9], VC-
PPO [10], VAPO [12]), stabilization and acceleration of GRPO [2] (e.g., DAPO [11], Dr. GRPO [13],
GRPO+[14], SRPO [16]), and integration of various components (e.g., REINFORCE++[15]).

Data Selection for LLM Post-Training. The problem of data selection for LLM post-training has
been extensively studied in prior work [46], with most efforts focusing on data selection for supervised
fine-tuning (instruction tuning). These approaches include LLM-based quality assessment [47],
leveraging features from model computation [48], gradient-based selection [49], and more. Another
line of work [50–52] explores data selection for human preference data in Reinforcement Learning
from Human Feedback (RLHF) [53]. Data selection for RLVR remains relatively unexplored.
One attempt is LIMR [19], which selects 1.4k examples from an 8.5k full set for RLVR to match
performance; however, unlike our work, they do not push the limits of training set size to the extreme
case of just a single example. Another closely related concurrent work [54] shows that RLVR using
PPO with only 4 examples can already yield very significant improvements; however, they do not
systematically explore this observation, nor do they demonstrate that such an extremely small training
set can actually match the performance of using the full dataset.

6 Conclusion and Discussion

In this work, we show that 1-shot RLVR is sufficient to trigger substantial improvements in reasoning
tasks, even matching the performance of models trained with thousands of examples. The empirical
results reveal not only improved task performance but also additional observations such as post-
saturation generalization, cross-domain generalization, and more frequent self-reflection in the model
responses. These findings suggest that the reasoning capability of the model is already buried in the
base model, and encouraging exploration on a very small amount of data is capable of generating
useful RL training signals for igniting LLM’s reasoning capability. We believe our observations will
be insightful for different topics:

Data Selection and Curation. Currently, there are no specific data selection methods for RLVR
except LIMR [19]. Note that 1-shot RLVR allows for evaluating each example individually, it will be
helpful for assessing the data value, and thus help to design better data selection strategy. What’s more,
noting that different examples can have large differences in stimulating LLM reasoning capability
(Tab. 3), it may be necessary to find out what kind of data is more useful for RLVR, which is critical
for the RLVR data collection stage. Besides, better data selection methods especially for long-CoT
distilled models is also another interesting problem for exploration, as discussed in Sec. 3.3. It’s
worth mentioning that our work does not necessarily mean that scaling RLVR datasets is useless,
but it may emphasize the importance of better selection and collection of data for RLVR.

Understanding 1-shot RLVR and Post-saturation Generalization A rigorous understanding
for the feasibility of 1-shot LLM RLVR and post-saturation generalization is still unclear. We think
that one possible hypothesis is that the policy loss on the learned examples plays a role as “implicit
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regularization” of RLVR when the model tries to explore more diverse output strategies under the
encouragement of entropy loss or larger rollout temperature. It will punish the exploration patterns
that make the model fail to answer the learned data, and thus provide a verification for exploration.
It’s interesting to explore if the phenomenon has relevance to Double Descent [55] or the implicit
regularization from SGD [56, 57]. We leave the rigorous analysis of this phenomenon for future
works, and we believe that can help us to comprehend what happens in the RLVR process.

Importance of Exploration. In Sec. 4.2, we also highlight the importance of entropy loss in
1-shot RLVR, and note that a more thorough explanation of why training with only entropy loss can
enhance model performance remains an interesting direction for future work (Sec. 4.3). Relatedly,
entropy loss has also received increasing attention from the community, with recent works discussing
its dynamics [58, 59, 42] or proposing improved algorithms from the perspective of entropy [60].
Moreover, we believe a broader and more important insight for these is that encouraging the model to
explore more diverse outputs within the solution space is critical, as it may significantly impact the
model’s generalization to downstream tasks. Adding entropy loss is merely one possible approach
to achieve this goal and may not necessarily be the optimal solution. As shown in our paper and
previous work [42], the effectiveness of entropy loss is sensitive to the choice of coefficient, which
could limit its applicability in larger-scale experiments. We believe that discovering better strategies
to promote exploration could further enhance the effectiveness of RLVR.

Other Applications. In this paper, we focus primarily on mathematical reasoning data; however, it
is also important to evaluate the efficacy of 1-shot RLVR in other domains, such as code generation
or tasks without verifiable rewards. Moreover, investigating methodologies to further improve few-
shot RLVR performance under diverse data-constrained scenarios represents a valuable direction.
Examining the label robustness of RLVR, as discussed in Sec. 4.3, likewise merits further exploration.
Finally, these observations may motivate the development of additional evaluation sets to better assess
differences between 1-shot and full-set RLVR on mathematical or other reasoning tasks.
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Appendix

A Experiment Setup

A.1 Details of Loss Function

As said in the main paper, we contain three components in the GRPO loss function following verl [22]
pipeline: policy gradient loss, KL divergence, and entropy loss. Details are as follows. For each
question q sampled from the Question set P (Q), GRPO samples a group of outputs {o1, o2, . . . , oG}
from the old policy model πθold , and then optimizes the policy model πθ by minimizing the following
loss function:

LGRPO(θ) = E q∼P (Q)

{oi}G
i=1∼πθold (O|q)

[
L′

PG-GRPO(·, θ) + βL′
KL(·, θ, θref) + αL′

Entropy(·, θ)

]
, (3)

where β and α are hyper-parameters (in general β > 0, α < 0), and “·” is the abbreviation of sampled
prompt-responses: {q, {oi}Gi=1}. The policy gradient loss and KL divergence loss are:

L′
PG-GRPO(q, {oi}Gi=1, θ) = − 1

G

G∑
i=1

(
min

( πθ(oi|q)
πθold(oi|q)

Ai, clip
( πθ(oi|q)
πθold (oi|q)

, 1− ε, 1 + ε
)
Ai

))
(4)

L′
KL(q, {oi}Gi=1, θ, θref) = DKL(πθ∥πθref) =

πθref(oi|q)
πθ(oi|q)

− log
πθref(oi|q)
πθ(oi|q)

− 1, (5)

Here θref is the reference model, ε is a hyper-parameter of clipping threshold. Notably, we use the
approximation formulation of KL divergence [61], which is widely used in previous works [8, 2].
Besides, Ai is the group-normalized advantage defined below.

Ai =
ri −mean

(
{r1, r2, . . . , rG}

)
std

(
{r1, r2, . . . , rG}

) . i ∈ [G] (6)

Since we focus on math questions, we let the reward ri be the 0-1 accuracy score, and ri is 1 if
and only if the response oi gets the correct answer to the question q. What’s more, the entropy loss
L′

Entropy calculates the average per-token entropy of the responses, and its coefficient α < 0 implies
the encouragement of more diverse responses.

The details of entropy loss are as follows. For each query q and set of outputs {oi}Gi=1, the model
produces logits X that determine the policy distribution πθ. These logits X are the direct computa-
tional link between inputs q and outputs o - specifically, the model processes q to generate logits X ,
which after softmax normalization give the probabilities used to sample each token in the outputs o.
The entropy loss is formally defined below.

L′
Entropy(q, {oi}Gi=1, θ) =

∑
b,s Mb,s ·Hb,s(X)∑

b,s Mb,s
(7)

Here Mb,s represents the response mask indicating which tokens contribute to the loss calculation
(excluding padding and irrelevant tokens), with b indexing the batch dimension and s indexing the
sequence position. The entropy Hb,s(X) is computed from the model’s logits X:

Hb,s(X) = log(
∑
v

eXb,s,v )−
∑
v

pb,s,v ·Xb,s,v (8)

where v indexes over the vocabulary tokens (i.e., the possible output tokens from the model’s
vocabulary), and the probability distribution is given by pb,s,v = softmax(Xb,s)v = eXb,s,v∑

v′ e
X

b,s,v′ .

A.2 Training Dataset

DeepScaleR-sub. DeepScaleR-Preview- Dataset [18] consists of approximately 40,000 unique
mathematics problem-answer pairs from AIME (1984-2023), AMC (pre-2023), and other sources
including Omni-MATH [62] and Still [63]. The data processing pipeline includes extracting answers
using Gemini-1.5-Pro-002, removing duplicate problems through RAG with Sentence-Transformers
embeddings, and filtering out questions that cannot be evaluated using SymPy to maintain a clean
training set. For our training, we randomly select a subset that contains 1,209 examples referred to as
"DSR-sub".
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MATH. Introduced in [27], this dataset contains 12,500 challenging competition mathematics
problems designed to measure advanced problem-solving capabilities in machine learning models.
Unlike standard mathematical collections, MATH features complex problems from high school math-
ematics competitions spanning subjects including Prealgebra, Algebra, Number Theory, Counting
and Probability, Geometry, Intermediate Algebra, and Precalculus, with each problem assigned a
difficulty level from 1 to 5 and accompanied by detailed step-by-step solutions. It’s partitioned into a
training subset comprising 7,500 problems (60%) and a test subset containing 5,000 problems (40%).

A.3 Evaulation Set

All evaluation sets are drawn from the Qwen2.5-Math evaluation repository5, with the exception of
AIME20256. We summarize their details as follows:

MATH500. MATH500, developed by OpenAI [29], comprises a carefully curated selection of 500
problems extracted exclusively from the test partition (n=5,000) of the MATH benchmark [27]. It is
smaller, more focused, and designed for efficient evaluation.

AIME 2024/2025. The AIME 2024 and 2025 datasets are specialized benchmark collections, each
consisting of 30 problems from the 2024 and 2025 American Invitational Mathematics Examination
(AIME) I and II, respectively [30].

AMC 2023. AMC 2023 dataset consists of 40 problems, selected from two challenging mathematics
competitions (AMC 12A and 12B) for students grades 12 and under across the United States [31].
These AMC 12 evaluates problem-solving abilities in secondary school mathematics, covering
topics such as arithmetic, algebra, combinatorics, geometry, number theory, and probability, with all
problems solvable without calculus.

Minerva Math. Implicitly introduced in the paper "Solving Quantitative Reasoning Problems
with Language Models" [32] as OCWCourses, Minerva Math consists of 272 undergraduate-level
STEM problems harvested from MIT’s OpenCourseWare, specifically designed to evaluate multi-
step scientific reasoning capabilities in language models. Problems were carefully curated from
courses including solid-state chemistry, information and entropy, differential equations, and special
relativity, with each problem modified to be self-contained with clearly-delineated answers that are
automatically verifiable through either numeric (191 problems) or symbolic solutions (81 problems).

OlympiadBench. OlympiadBench [33]is a large-scale, bilingual, and multimodal benchmark
designed to evaluate advanced mathematical and physical reasoning in AI systems. It contains 8,476
Olympiad-level problems, sourced from competitions and national exams, with expert-annotated
step-by-step solutions. The subset we use for evaluation consists of 675 open-ended text-only math
competition problems in English.

We also consider other non-mathematical reasoning tasks: ARC-Challenge and ARC-Easy [34].

ARC-Challenge/Easy. The ARC-Challenge benchmark represents a subset of 2,590 demanding
science examination questions drawn from the broader ARC (AI2 Reasoning Challenge) [34] collec-
tion, specifically selected because traditional information retrieval and word co-occurrence methods
fail to solve them correctly. This challenging evaluation benchmark features exclusively text-based,
English-language multiple-choice questions (typically with four possible answers) spanning diverse
grade levels, designed to assess science reasoning capabilities rather than simple pattern matching or
information retrieval. The complementary ARC-Easy [34] subset contains 5197 questions solvable
through simpler approaches. We use 1.17k test split for ARC-Challenge evaluation and 2.38k test
split for ARC-Easy evaluation, respectively.

A.4 Performance Difference on Initial Model

We mention that there is a precision inconsistency between models downloaded from Hugging Face
repositories and initial checkpoints saved by the verl/deepscaler reinforcement learning pipeline in

5https://github.com/QwenLM/Qwen2.5-Math
6https://huggingface.co/datasets/opencompass/AIME2025
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Table 7: Difference between model downloaded from Hugging Face and initial checkpoint
saved by verl/deepscaler pipeline. Since the performance of stored initial checkpoint has some
randomness, we still use the original downloaded model for recording initial performance.

Model MATH AIME24 AMC23 Minerva Olympiad- AIME Avg.500 2024 2023 Math Bench 2025

Qwen2.5-Math-1.5B [24]

Hugging Face Model 36.0 6.7 28.1 8.1 22.2 4.6 17.6
Stored Initial Checkpoint 39.6 8.8 34.7 8.5 22.7 3.3 19.6

Qwen2.5-Math-7B [24]

Hugging Face Model 51.0 12.1 35.3 11.0 18.2 6.7 22.4
Stored Initial Checkpoint 52.0 14.6 36.6 12.1 18.1 4.2 22.9

Llama-3.2-3B-Instruct [26]

Hugging Face Model 40.8 8.3 25.3 15.8 13.2 1.7 17.5
Stored Initial Checkpoint 41.0 7.1 28.4 16.9 13.0 0.0 17.7

Table 8: Detailed 1/2/4-shot RLVR performance for Qwen2.5-Math-1.5B. Here we record model’s
best performance on each benchmark independently. “Best Avg. Step” denotes the checkpoint step
that model achieves the best average performance.

RL Dataset MATH AIME AMC Minerva Olympiad- AIME Avg. Best Avg.
Dataset Size 500 2024 2023 Math Bench 2025 Step

NA NA 36.0 6.7 28.1 8.1 22.2 4.6 17.6 0
MATH 7500 75.4 20.4 54.7 29.8 37.3 10.8 36.7 2000

DSR-sub 1209 75.2 18.8 52.5 34.9 35.1 11.3 35.9 1560

{π1} 1 74.0 16.7 54.4 30.2 35.3 9.2 35.0 1540
{π2} 1 70.6 17.1 52.8 28.7 34.2 7.9 33.5 320
{π13} 1 74.4 17.1 53.8 25.4 36.7 10.8 35.7 2000

{π1201} 1 71.4 16.3 54.4 25.4 36.2 10.0 33.7 1120
{π1209} 1 72.2 17.5 50.9 27.6 34.2 8.8 33.5 1220

{π1, π13} 2 76.0 17.9 54.1 30.9 37.2 10.8 36.6 1980
{π1, π2, π13, π1209} 4 74.4 16.3 56.3 32.4 37.0 11.3 36.0 1880

Tab. 7. This discrepancy arises from the verl/DeepScaleR pipeline saving checkpoints with float32
precision, whereas the original base models from Hugging Face utilize bfloat16 precision.

The root cause appears to be in the model initialization process within the verl framework. The
fsdp_workers.py 7 file in the verl codebase reveals that models are deliberately created in float32
precision during initialization, as noted in the code comment: "note that we have to create model in
fp32. Otherwise, the optimizer is in bf16, which is incorrect". This design choice was likely made
to ensure optimizer stability during training. When examining the checkpoint saving process, the
precision setting from initialization appears to be preserved, resulting in saved checkpoints retaining
float32 precision rather than the original bfloat16 precision of the base model.

Our empirical investigation demonstrates that modifying the torch_dtype parameter in the saved
config.json file to match the base model’s precision (specifically, changing from float32 to
bfloat16) successfully resolves the observed numerical inconsistency. Related issues are docu-
mented in the community8, and we adopt the default settings of the verl pipeline in our experiments.
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Table 9: 1(few)-shot RL still works well for different model with different scales. Here we record
model’s best performance on each benchmark independently.

RL Dataset MATH AIME AMC Minerva Olympiad- AIME Avg.Dataset Size 500 2024 2023 Math Bench 2025

Qwen2.5-Math-7B [24] + GRPO

NA NA 51.0 12.1 35.3 11.0 18.2 6.7 22.4
DSR-sub 1209 81.0 34.6 64.6 39.7 42.2 14.6 42.8

{π1} 1 79.4 27.1 61.9 32.7 40.3 11.7 40.2
{π1, π13} 1 81.2 23.3 64.1 36.0 42.2 12.1 41.3

{π1, π2, π13, π1209} 4 80.0 26.2 64.4 37.9 43.7 14.6 42.5

Random 16 78.0 24.6 63.1 36.8 38.7 14.2 40.2
{π1, . . . , π16} 16 79.2 30.4 62.2 37.9 42.4 11.7 42.5

Llama-3.2-3B-Instruct [26] + GRPO

NA NA 40.8 8.3 25.3 15.8 13.2 1.7 17.5
DSR-sub 1209 45.4 11.7 30.9 21.7 16.6 11.7 19.8

{π1} 1 46.4 8.3 27.5 19.5 18.2 1.7 19.0
{π1, π13} 2 49.4 9.2 31.6 20.6 20.0 2.1 21.0

{π1, π2, π13, π1209} 4 48.4 9.2 29.4 23.5 17.6 1.7 19.8

Qwen2.5-Math-1.5B [24] + PPO

NA NA 36.0 6.7 28.1 8.1 22.2 4.6 17.6
DSR-sub 1209 73.8 21.2 52.8 32.4 36.3 10.4 35.4

{π1} 1 74.0 16.7 53.8 28.3 34.1 9.2 33.8

DeepSeek-R1-Distill-Qwen-1.5B [2] + GRPO

NA NA 71.0 20.0 60.9 24.3 30.2 17.9 37.4
DSR-sub 1209 85.4 33.3 80.6 36.4 46.5 26.2 49.1

{π1} 1 80.0 27.5 73.1 32.4 39.6 23.8 44.3
{π1, π2, π13, π1209} 4 83.2 30.8 75.9 34.6 43.4 24.6 46.8

{π1, . . . , π16} 16 82.8 32.5 76.6 37.5 46.1 24.6 47.9

B Evaluation Result

B.1 Main Experiments

In this section, we present additional results for the main experiments.

Detailed 1(few)-shot RLVR performance with best per-benchmark results In Tab. 8, we present
the detailed 1(few)-shot RLVR results for Qwen2.5-Math-1.5B. Here, we record the model’s best
performance on each benchmark individually, so their average can be higher than the best overall
average performance (“Avg.”). We include these results to estimate the upper limit of what the
model can achieve on each benchmark. Additionally, we include several examples that, while not
performing as well as π1 or π13, still demonstrate significant improvements, such as π2, π1201,
and π1209. We observe that, in general, better results correspond to a larger checkpoint step for
best average performance, which may correspond to a longer post-saturation generalization process.
Similarly, in Tab. 9, we also include the best per-benchmark results for Qwen2.5-Math-7B, Llama-3.2-
3B-Instruct, and DeepSeek-R1-Distill-Qwen-1.5B, respectively, together with Qwen2.5-Math-1.5B
with PPO training.

Test curves on MATH500 for 1-shot RLVR on Qwen2.5-Math-1.5B. We plot the performance
curves for each subject in MATH500 under 1-shot RLVR using different mathematical examples.

7https://github.com/volcengine/verl/blob/main/verl/workers/fsdp_workers.py
8https://github.com/volcengine/verl/issues/296
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Figure 8: Different data have large difference on improving MATH500 accuracy, but they all
improve various tasks rather than their own task. From left to right correspond to 1-shot RL on
π1, π11, π13, or π16. Details are in Tab. 3.

As shown in Fig. 8, the choice of example leads to markedly different improvements and training
dynamics in 1-shot RLVR, highlighting the critical importance of data selection for future few-shot
RLVR methods.

Detailed RLVR results on eacn benchmark over training process. To better visualize the training
process of RLVR and compare few-shot RLVR with full-set RLVR, we show the performance curves
for each benchamrk in Fig. 9, 10, 11, 12. We note that for Qwen2.5-Math-7B, Llama-3.2-3B-Instruct,
and DeepSeek-R1-Distill-Qwen-1.5B, few-shot RLVR can achieve comparable or even better average
performance as full-set RLVR, but the later one can keep stable training for more steps even though
the test performance does not continue improving. It will be interesting to see that if applying
1(few)-shot RLVR for more stable GRPO variants [13, 11, 12, 16] can alleviate this phenomenon.
We also note that Llama3.2-3B-Instruct is more unstable during training, as almost all setups start
having performance degradation before 200 steps.

C Example Details

Tab. 10 through 30 in the supplementary material provide detailed information for each example used
in our experiments (except π1 and π13 in Tab. 2) and for all other examples in {π1, . . . , π17}. Each
table contains the specific prompt and corresponding ground truth label for an individual example.

Table 10: Details of example π2.
Prompt:
How many positive divisors do 9240 and 13860 have in common? Let’s think step by step and output the final
answer within \\boxed{}.

Ground truth (label in DSR-sub): 24.
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Figure 9: Detailed evaluation results on each benchmark for RLVR on Qwen2.5-Math-1.5B.
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Figure 10: Detailed evaluation results on each benchmark for RLVR on Qwen2.5-Math-7B.

Table 11: Details of example π3.
Prompt:
There are 10 people who want to choose a committee of 5 people among them. They do this by first electing a
set of $1,2,3$, or 4 committee leaders, who then choose among the remaining people to complete the 5-person
committee. In how many ways can the committee be formed, assuming that people are distinguishable? (Two
committees that have the same members but different sets of leaders are considered to be distinct.) Let’s
think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 7560.
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Figure 11: Detailed evaluation results on each benchmark for RLVR on Llama-3.2-3B-Instruct.
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Figure 12: Detailed evaluation results on each benchmark for RLVR on DeepSeek-R1-Distill-
Qwen-1.5B.

Table 12: Details of example π4.
Prompt:
Three integers from the list $1,2,4,8,16,20$ have a product of 80. What is the sum of these three integers?
Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 25.
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Table 13: Details of example π5.
Prompt:
In how many ways can we enter numbers from the set $\\{1,2,3,4\\}$ into a $4 \\times 4$ array so that all of
the following conditions hold? (a) Each row contains all four numbers. (b) Each column contains all four
numbers. (c) Each "quadrant" contains all four numbers. (The quadrants are the four corner $2 \\times 2$
squares.) Let\’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 288.

Table 14: Details of example π6.
Prompt:
The vertices of a $3 \\times 1 \\times 1$ rectangular prism are $A, B, C, D, E, F, G$, and $H$ so that
$A E, B F$, $C G$, and $D H$ are edges of length 3. Point $I$ and point $J$ are on $A E$ so that $A I=I J=J E=1$.
Similarly, points $K$ and $L$ are on $B F$ so that $B K=K L=L F=1$, points $M$ and $N$ are on $C G$ so that
$C M=M N=N G=1$, and points $O$ and $P$ are on $D H$ so that $D O=O P=P H=1$. For every pair of the 16
points $A$ through $P$, Maria computes the distance between them and lists the 120 distances. How many of
these 120 distances are equal to $\\sqrt{2}$? Let’s think step by step and output the final answer
within \\boxed{}.

Ground truth (label in DSR-sub): 32.

Table 15: Details of example π7.
Prompt:
Set $u_0 = \\frac{1}{4}$, and for $k \\ge 0$ let $u_{k+1}$ be determined by the recurrence\n
\\[u_{k+1} = 2u_k - 2u_k^2.\\]This sequence tends to a limit; call it $L$. What is the least value of $k$
such that\n\\[|u_k-L| \\le \\frac{1}{2^{1000}}?\\] Let’s think step by step and output the final answer
within \\boxed{}.

Ground truth (label in DSR-sub): 10.

Table 16: Details of example π8.
Prompt:
Consider the set $\\{2, 7, 12, 17, 22, 27, 32\\}$. Calculate the number of different integers that can be
expressed as the sum of three distinct members of this set. Let’s think step by step and output the final
answer within \\boxed{}.

Ground truth (label in DSR-sub): 13.

Table 17: Details of example π9.
Prompt:
In a group photo, 4 boys and 3 girls are to stand in a row such that no two boys or two girls stand next to
each other. How many different arrangements are possible? Let’s think step by step and output the final
answer within \\boxed{}.

Ground truth (label in DSR-sub): 144.

Table 18: Details of example π10.
Prompt:
How many ten-digit numbers exist in which there are at least two identical digits? Let’s think step by step
and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 8996734080.

Table 19: Details of example π11.
Prompt:
How many pairs of integers $a$ and $b$ are there such that $a$ and $b$ are between $1$ and $42$
and $a^9 = b^7 \\mod 43$ ? Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 42.

26



Table 20: Details of example π12.
Prompt:
Two springs with stiffnesses of $6 \\, \\text{kN} / \\text{m}$ and $12 \\, \\text{kN} / \\text{m}$ are
connected in series. How much work is required to stretch this system by 10 cm? Let’s think step by step and
output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 20.

Table 21: Details of example π14.
Prompt:
Seven cards numbered $1$ through $7$ are to be lined up in a row. Find the number of arrangements of these
seven cards where one of the cards can be removed leaving the remaining six cards in either ascending or
descending order. Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 74.

Table 22: Details of example π15.
Prompt:
What is the area enclosed by the geoboard quadrilateral below?\n[asy] unitsize(3mm);
defaultpen(linewidth(.8pt)); dotfactor=2; for(int a=0; a<=10; ++a) for(int b=0; b<=10; ++b)
{ dot((a,b)); }; draw((4,0)--(0,5)--(3,4)--(10,10)--cycle); [/asy] Let’s think step by step and output
the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 22 1
2
.

Table 23: Details of example π16.
Prompt:
If $p, q,$ and $r$ are three non-zero integers such that $p + q + r = 26$ and\\[\\frac{1}{p} + \\frac{1}{q} +
\\frac{1}{r} + \\frac{360}{pqr} = 1,\\] compute $pqr$.\n Let’s think step by step and output the final answer
within \\boxed{}.

Ground truth (label in DSR-sub): 576.

Table 24: Details of example π17.
Prompt:
In Class 3 (1), consisting of 45 students, all students participate in the tug-of-war. For the other three
events, each student participates in at least one event. It is known that 39 students participate in the
shuttlecock kicking competition and 28 students participate in the basketball shooting competition. How many
students participate in all three events? Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 22.

Table 25: Details of example π605.
Prompt:
Given vectors $$\\overrightarrow {m}=( \\sqrt {3}\\sin x+\\cos x,1), \\overrightarrow {n}=(\\cos x,-f(x)),
\\overrightarrow {m}\\perp \\overrightarrow {n}$$.\n(1) Find the monotonic intervals of $f(x)$;\n(2) Given
that $A$ is an internal angle of $\\triangle ABC$, and $$f\\left( \\frac {A}{2}\\right)= \\frac {1}{2}+
\\frac { \\sqrt {3}}{2},a=1,b= \\sqrt {2}$$, find the area of $\\triangle ABC$. Let’s think step by step
and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub):
√
3−1
4

.

Table 26: Details of example π606.
Prompt:
How many zeros are at the end of the product \\( s(1) \\cdot s(2) \\cdot \\ldots \\cdot s(100) \\), where
\\( s(n) \\) denotes the sum of the digits of the natural number \\( n \\)? Let’s think step by step and
output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 19.
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Table 27: Details of example π1201.
Prompt:
The angles of quadrilateral $PQRS$ satisfy $\\angle P = 3\\angle Q = 4\\angle R = 6\\angle S$. What is the
degree measure of $\\angle P$? Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 206.

Table 28: Details of example π1207. A correct answer for this question should be 2/3.
Prompt:
A rectangular piece of paper whose length is $\\sqrt{3}$ times the width has area $A$. The paper is divided
into three equal sections along the opposite lengths, and then a dotted line is drawn from the first divider
to the second divider on the opposite side as shown. The paper is then folded flat along this dotted line to
create a new shape with area $B$. What is the ratio $\\frac{B}{A}$? Let’s think step by step and output the
final answer within \\boxed{}.

Ground truth (label in DSR-sub): 4
5
.

Table 29: Details of example π1208.
Prompt:
Given a quadratic function in terms of \\\\(x\\\\), \\\\(f(x)=ax^{2}-4bx+1\\\\).\n\\\\((1)\\\\) Let set
\\\\(P=\\\\{1,2,3\\\\}\\\\) and \\\\(Q=\\\\{-1,1,2,3,4\\\\}\\\\), randomly pick a number from set
\\\\(P\\\\) as \\\\(a\\\\) and from set \\\\(Q\\\\) as \\\\(b\\\\), calculate the probability that the
function \\\\(y=f(x)\\\\) is increasing in the interval \\\\([1,+\\\\infty)\\\\).\n\\\\((2)\\\\) Suppose point
\\\\((a,b)\\\\) is a random point within the region defined by \\\\( \\\\begin{cases} x+y-8\\\\leqslant 0
\\\\\\\\ x > 0 \\\\\\\\ y > 0\\\\end{cases}\\\\), denote \\\\(A=\\\\{y=f(x)\\\\) has two zeros, one greater
than \\\\(1\\\\) and the other less than \\\\(1\\\\}\\\\), calculate the probability of event \\\\(A\\\\)
occurring. Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 961
1280

.

Table 30: Details of example π1209.
Prompt:
Define the derivative of the $(n-1)$th derivative as the $n$th derivative $(n \\in N^{*}, n \\geqslant 2)$,
that is, $f^{(n)}(x)=[f^{(n-1)}(x)]’$. They are denoted as $f’’(x)$, $f’’’(x)$, $f^{(4)}(x)$, ...,
$f^{(n)}(x)$. If $f(x) = xe^{x}$, then the $2023$rd derivative of the function $f(x)$ at the point
$(0, f^{(2023)}(0))$ has a $y$-intercept on the $x$-axis of ______. Let’s think step by step and output the
final answer within \\boxed{}.

Ground truth (label in DSR-sub): − 2023
2024

.
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